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diabetes have autoantibodies to IA-2 and/or GAD65 and these
autoantibodies have become important predictive markers [9].
Thus, there are major differences between the NOD mouse
model and the human disease. Although IA-2 is not involved
in the diabetes of NOD mice, the extent to which the autoim-
mune response to IA-2 may contribute to the pathogenesis of
Type 1 diabetes in humans has yet to be solved.
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Observation

IA-2 is not required for the development
of diabetes in NOD mice

To the Editor: IA-2 is a major autoantigen in Type 1 diabetes
mellitus [1]. Autoantibodies to IA-2 are detected in approxi-
mately 70% of newly diagnosed Type 1 diabetes patients and
in less than 1% of the control subjects. Based on sequence
analysis, IA-2 is an enzymatically inactive transmembrane pro-
tein tyrosine phosphatase and is located in secretory vesicles of
neuroendocrine cells, particularly pancreatic islets and brain
cells. IA-2 knockout studies in mice showed elevated glucose
tolerance tests and depressed insulin release [2]. Islets isolated
from IA-2−/− mice showed less insulin release as compared to
islets from IA-2+/+ mice when the cultures were switched from
basal (3.3 mmol/l) to high glucose (27.7 mmol/l) concentra-
tions. These and other studies argue that IA-2 is involved in in-
sulin secretion.

The non-obese diabetic (NOD) mouse is the most widely
studied animal model for Type 1 diabetes [3]. Gene linkage an-
alyses have identified at least 19 susceptibility loci (Idd1-
Idd19). The murine IA-2 gene (Ptprn) is located on chromo-
some 1 (41 cM) and is a potential candidate gene for Idd5.2
[4]. The role of IA-2 in the NOD mouse model, however, has
not been determined.

In the present study, IA-2+/− mice (129/Sv x C57BL/6) were
backcrossed to NOD/LtJ mice (Jackson Laboratory, Bar Har-
bor, Me., USA) for eight generations. IA-2+/− NOD mice then
were intercrossed to obtain IA-2−/− NOD mice. All protocols
were approved by our Institutional Animal Care and Use Com-
mittees. The IA-2 genotypes were determined by PCR using
specific primers for the targeted locus and for the wild-type lo-
cus [2]. IA-2 protein expression in brain, analysed by Western
blot, showed the presence of IA-2 in IA-2+/+ NOD mice, but its
absence in IA-2−/− NOD mice (Fig. 1). IA-2+/+ NOD and IA-2−
/− NOD mice then were injected with cyclophosphamide, a
known accelerator of diabetes in NOD mice [5]. Animals were
followed twice a week and mice with two consecutive non-
fasting blood glucose determinations with values above
250 mg/dl were scored as diabetic. As seen in Fig. 1, 44.4% of
IA-2+/+ NOD and 36.4% of IA-2−/− NOD mice developed dia-
betes. Histologic examination of pancreatic islets from these
animals showed insulitis. The number of IA-2−/− NOD mice in
our colony is still small, but five mice between 20 and 40
weeks of age already have developed diabetes spontaneously.
Recently, we succeeded in knocking out IA-2β, a protein
closely related to IA-2, and its role in the development of dia-
betes in NOD mice is currently under investigation.

The knockout studies described here show that IA-2 is not
required for the development of diabetes in NOD mice and
earlier knockout studies showed that glutamic acid decarboxyl-
ase 65 (GAD65) also is not required for the development of di-
abetes in NOD mice [6]. Although there is some evidence in
NOD mice that these antigens could be involved in a cell-me-
diated immune response [7], little if any autoantibodies are
made to IA-2 or GAD65 in NOD mice [8]. In contrast to NOD
mice, close to 90% of newly diagnosed patients with Type 1

Fig. 1. Development of diabetes in IA-2−/− NOD mice. Eight-
week-old IA-2+/+ NOD (■, n=18) and IA-2−/− NOD (❏, n=22)
female mice were treated (arrows) with cyclophosphamide
(250 mg/kg i.p.) on days 0 and 14 and the percent that devel-
oped diabetes was determined. Insert shows Western blot
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Observation

Abnormal ghrelin secretion in new onset
childhood Type 1 diabetes

To the Editor: Ghrelin is a new circulating peptide hormone
produced mainly by the stomach [1] and involved in the regu-
lation of feeding behaviour and energy homeostasis [2]. The
concentrations of ghrelin are low in obese subjects [3, 4] and
high in anorexic subjects [5]. In normal subjects the ghrelin se-
cretion is stimulated by fasting and reduced by feeding [6] and
by oral glucose load [4]. The mechanism of hormone release
from the A-like ghrelin-producing cells [7] of the gastric mu-
cosa is not yet known.

We examined ghrelin concentrations in 22 children; 11
boys and 11 girls, age 16±3.6 years (mean±SD), BMI 18.0±
5.2 kg/m2 (mean±SD) with a new onset of Type 1 diabetes.
Blood samples were obtained at diagnosis before and after 
10 days of insulin treatment, blood glucose 24.6±8.7 and 6.6±
3.0 mmol/l, respectively, and in conjunction with meal tests,
carried out in 15 and 20 of the cases at 3 and 9 months after
the start of insulin therapy, respectively. At meal tests the pa-
tients were fasting over night and had received no insulin in
the morning. Then they had a standardised breakfast (20% of
their daily energy intake, containing 33% fat, 50% carbohy-
drates and 17% proteins) and blood was drawn at time zero
and after 30, 60, 90, 120, and 150 min. Ghrelin was measured
in the samples taken just before the test and when C-peptide
reached its maximum. Ghrelin was determined in serum using
a radioimmunoassay (Phoenix Pharmaceuticals, Belmont, Ca-
lif., USA), which uses 125I-labelled bioactive ghrelin as a tracer
and a polyclonal antibody raised in rabbits against the full-
length, octanoylated human ghrelin. Intra-assay and inter-assay
coefficients of variance were 5.3% and 13.6%, respectively.
Statistical significance was evaluated by Mann-Whitney U test
and Wilcoxon signed rank test. The study was approved by the
Research Ethics Committee at the Faculty of Health Sciences,
Linköping.

Ghrelin concentrations at diagnosis prior to insulin treat-
ment and after 10 days were 48.9 ±24.6 and 74.3±61.5 pmol/l

(mean±SD), respectively (p=0.007). Blood glucose and C-pep-
tide values increased during the meal tests (Fig. 1), whereas no
changes in serum ghrelin were observed; the ghrelin values be-
fore and after test meals were 61.9±43.9 and 59.1±32.2 pmol/l
at 3 months, and 93.4±72.4 and 81.9±55.5 pmol/l at 9 months,
respectively. In a group of ten healthy children, five boys 
and five girls with a mean age of 12 years, the fasting serum
ghrelin concentration was 108.5±32.5 pmol/l, (p=0.001), com-
pared with the ghrelin values of the patients prior to insulin
treatment.

To our knowledge, there are no previous reports on circu-
lating ghrelin concentrations in patients with Type 1 diabetes.
Patients with Type 2 diabetes were included in a previous
study [6] which examined ghrelin concentrations in lean, nor-
mal weight and obese non-diabetic subjects and included ob-
servations on 42 subjects with Type 2 diabetes, 8 of whom
were treated with diet alone, 22 with oral hypoglycaemic
agents and 8 with insulin. Fasting plasma ghrelin concentration
was negatively correlated with BMI in both subjects with 
Type 2 diabetes and those without. The plasma ghrelin concen-
trations of normal subjects decreased significantly after oral
glucose administration, and a similar response was observed in
patients with Type 2 diabetes after a meal tolerance test, reach-
ing a nadir of 69% of the basal level after the meal. Similarly,
a suppressive effect of a mixed liquid meal or oral glucose on
serum ghrelin values in healthy human subjects was noted [8].
In contrast, we found that the children with Type 1 diabetes did
not respond to meal tests with suppression of ghrelin values.
One could speculate that ghrelin concentrations are low at di-
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Fig. 1. Response to meal tests, carried out at 3 (n=15) and 9
(n=20) months after starting insulin treatment in childhood
Type 1 diabetes. Results (mean ± SEM) from pre- and post-
meal blood samples at each time point; ***p<0.0001; NS, non-
significant


