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Abstract
Aims/hypothesis We previously observed hyperglycaemia,
hyperinsulinaemia, insulin resistance and obesity in Gpx1-
overexpressing mice (OE). Here we determined whether
these phenotypes were eliminated by diet restriction, sub-
sequently testing whether hyperinsulinaemia was a primary
effect of Gpx1 overexpression and caused by dysregulation
of pancreatic duodenal homeobox 1 (PDX1) and uncoup-
ling protein-2 (UCP2) in islets.
Methods First, 24 male OE and wild-type (WT) mice
(2 months old) were given 3 g (diet-restricted) or 5 g (full-
fed) feed per day for 4 months to compare their glucose
metabolism. Thereafter, several mechanistic experiments
were conducted with pancreas and islets of the two genotypes
(2 or 6 months old) to assay for beta cell mass, reactive
oxygen species (ROS) levels, mitochondrial membrane
potential (Δ=m) and expression profiles of regulatory
proteins. A functional assay of islets was also performed.
Results Diet restriction eliminated obesity but not hyper-
insulinaemia in OE mice. These mice had greater pancreatic
beta cell mass (more than twofold) and pancreatic insulin
content (40%) than the WT, along with an enhanced Δ=m

and glucose-stimulated insulin secretion in islets. With
diminished ROS production, the OE islets displayed
hyperacetylation of H3 and H4 histone in the Pdx1
promoter, elevated PDX1 and decreased UCP2.
Conclusions/interpretation Overproduction of the major
antioxidant enzyme, glutathione peroxidase 1, caused
seemingly beneficial changes in pancreatic PDX1 and
UCP2, but eventually led to chronic hyperinsulinaemia by
dysregulating islet insulin production and secretion.
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Abbreviations
AKT protein kinase B
ChIP chromatin immunoprecipitation
GPX1 glutathione peroxidase 1
GSIS glucose-stimulated insulin secretion
JNK c-jun terminal kinase
OE Gpx1-overexpressing mice
Δ=m mitochondrial membrane potential
PDX1 pancreatic and duodenal homeobox 1
PTP1B protein tyrosine phosphatase 1B
ROS reactive oxygen species
UCP2 uncoupling protein 2
WT wild-type

Introduction

Pancreatic beta cells are considered to be low in antioxidant
capacity and susceptible to oxidative stress [1]. Conse-
quently, oxidative injury of beta cells has become a new
aetiological focus of diabetes and insulin resistance [2].
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Indeed, insulin synthesis or secretion in insulin-producing
or -secreting cells is impaired by elevated intracellular re-
active oxygen species (ROS), this impairment being partially
alleviated by overproduction of antioxidant enzymes [3, 4].
However, overproduction of antioxidant proteins in ani-
mals, either specifically in pancreatic beta cells [5, 6] or
ubiquitously in various tissues [7, 8], has generated highly
variable or even negative phenotypes [9]. Most strikingly,
we have observed spontaneous development of hyper-
glycaemia, hyperinsulinaemia, insulin resistance and obesi-
ty in mice overproducing Se-dependent cellular glutathione
peroxidase-1 (GPX1), a major intracellular antioxidant
enzyme [10].

While the physiological relevance of our paradoxical
finding was shown by a strong correlation between
increased erythrocyte GPX1 activity and insulin resistance
in gestational diabetic women [11], our initial study [10]
did not sort out the metabolic sequence of the phenotype in
the Gpx1-overexpressing (OE) mice. It remained unclear
whether hyperinsulinaemia and insulin resistance in OE
mice were caused by or largely confounded by obesity.
Because obesity may be eliminated or controlled by diet
restriction [12], it is logical to examine whether obesity in
OE mice can be prevented by restricted feeding, and
whether their altered insulin status is independent of obesity.

Hyperinsulinaemia may be induced by elevated beta cell
mass and/or excessive insulin synthesis and secretion [13,
14]. The transcriptional factor pancreatic duodenal homeo-
box 1 (PDX1) plays a pivotal role in pancreatic beta cell
differentiation as well as insulin gene expression and
synthesis [14–17]. Uncoupling protein 2 (UCP2) serves as
a negative regulator of mitochondrial membrane potential
(Δ=m) [18], which positively correlates with glucose-
stimulated insulin secretion (GSIS) [19]. Levels and
function of PDX1 and UCP2 are affected by intracellular
ROS status [20, 21], glucotoxicity [22] and antioxidants
[6, 23, 24]. However, it is not known whether in vivo
global overexpression of Gpx1 could overly diminish intra-
cellular production of hydroperoxides and subsequently
dysregulate production of PDX1 and UCP2 and their role in
insulin synthesis and secretion.

Although post-transcriptional regulation of PDX1 by
ROS or antioxidants has been postulated [20, 23–25], new
mechanisms such as epigenetic modification [26] of Pdx1
have not been studied. The proximal region of Pdx1
promoter consists of an islet-specific expression consensus
E-box motif, which predominantly binds the upstream
transcription factor [27]. Site-specific acetylation or deace-
tylation of nucleosomal histones H3 and H4 is central to the
switch between permissive and repressive chromatin struc-
ture and thus activation or repression of transcription [28].
With a high affinity for upstream transcription factor
binding [29], H3 and H4 are the core histones with high

levels of acetylation at the active transcriptional loci [30]. It
would be of great interest to determine whether the
presumed diminished intracellular ROS production in OE
islets enhances Pdx1 transcription via hyper-acetylating H3
and H4 in its proximal promoter region, causing hypertro-
phy of beta cells and overproduction of insulin. In addition,
Pdx1 transcription and PDX1 stability are affected by three
key insulin signal proteins: c-jun terminal kinase (JNK),
protein kinase B (AKT) and protein tyrosine phosphatase
1B (PTP1B) [20, 31, 32]. Because these proteins are highly
sensitive to ROS [9, 33, 34], elevated GPX1 activity may
impact on PDX1 via alteration of their production or
phosphorylation.

In the present study, we first demonstrated that hyper-
insulinaemia was a primary effect of Gpx1 overexpression
and was not prevented by diet restriction. Thereafter, we
conducted a series of experiments to test whether: (1)
hyperinsulinaemia in OE mice was attributable to increased
beta cell mass, insulin synthesis, mitochondrial potential
and GSIS in islets; (2) OE islets phenotype was due to
altered PDX1 and UCP2 levels; and (3) the dysregulation
of PDX1 and UCP2 was mediated by overly scavenged
ROS level, hyperacetylation of H3 and H4 histone of Pdx1
promoter and alterations of JNK, AKT and PTP1B. Our
data indicate that hyperinsulinaemia in OE mice was
associated with upregulated PDX1 and a downregulated
UCP2 protein in islets, and that hyperacetylation of H3 and
H4 histone of Pdx1 promoter in response to Gpx1 over-
expression was a novel regulatory mechanism for this key
transcriptional factor in vivo.

Methods

Transgenic mice and animal care All mouse experiments
were approved by the Institutional Animal Care and Use
Committee at Cornell University. The OE mice were
derived from a B6C3 (C57B1×C3H) hybrid line (Taconic,
Germantown, NY, USA) [35] and carried three additional
copies of the Gpx1 gene. The wild-type (WT) was derived
from the non-transgenic littermates. Elevated GPX1 activity
in the OE mice was confirmed in a number of tissues and
showed no significant effect on other selenoproteins and
antioxidant enzymes [35]. All mice were weaned at 3 weeks
of age, given free access to a Torula yeast and sucrose-
based diet (0.4 mg Se/kg) [35] and distilled water. Mice
were individually reared in plastic cages in an animal room
with constant temperature (22°C) and a 12 h light–dark
cycle. All assays were conducted with male mice at
6 months of age unless otherwise indicated.

Diet restriction experiment A total of 12 WT and 12 OE
male mice (2 months of age) were fed 5 g (full-fed) or 3 g
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(diet-restricted) of the diet per day [36]. During the 4 month
trial, body weights of mice were recorded monthly. Fasting
(8 h, overnight) blood glucose concentrations of mice were
measured monthly from tail blood using a glucometer
(Bayer, Elkhart, IN, USA). At the end of the trial period, all
mice were killed to collect blood (plasma), liver, pancreas
and gastrocnemius muscle to assay for activities of GPX1,
GPX3, thioredoxin reductase and total superoxide dismu-
tase [10]. At 1 week prior to the end of the study, fasted
mice were tested for insulin tolerance (0.5 units per kg body
weight; Humulin R; Eli Lilly, Indianapolis, IN, USA),
glucose tolerance (1 g/kg, D-glucose) and GSIS (1 g/kg)
(tests conducted at 2 day intervals). Plasma insulin
concentration was determined using a rat/mouse insulin
ELISA kit (Crystal Chem, Downers Grove, IL, USA) [10].

In vitro experiments and assays Detailed experimental
protocols and complete information on reagents, materials
and instruments are described in Electronic supplementary
material (ESM). Briefly, total pancreatic insulin concentra-
tion was determined (n=4 mice per genotype) using the
above-described kit after acid-ethanol extraction [37].
Pancreatic beta cell mass was determined by immunostain-
ing of paraffin-embedded pancreatic sections (n=3 mice×
three slides per genotype) [38] with a guinea pig polyclonal
antibody against mouse insulin (Zymed, San Francisco,
CA, USA). Immunostaining of pancreatic GPX1 protein (n
=3 mice×three slides per genotype) was conducted using a
rabbit polyclonal antibody against bovine GPX1 (Lab
Frontier, Seoul, Korea). Islets were isolated from mice
using a standard procedure [39] with minor modifications.
Total GPX1 activity was assayed in homogenised islets
isolated from the OE and WT mice (n=3 per genotype)
[10]. For insulin secretion assays, islets (30 per sample, n=
3 per genotype by treatment) were incubated for 1 h at
37°C in 1 ml Hanks’ balanced salt solution containing 2.8
or 16.7 mmol/l glucose with or without 50 μmol/l H2O2.
The released insulin (after 60 min incubation) in the medium
supernatant fraction was quantified as described above.
Intracellular ROS levels were detected using dichlorodihy-
drofluorescein diacetate (Molecular Probes, Eugene, OR,
USA) [6]. Islet Δ=m was determined using a mitochondrial
membrane sensor kit (ApoAlert; Clontech Laboratories,
Mountain View, CA, USA).

The mRNA levels of four genes in islets were deter-
mined by Q-PCR (7900HT; Applied Biosystems, Foster
City, CA, USA). Total RNA was prepared from freshly
isolated islets (200 per sample, n=6 mice per genotype)
using Trizol (Invitrogen, Carlsbad, CA, USA). Protein
concentrations of eight insulin-related signal molecules in
homogenates of pancreas (n=4 per genotype) and islets
(400 per sample, n=4 mice per genotype) were determined
as previously described [10].

Two experiments were conducted to determine how
elevated GPX1 activity in the OE islets affected acetylation
of the H3 and H4 core histones in the Pdx1 proximal
promoter region [40] and also to determine their response to
the H2O2-induced hypoacetylation. In both experiments,
islets (n=500 per sample) were isolated from 16 mice (n=4
per genotype by age) and cultured for 48 h (RPMI 1640
medium) before the assay. In the second experiment, islets
were further incubated with or without 50 μmol/l of H2O2

for 24 h. The histone cross-linking and chromatin immu-
noprecipitation (ChIP) were carried out by using a ChIP
assay kit (Upstate/ Millipore, Temecula, CA, USA) follow-
ing the manufacturer’s instructions.

Ebselen, a seleno-organic compound that mimics the
enzymatic function of GPX1 [41], was used to determine
whether the decreased UCP2 protein levels in the OE islets
were related to the enhanced GPX1 activity. Islets isolated
from three WT mice were pooled and divided into three
groups (200 islets per sample, n=3 per treatment): medium
only (RPMI 1640, 10 mmol/l glucose and 10% [vol./vol.]
fetal bovine serum), solvent vehicle control (0.25% [vol./
vol.] DMSO) and 50 μmol/l ebselen. After 12 h incubation,
islets were collected for western blot analysis of UCP2 as
described above.

Statistical analyses Quantitative data were analysed using
SAS (release 6.11; SAS Institute, Cary, NC, USA). Genotype
or treatment effects were tested by one or two-way ANOVA
and Student’s t test. Data are presented as mean±SE and
significance was set at p<0.05.

Results

Dietary restriction eliminated obesity, but not hyperinsuli-
naemia in OE mice Compared with the WT, the full-fed OE
mice became heavier (p<0.05) (Fig. 1a) and exhibited
hyperglycaemia (p<0.05) (Fig. 1c), insulin resistance
(Fig. 1e) and hyperinsulinaemia with elevated GSIS
(Fig. 1i) at various time-points. Diet restriction in the OE
mice prevented all of these phenotypes (Fig. 1b,d,f) except
for hyperinsulinaemia. The diet-restricted OE mice still had
higher (p<0.05) plasma insulin concentrations at 0 (base-
line, 66%) and 15 min (222%) after the glucose challenge
(Fig. 1j) than did the WT mice. Despite slightly higher (p<
0.05) blood glucose concentrations than WT at several
time-points during the glucose tolerance test (Fig. 1g,h), the
OE mice actually exhibited greater (p<0.05) glucose
tolerance relative to their initial concentration (data not
shown). Compared with the WT, the elevation of GPX1
activity in the OE mice (Table 1) was relatively greater in
pancreas (23-fold) than in liver (24%) or muscle (4.2-fold),
while there was no difference in activities of other enzymes.
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The OE mice had elevated beta cell mass, insulin synthesis
and GSIS Pancreatic insulin content was 40% higher (p<
0.05) in the OE than the WT mice (Fig. 2a). After
incubation with 2.8 and 16.7 mmol/l glucose, OE islets
released 67 and 85% more (p<0.05) insulin into the media,
respectively than those of WT (Fig. 2b). The H2O2

treatment decreased (p<0.05, 37%) GSIS in the WT islets
treated with 16.7 mmol/l glucose, but not in the OE islets.
Elevated GSIS was also seen in OE islets at 15 min
incubation and different ages of mice (2 to 10 months old;
data not shown). Pancreatic insulin staining showed a
stronger colour and a larger area in the OE than in the WT
mice (Fig. 2c). The beta cell mass represented only 0.48%
of the total pancreas in the WT, but was elevated (p<0.05)
to 1.27% in the OE mice.

Overproduction of GPX1 in the OE islets was accompanied by
an attenuated ROS production and an elevated mitochondrial
membrane potential The immunostaining of GPX1 protein
in pancreatic sections (Fig. 3a) was stronger in the OE than
in the WT mice. Islet GPX1 activity was 22-fold greater
(p<0.05) in the OE than in the WT (Fig. 3b). As shown by
the intensity of green fluorescence (Fig. 3c,), intracellular
ROS production in the OE islets treated with 5 mmol/l
glucose was lower than that of the WT islets. The green
fluorescence in the WT islets was increased by exposure to
25 mmol/l glucose for 12 h and further intensified by
treatment with 50 μmol/l H2O2 for 5 h. In contrast, these
treatments in the OE islets induced no apparent increase in
green fluorescence over baseline. At 5 mmol/l glucose, the
OE islet image showed yellow instead of green fluorescence
as in the WT, implying a greater Δ=m in the OE than in the
WT (Fig. 3d). At 25 mmol/l glucose, islet mitochondria from
both genotypes were highly energised (red fluorescence).

The OE mice showed opposite changes in islet PDX1
and UCP2 The relative mRNA level of Pdx1 in OE islets
was approximately threefold (p<0.05) that in WT islets
(Fig. 4). The mRNA levels of preproinsulin 1 and prepro-
insulin 2 in the OE islets were also double (p<0.05 to 0.07)
those of the WT. In contrast, the mRNA level of Ucp2 in the
OE islets was 23% lower (p<0.05) than that in the WT islets.
Western blot analyses of the islet homogenates indicated a
67% (p<0.05) increase in PDX1 and 31 to 57% decreases
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Fig. 1 Effects of full feeding (5 g/day) on body weight (a), fasting
(overnight, 8 h) blood glucose concentrations (c), insulin tolerance
(0.5 units/kg) (e), glucose tolerance (1 g/kg) (g) and GSIS (1 g
glucose/kg) (i) of OE and WT mice. b, d, f, h, j Effects of diet
restriction (3 g/day) on variables as above. Data are means±SE (n=6).
*p<0.05 for difference between two genotypes at given time points.
White circles, WT; white triangles, OE (both full feeding); black
circles, WT; black triangles, OE (both diet restriction)
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(p<0.05) in UCP2, phosphorylated JNK, phosphorylated
AKT on Thr-308, and PTP1B in the OE than the WT mice
(Fig. 5a). Similar genotype differences in PDX1 and UCP2
proteins were detected in islets of 2-month-old mice (ESM
Fig. 1). These assayed proteins were chosen to verify their
genotype differences initially detected in the pancreas
homogenates (ESM Fig. 2). In addition, the OE showed a
24% (p<0.05) decrease in total phosphorylated PDX1
protein in pancreas compared with WT, but the two
genotypes had similar levels of pancreatic total JNK, total
AKT and phosphorylated AKT on Ser-473. Compared with
islets treated with medium only or the solvent vehicle-
controls, the WT islets treated with 50 μmol/l ebselen had
their UCP2 protein reduced to a minimal level (Fig. 5b).
This implied that the decreased UCP2 protein in the OE
islets was associated with elevated GPX1 activity.

The OE islets exhibited hyperacetylation of H3 and H4
histone at the proximal promoter of Pdx1 Both H3 and H4
acetylation were increased (p<0.05) in OE islets compared
with WT islets (Fig. 6a,b). The genotype difference was
numerically greater at 6 than at 2 months of age. Treating
the islets with H2O2 decreased H3 and H4 acetylation by
approximately 50% (p<0.05) in the WT, but not in the OE
group (Fig. 6c,d). Apparently, hyperacetylation of H3 and
H4 histone in the OE islets was associated with their
enhanced capacity of H2O2 degradation resulting from
Gpx1 overexpression.
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Table 1 Effects of diet restriction and full feeding on activities of GPX1 and other enzymes in liver, pancreas, muscle and plasma of OE and WT
mice

Parameter Diet restriction Full feeding

WT OE WT OE

GPX1a

Liver 798.4±36.2 991.2±147.1 807.3±42.6 993.5±40.4†

Pancreas 40.4±4.1* 762.1±133.6*† 50.3±1.4 1,366.5±69.1†

Muscle 69.6±1.6 289.1±14.0† 67.4±1.6 285.7±6.5†

Plasma GPX3b 45.5±2.3* 49.0±1.1* 39.0±1.9 36.8±2.2
Thioredoxin reductasec

Liver 25.0±1.4 25.8±1.3 26.3±1.4 25.9±1.6
Pancreas 5.9±0.6* 7.4±1.0 9.5±0.8 7.5±0.5
Muscle 9.4±0.3* 9.7±0.6 7.9±0.5 8.2±0.4

Total SODd

Liver 913±23* 873±36* 1,038±23 1,115±44
Pancreas 405±36 434±22 502±24 470±24
Muscle 321±12* 323±4.2* 399±9.5 367±9.1

Values are mean±SE (n=6)
a Glutathione oxidised in nmol min−1 (mg protein)−1
b Glutathione peroxidase 3 (GPX3), measured as glutathione oxidised in nmol min−1 (mg protein)−1
cMeasured as formation of 5′-thionitrobenoic acid in nmol min−1 (mg protein)−1
d Superoxide dismutase (SOD), measured as 50% formazan dye formation rate inhibition per mg protein
*p<0.05 for diet-restriction effect within genotype; † p<0.05 for genotype effect vs WT within dietary treatment
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Discussion

Our most important finding is that hyperinsulinaemia in OE
mice was not directly linked to obesity. Diet restriction
eliminated obesity, hyperglycaemia and insulin resistance in
the OE mice, but could not prevent fasting hyperinsulinae-
mia or elevated GSIS. In fact, similar outcomes were also
produced by diet restriction of 6-month-old OE mice for
4 months (data not shown). Because the OE and WT mice
shared similar activities in tissues for all the assayed
antioxidant enzymes other than GPX1, hyperinsulinaemia

in the OE mice was mainly, if not solely, related to the
elevated GPX1 activity. Without insulin resistance, hyper-
insulinaemia in the diet-restricted OE mice was probably
due to a non-compensatory overproduction and/or hyper-
secretion of insulin.

Indeed, the OE mice had a higher pancreatic beta cell
mass and insulin content, and thus a greater capacity or
potential for insulin production than the WT. The elevated
islet mRNA levels of preproinsulin 1 and preproinsulin 2
were consistent with the increased pancreatic insulin
content in the OE mice. Comparatively, neither baseline

Fig. 3 Effects of Gpx1 over-
expression on pancreatic GPX1
level (a), islet GPX1 activity
(b), islet intracellular ROS pro-
duction (c) and islet mitochon-
drial membrane potential (d).
a Representative images of
immunostaining of GPX1 pro-
tein in pancreatic sections of
WT and OE mice as indicated.
The dark brown staining in OE
mice indicates a high level of
GPX1 protein. Islet GPX1 ac-
tivity (b) was enhanced 20-fold
(*p<0.05) in the OE (black
column) versus WT (white col-
umn) mice. c Decreased intra-
cellular ROS production in islets
of the OE compared with those
of WT mice under various
treatments as indicated. d OE
islets had higher mitochondrial
membrane potential than the
WT islets under different treat-
ments. In all panels, experiments
were conducted on islets isolat-
ed from 6-month-old mice (n=3
to 5 per genotype). Scale bar,
10 µm. Magnification, 40×
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insulin concentration nor insulin gene expression in islets
was altered by overexpressing catalase by up to 50-fold [9],
two forms of metallothionein by up to 30-fold [9, 42] or
three forms of superoxide dismutase enzymes by up to 10-
fold [5, 7]. Furthermore, overproduction of metallothionein
and catalase in beta cells actually accelerated cytokine-
induced beta cell death [9]. Thus, the hypertrophic effect of
GPX1 on beta cell mass and insulin synthesis is rather
unique. Infection of rat islets with adenovirus encoding
human GPX1 gene protected against the ribose-induced
loss of insulin mRNA, content and secretion. However, a
sixfold increase in GPX1 activity and 72 h infection
seemed to be insufficient to alter baseline levels of these
three parameters [6, 24].

An enhanced functional PDX1 protein in the OE islets
helps explain the hypertrophic effect of Gpx1 overexpres-
sion on beta cell mass and insulin synthesis. Because in
previous research only post-transcriptional regulation of
Pdx1 expression and function by ROS or antioxidant has
been suggested [6, 20, 23, 25], our finding on the
hyperacetylation of H3 and H4 histone at the proximal
promoter of Pdx1 in the OE mice reveals not only a novel,
in vivo epigenetic, but also a potential transcriptional
regulation for this key factor by antioxidant enzymes.
Preceding transcriptional activation [43], hyperacetylation
of H3 and H4 helps remodel the chromatin at Pdx1
promoter to form a more accessible structure for transcrip-
tion [44]. This modification helps explain the increased
Pdx1 mRNA levels in the OE islet and is strongly
associated with the GPX1 function of H2O2 degradation.
The latter statement is based on the negative correlation
between histone acetylation and islet intracellular ROS
production at 2 and 6 months of age, and on the fact that
H2O2-induced histone hypoacetylation was prevented in the
OE islets. Along with a modest decrease (24%) in
pancreatic PDX1 phosphorylation (degradation) [25], the

upregulation of Pdx1 gene expression enabled the OE mice
to maintain a higher level of functional PDX1 protein than
the WT mice to promote beta cell differentiation and insulin
synthesis. While similar positive effects on PDX1 protein
were produced by three dietary antioxidant supplements in
C57BL/KsJ-db/db mice [23], overproduction of catalase in
beta cells accelerated cytokine-induced PDX1 protein
disappearance [9]. It is intriguing to see such different
impacts on PDX1 protein by GPX1 and catalase, given the
so similar catalytic functions.

Decreased protein levels of phosphorylated JNK, phos-
phorylated AKT on Thr-308 and PTP1B in the OE islets
were consistent with the attenuated ROS production, but
presented mixed impacts on PDX1 abundance and stability.
Suppressed phosphorylation of JNK was likely to promote
PDX1 function by inhibiting ROS-induced nucleocytoplas-
mic translocation of PDX1 [20, 45] and to enhance Pdx1

Fig. 5 Effects of Gpx1 overexpression on islet protein levels of
insulin-related signal molecules (a) and responses of islet UCP2
protein to GPX1 mimic ebselen (b). a Representative (n=4) immuno-
blots showing the protein levels (mean±SE, n=4) in OE islets relative to
the WT islets (as 100%): PDX1 (167±17), UCP2 (43±16), phosphor-
ylated JNK (JNK-P, 69±22), phosphorylated AKT on Thr-308 (AKT-
P308, 49±27) and PTP1B (59±28) (all p<0.05 for difference between
genotype). The relative protein level was normalised to that of ß-actin on
the same membrane. b Representative (n=3) immunoblot showing
responses of islet UCP2 protein to ebselen. The relative UCP2 protein
level (mean±SE, n=3) was 100±5.4 for the blank control, 111.9±7.6 for
the vehicle control, and 5.3±2.8 for the ebselen treatment, respectively
(p<0.05 for effect of ebselen compared with vehicle and blank
controls)
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Fig. 4 Effects of Gpx1 overexpression on islet mRNA levels of Pdx1,
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the OE islets was presented as relative to the mean (set at 1) of WT.
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transcription by protecting ROS-induced nuclear localisa-
tion of forkhead box O1 (an inhibitor of PDX1 transcrip-
tion) [46]. The decreased levels of phosphorylated AKT on
Thr-308 might attenuate H2O2-mediated phosphorylation
(degradation) of PDX1 [25], but could also inhibit Pdx1
transcription via reduced phosphorylation of forkhead box
O1 [9, 47]. While the decrease of PTP1B protein with
concomitant increases of PDX1 protein, beta cell mass and
insulin synthesis in the OE islets resembled the phenotype
of PTP1B-null mice [32], it does not support a possible
increase of ROS inhibition of PTP1B as the ultimate
mechanism for suppressing the AKT/PDX1 pathway by
catalase overexpression [9].

The decreased expression of Ucp2 mRNA and UCP2
protein in the OE islets may explain the enhanced Δ=m

[18] and the elevated GSIS [48]. A strong link between
decreased levels of UCP2 and Gpx1 overexpression is
supported by the response of the WT islets to GPX1 mimic,
ebselen, and the resistance of OE islets to H2O2-suppressed
GSIS. However, the UCP2 decrease may not be simply
attributable to the diminished intracellular ROS because of
a possible two-way feedback mechanism for the interaction
of UCP2 and H2O2 [49]. While expression and function of
UCP2 are activated by ROS [21], mitochondrial H2O2

generation can be decreased by UCP2 [49]. Therefore, the
concurrent decreases in both intracellular ROS and UCP2

in OE mice may reflect a disruption of the feedback
mechanism. Probably, the overly scavenging intracellular
H2O2 in islets of the OE mice allowed co-existence of
highly coupled or energised mitochondria with lower levels
of UCP2, nudging up the well-controlled GSIS and con-
tributing to hyperinsulinaemia [18]. Ucp2, coincidentally, is
located in regions of human chromosome 11 and mouse
chromosome 7, which have been linked to hyperinsulinae-
mia and obesity [18].

In summary, chronic hyperinsulinaemia in OE mice was
associated with a dysregulated functional production of
PDX1 and UCP2. It is striking that seemingly beneficial
effects of GPX1 on these two key factors, beta cell mass,
and insulin synthesis and secretion eventually led to chronic
hyperinsulinaemia. Apparently, our in vivo results are in
stark contrast to the transient benefits of upregulating
antioxidant capacity as shown in vitro [6, 7] or during
short-term situations [23]. Therefore, this study reveals a
long-term metabolic risk of disturbing the balance between
intracellular antioxidant defence and ROS formation [9]
and cautions against antioxidant strategies to prevent or
treat diabetes [9, 50]. We have illustrated a decreased UCP2
protein concomitant with an increased mitochondrial
potential in the OE islets, suggesting a new function of
GPX1 in mitochondria. In contrast to the postulated post-
transcriptional regulation of PDX1 [6, 20, 23, 25], we have
revealed that histone hyperacetylation occurs at the Pdx1
promoter and is a novel epigenetic regulation mechanism of
the gene in vivo. This will offer a new view for interpreting
outcomes associated with long-term human interventions of
antioxidant supplementation to reduce insulin resistance
and diabetes. Separating hyperinsulinaemia from obesity
and insulin resistance in diet-restricted OE mice may help
develop a specific model for the study of hyperinsulinaemia.
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