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Abstract The development and mapping of genetic
markers based upon expressed sequence tag poly-
morphisms (ESTPs) in loblolly pine (Pinustaeda L.) are
reported. The new markers were generated by PCR-am-
plification of loblolly pine genomic DNAs with primers
designed from sequenced cDNAs. The cDNA libraries
were constructed from RNAs expressed in the needles of
loblolly pine seedlings or in the xylem from young trees.
DNA polymorphisms were identified by analyzing the
amplified products for differences in fragment size or re-
striction sites, or by examining mobility differences us-
ing denaturing gradient gel electrophoresis (DGGE).
DGGE revealed more DNA polymorphisms than the oth-
er two methods. Fifty six ESTPs were mapped using ei-
ther of two mapping populations and positioned onto a
loblolly pine consensus genetic map. Unlike many other
markers commonly used in forestry, ESTPs can be used
as orthologous markers for comparative mapping, to map
genes of known function, or to identify candidate genes
affecting important traitsin loblolly pine.
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Introduction

Genetic linkage maps are useful tools for exploring plant
genomes, and they have been constructed for various
tree species, including conifers (Cervera et a. 2000).
DNA markers used to construct such mapsin forestry in-
clude random amplified polymorphic DNAs (RAPDS)
(Nelson et a. 1994; Yazdani et al. 1995), amplified frag-
ment length polymorphisms (AFLPs) (Remington et al.
1999), and simple sequence repeats (SSRs) (Devey et al.
1996). In large and complex genomes, like those of pines
(Kinlaw and Gerttula 1993; Kinlaw and Neale 1997),
such markers typically target non-coding (e.g. repetitive)
regions and cannot directly pinpoint genes controlling
important traits (Neale 1998). Even restriction fragment
length polymorphisms (RFLPs) detected using cDNA
probes in Pinus radiata and Pinus taeda are thought to
reveal polymorphisms in regions flanking genes rather
than in the coding regions of the genes themselves. In
fact, none of the DNA markers hitherto used in forestry
combine all of the following desirable attributes. the di-
rect targeting of expressed genes (e.g., cONAS), techni-
cal simplicity, high reproducibility among laboratories
and across genetic backgrounds, codominance, and
multiallelism.

We began developing PCR-based markers with these
features from expressed sequence tags (ESTSs) of loblolly
pine (Harry et al. 1998). Many of the EST primer pairs
amplified genomic DNAs isolated from loblolly pine,
and the resulting PCR products revealed Mendelian
polymorphisms after digestion with various restriction
enzymes, atechnique known as PCR-RFLP (Tragoonrung
et al. 1992). PCR-RFLPs are technically simple, but they
are time consuming and inefficient for large-scale
projects, as revealing polymorphisms may require
screening with many restriction enzymes. In addition,
PCR-RFLPs typically reflect the presence or absence of
specific restriction sites, so that any single restriction
enzyme usualy reveals only two aleles (Harry et a. 1998).

EST polymorphisms (ESTPs) can also be revealed,
without the additional manipulation of PCR products, by



gel-based techniques such as denaturing gradient gel
electrophoresis (DGGE; Fischer and Lerman 1983;
Myers et a. 1987). DGGE reveals differences in the
mobility of DNA fragments caused by partial melting of
duplexes in the presence of increasing concentrations of
the denaturant (Sheffield et al. 1992). Partia melting
occurs in the region of lowest melting temperature (the
lowest melting domain) and inhibits further migration;
where sequence differences between alleles fall within
the lowest melting domain, and alter melting characteris-
tics, alleles can be resolved by DGGE (Sheffield et al.
1992). Since the lowest melting domain of a DNA frag-
ment may span several hundred base pairs, the power of
DGGE over that of the PCR-RFL P method to scan larger
regions for polymorphism, as well as to detect multiple
alleles of alocus, is clear (Temesgen et a. 2000).

We report the development and genetic mapping of 56
expressed sequence tag polymorphisms (ESTPs) in
loblolly pine. ESTPs were generated by PCR-amplification
of samples mainly from two loblolly pine pedigrees
(Devey et a. 1991; Groover et al. 1994) with primers
designed from cDNA sequences. DNA polymorphisms
were identified by examining fragment lengths, restric-
tion sites, and electrophoretic patterns detected using
DGGE. Some of the cDNA clones were previously used
as probes for RFLP mapping, and in such cases the map
positions of the ESTPs were compared with their corre-
sponding RFLP loci. This study demonstrates the feasi-
bility of generating a relatively large number of ESTPs
for genetic mapping in loblolly pine. This strategy may
help to map identified genes and provide anchor loci for
comparative maps. Once associated with quantitative
trait loci (QTLs), ESTPs may also help to identify candi-
date genes controlling important traits in loblolly pine
and other conifers.

Materials and methods

cDNA clones, sequence analysis, and primer design

ESTPs were developed from cDNA clones selected from two
different libraries. The first library was constructed from RNA
expressed in needles from loblolly pine seedlings and was derived
using random priming (Devey et al. 1991). A total of 85 cDNAs
were selected from this library for sequencing based on the criteria
described by Harry et al. (1998), including RFLP banding patterns
on Southern blots of loblolly pine genomic DNA. Nucleotide
sequences were initially determined by manua methods, but later
an ABI 377 automated sequencing apparatus was used. The second
cDNA library was constructed from RNA expressed in the xylem
of young loblolly pine trees and was synthesized by oligo-d(T)
priming and directional cloning. Sequences from 75 xylem
cDNAs included in this study were obtained by automated
sequencing, and each contained a 3' untranslated region (3' UTR).
Unlike cDNAs from the seedling tissues, those from the xylem
tissues were not selected for low or single copies using the Southern
hybridization data. The nucleotide sequences of all clones were
compared against known gene sequences contained in GenBank
using BLASTN and FASTA (see Table 1).

PCR primers had similar physical properties and were
designed as described by Harry et al. (1998). Initially, most
sequence polymorphisms were detected using restriction digests,
so primers were designed to produce longer PCR products
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Fig. 1A, B The melting profile of EST0674. A The melting
profile for the portion of PtIFG0674 cDNA sequence (272 bp),
graphed using 50% probability. B Same as A except that a 39-bp GC
clamp was attached to the 3’ end of the truncated sequence

(>400 bp), preferably containing introns. Later, as DGGE was
emphasized, the strategy was changed to generate shorter PCR
fragments, preferably lacking introns. To do this, a reverse primer
was first selected near the poly-(A) region, and then a corresponding
forward primer was located about 200—300 bp upstream from it.

To increase the efficiency of detecting DNA polymorphisms
using DGGE, predicted melting profiles of the DNA fragments
were first analyzed using the computer program MacMelt (Bio-Rad,
Hercules, Calif., USA). After truncating a fragment to encompass
only the sequence delimited by a given pair of primers, the MacMelt
program was used to plot melting temperatures along the frag-
ment's length. Melting profiles encompassing at least two regions
with melting temperatures differing by >15°C were included. In
many instances, MacMelt revealed acceptable melting profiles
with no primer modifications (see Table 1). For some, however,
the predicted profiles showed similar melting properties along the
entire length of the fragment. In such cases, the melting tempera-
ture at one end of the fragment was increased by adding a GC-
clamp to one of the primers (see Fig. 1).

PCR-amplification and detection of DNA polymorphisms

PCR reactions were performed as previously described (Harry et
al. 1998), except that a Perkin-EImer 9600 DNA Thermal Cycler
(Norwalk, Conn.), or a PTC-100, MJ Research, Inc. (Watertown,
Ma) was used. Amplified DNA fragments were screened for
DNA polymorphisms by three different methods: (1) differences
in product length, (2) PCR-RFLPs, or (3) DGGE. To detect different
fragment sizes or PCR-RFLPs, 46 pl of the PCR products were
analyzed in 2% agarose gels (Harry et a. 1998). DGGE was
performed using a D GENE apparatus (Bio-Rad, Hercules, Calif.,
USA) (Temesgen et al. 2000), except that perpendicular DGGEs
were eliminated. ESTs were screened for polymorphism between
the parents of two mapping populations on a 15-45% parallel
denaturing gradient gel. In several cases, gradients were adjusted
for better resolution of alleles. Putative polymorphisms were
subsequently confirmed by analyzing six F, progeny before mapping
the loci, using up to 95 individuals per mapping population.
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Table 1 (continued)

Clone Primer pairs (forward and reverse, 5' - 3') Product size Population, LG/ Best possible protein similarityd Scored E vaued
namea detection cMe
methodP

1584 CGA AGC AAA GGA TGT CACG 340 340 NPh - Chalcone reductase 57 9%e-11
TGT TGA GGT GGG GAT TGG

1599 CAG GAT CAT ATG CTG AAG CG 520 520 NPh - ATP synthase deltachain chloroplast 40 0.001
ACT CGC CAA TTT GCT CTA GC

1623 TTT CTCAGG TGG GAGAGG TG 350 950 P, DGGE! - NSl1-associated protein 102 2e-21
TCG CAT CCA TGT GCG TAG

1626 TAA GAA GGC GGC GGT ACA G 550 550 B, RE 6/51 Metallothionein-like protein 62 8e-10
AAA CCA GCA GCCACATGA G (HinfT)

1635-3 AAGAAGACA ACGAGCAACGG 650 870 Q, RE 10/48.8  Ribulose bisphosphate carboxylase, 145 3e-36
GCC CACTCG AAT CACAAA A (HinP11) small subunit

1643 AAT GGA GGA TGC CGT TACAG 490 650 B, DGGE 10/56 ABI 1 gene product (Protein 59 5e-09
AAC CACTCT CGA ATCCCCAC Phosphatase)

1750 TGT TTA CGT TCT TGA CGC GG 300 300 B, DGGE 16/24.7  Ferredoxin | 54 7e-17
TAG CAA GCA CTCTGA CTG TGG

1917 gCC cge cCe cge cge €cg gec cge gee ccg cge cge- 320 450 Smear/ - Chloroplast transit peptide 108 1le-23
ccg ATA TCC GTCGCC TGG TTA AG complexh
GAT TCT CAA AGC AGC CCA AG

1934 GAC GAA GTT GGT GGC GTA G 850 850 B, RE 3/2.5 Light harvesting complex chlorophyll 97 5e-21
TTCTGT TTGTGC GCCTAC TG (Bsall) alb binding protein

1950 AAA CCA GCA GCCACATGA G 350 450 Q, DGGE 6/54.7  Metallothionein-like protein 62 3e-09
TAT TAA GAA GGC GGC GGT AC

1955 AGC CAA TGC ACCAAGAAGG 290 290 B, RE 5/82.3  Metallothionein-like protein 29 0.017
ATC CAA CAA CAGAACCCCTC (Bsadl)

1956 GAA GCT AGC GAA GGCTTT GG 410 500 Q,RE 9/7.1 ubiquitin protein ligase 36 3e-16
GGG TGT GAC CAT ATA ACA CCG (Alul)

2009 CACAGT TCCCCA CAGCAAC 400 600 B, DGGE 6/107.7  60S ribosomal protein L10A 126 2e-29
ACA AGC GGT TCA GTGGCT C

2053f TGA AACTGC GGA TGG CTC 310 360 Q, DGGE Not Folate binding protein 85 2e-21
CCG GAA TCGAACCCT AATTC mappedh

2111 AGT CTT GGCCTTTTCTTG GG 350 350 Guh - - 40 0.002
CAC CAA ACC TAA CCGAGA CG

2166 CTGCTGTTGAGCTTG TGT ACG 400 400 Q, RE 4/56.5  Pyruvate dehydrogenase 40 0.002
TGC CCG TGT AAA GAT GACAG (Hinfl)

2253 CCA ATTTGCACTTTG CCC 370 370 Q, DGGE 1/59.9  Fructose-bisphosphate 58 1le-08
CCA AAG CCCAAA TCCATG aldolase 1, chloroplast

2274 TGA TCA GAG AGC TGG TGC AG 400 600 B, DGGE 4/86 adenylyl cyclase 30 3.0
AGA TGA GCA TCA GGT CAG CC

2290 AGC TTG CAG CAT CAA CCG 550 840 Q, RE 9/57.5  Light harvesting complex 53 2e-07
GAA CCA AACAGCTTCAGGACC (HinP11) chlorophyll a/b binding protein

2358f GTT AAC CCT CGA GGA GACATG 330 330 Q, DGGE 22/0 Phenylalanine tRNA synthetase 30 3.6
GCT TCC ACA GTC CAC AAT CTG

2393f ACA CGT CTG TCA TCT CAT GGG 280 350 S, DGGE - BcDNA GHO07269 34 0.99
Cccc ggc cgce cgg cgg CCC TGA ACC-
AGC ACA AGT ATC

2541f GCT GCT GACATGAGCTTT TG 300 410 NPh - 6-Phosphpfructo-2-kinase/ 160 2-39
AAG TCC CACACA TCGAGG TAC fructose-2,6-bisphosphatase

2610 CTGAGG GGA TGTGCATGA C 350 350 B, DGGE 6/50.9 Metallothionein-like protein 40 le-04

AAA CCA GCA GCCACATGAG

199
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Germplasm and genetic mapping

ESTP segregation data were obtained from either the base (Devey
et a. 1994) or qtl (Groover et a. 1994) loblolly pine mapping
populations. Polymorphisms in either population were located on
a consensus genetic map using markers and methods described in
Sewell et al. (1999). Primers that were monomorphic in both the
base and qtl populations were subsequently tested for polymor-
phisms in two other populations: the prediction pedigree (also
from loblolly pine, Sewell et a., in preparation), and a P. elliotti
pedigree (Brown et al., in preparation). Mapping data from the |at-
ter populations will be presented elsewhere.

Nomenclature and database

The nomenclature for genetic loci and markers follows the outline
on the Genome Resources page in Dendrome, the forest tree
genome informatics Web site (http://dendrome.ucdavis.edu/Data/
locusname.html). Although we previously named the PCR-based
codominant markers as sequence-tagged sites (STSs; Harry et al.
1998), the name "ESTP” was introduced to emphasize that they
are based on expressed (cDNA) sequences. For convenience, the
full locus names of both the ESTP and RFLP loci were shortened.
For example, in IFGBAS PtIFG_2253 a, an RFLP locus on the
loblolly pine map (Devey et a. 1994), both the Experiment
(IFGBASE) and Source (PtIFG) fields were omitted and only the
Accession Number and locus fields (2253 a) were reported (see
Table 1).

Results
Amplification of genomic DNA

PCR primers were based on EST sequences from two dis-
tinct sources. Differences in library construction, primer
placement, and methods to detect polymorphisms prevent
direct comparisons between the seedling and xylem li-
braries, although several general observations were made.
In total, 58% (50 of 85) of primer pairs from the
loblolly pine seedling library amplified genomic DNAs
(Table 1). PCR products from genomic DNA ranged in
size from 270 to 1000 bp, averaging 515 bp. Fifty six
percent of these genomic fragments were measurably
larger (55—735 bp) than those from their corresponding
cDNAs, indicating the presence of one or more introns.
Among primers from the xylem library, 76% (57 of
75) amplified genomic DNAs. PCR products ranged in
size from 170 to 1400 bp, averaging 344 bp (Table 1).
Introns were rarely observed using these primer sets-
only 12 primer pairs produced measurably larger genomic
products than fragments obtained from the corresponding
cDNAs. Primers located closer to the 3'-end of the
cDNA sequence tended to amplify genomic DNA more
reliably than did primers located further upstream. For
example, when the forward (upstream) primer was within
350 bp of a reverse primer near the poly-(A) region,
approximately 95% of the primer sets amplified genomic
DNA. However, less than 60% of primer sets, selected
from regions between around 200 bp from the poly-(A)
region and 600 bp (upstream), amplified genomic DNAs
(data not shown). We surmise that smaller DNA frag-
ments and/or those near the poly-(A) regions amplify
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more reliably, possibly because of the decreased like-
lihood of introns in smaller fragments and near the 3'-
end regions.

DNA polymorphisms

Parents of the base and qtl mapping pedigrees of lablolly
pine were screened for ESTPs using three methods. Al
ESTs were tested for both length variation on 2% agaro-
se gels and mohility differences using parallel DGGE,
typically using a single 15-45% gradient gel and the ap-
propriate acrylamide concentration (either 6 or 10%).
Perpendicular DGGE, used previously to determine the
optimal denaturant concentration for each EST (Temes-
gen et al. 2000), was omitted because the majority
(>90%) of polymorphisms could be detected on a
1545% paralel gradient. PCR-RFLP assays were
performed on only a subset of seedling ESTs in addition
to those reported earlier (Harry et al. 1998), because of
the cost and time associated with screening PCR
products with numerous restriction enzymes. Polymor-
phisms showing Mendelian segregation were shown for
36 (70%) seedling ESTs and 29 (50%) xylem ESTs
(Table 1).

Some ESTs were polymorphic by more than one
method and/or in both mapping populations. Confirming
an earlier observation (Harry et a. 1998), only five prod-
uct length polymorphisms were detected (EST464,
EST1955, EST8702, EST8886 and EST8887) using 2%
agarose gels. Note that EST8702 was converted to a
DGGE marker (see below). Detection methods for each
ESTP are shown in Table 1.

One major advantage of using xylem sequences for
developing ESTs was that the mgjority of them were
predictive of their corresponding complete genomic
sequence (i.e., 80% of xylem primer pairs did not amplify
introns). Using the MacMelt computer program, the
melting properties of the PCR fragments could be visual-
ized before primer synthesis. In this manner, primers
could be placed to optimize melting profiles, with or
without a GC clamp added to the 5' end of the forward
or reverse primer. In some cases, primers from seedling
ESTs that did not amplify introns were re-analyzed as
well. For example, EST0674 was not polymorphic by
any method until its melting profile was assessed and a
GC clamp incorporated (Fig. 1).

Previously, DGGE was shown to reveal more DNA
polymorphisms than are reveaded by PCR-RFLPs
(Temesgen et al. 2000). It is also not surprising that
DGGE revedls additional polymorphisms relative to other
types of alelic variants. For example, two length variants
(300 and 320 bp) were observed for EST8702 in the base
and qtl populations (Fig. 2A). Subsequent analyses using
DGGE reveded three aleles in the base population and
four aleles in the gtl population (Fig. 2B). Among indi-
viduals in the base population, lanes 2 and 3 appear as
identical heterozygotes based upon length variants (Fig.
2A), but athird allele is revealed using DGGE (Fig. 2B).
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Fig. 2A, B Analysis of the EST8702 primer pair. Lanes 1-6 are
grandparents and parents from the base map population (Devey et
al. 1994), while lanes 7-12 are those from the qtl population
(Groover et al. 1994): (1) and (7) maternal grandmother, (2) and
(8) materna grandfather, (3) and (9) seed parent, (4) and (10)
pollen parent, (5) and (11) paternal grandmother, (6) and (12)
paternal grandfather. Lane M is a 100-bp DNA ladder. F, progeny
from the gtl mapping population are also shown (lanes 13-16).
A PCR products after electrophoresis in 2% agarose gel and staining
with ethidium bromide. The two alleles in both the base and the
qtl are designated as A/B. DNA marker fragment sizes (M) are giv-
en in base pairs (bp). B Same as A except that the PCR fragments
were separated using DGGE. Different alleles in each population
are labeled A-D. Heteroduplexes (Het.) are indicated by brackets

Likewise among individuals in the gtl population, lanes
13 and 15 appear as identical heterozygotes in agarose
gels (Fig. 2A) and, again, a third allele is revealed using
DGGE (Fig. 2B). Similarly, among individuals that ap-
pear to be identical homozygotes in agarose gels (Figs.
2A, B, lane 14 vs 16), DGGE again reveals differences.
In addition, DGGE reveals DNA fragments representing
heteroduplex molecules whose mohility is retarded rela-
tive to homoduplexes (Fig. 2B, Temesgen et al. 2000).
Heteroduplexes can be used to enhance both allelic clas-
sifications and genetic interpretations (Temesgen et al.
2000).

Several primer sets were dropped from subsequent
genetic analyses for various reasons. eight primer sets
yielded smeared amplification products, 12 primer sets
produced complex patterns using DGGE, and five primer
sets yielded patterns that could not be interpreted
genetically.

Of the primer sets, 21% (23 of 108) yielded distinct
products with single bands, but no DNA polymorphisms
were detected in either the base or the gtl mapping popu-
lations. The search for DNA polymorphisms in these
samples was broadened by including DNA samples from
the parents of two other populations. Three additional
polymorphisms were detected in the prediction popula-

tion in loblolly pine, and another three were detected in
the P. elliotti pedigree (Brown et al., in preparation)
(Table 1).

Genetic mapping of ESTPs

Segregation data were obtained for 56 ESTPs from the
base and qtl mapping populations of loblolly pine. Thirty
two ESTPs were derived from seedling cDNAs (1 size
variant, 11 PCR-RFLPs, and 20 DGGE) and 24 were de-
rived from xylem cDNAs (2 size variants and 22
DGGE). Two ESTs (EST2053 and EST9034) could not
be mapped. Some ESTs were polymorphic by different
methods and/or in both pedigrees and, in such cases,
segregation data from only one population were reported
(usually, those representing fully informative polymor-
phisms were chosen). All 56 loci were positioned on a
loblolly pine consensus map (Fig. 3; Sewell et al. 1999).
Many of the seedling cDNAs used to generate the ESTPs
were previously used as RFLP probes (Devey et al.
1994; Groover et a. 1994; Sewell et al. 1999). Comparing
the two types of markers revealed that several ESTPs
(EST0066, EST0606, EST0624, EST0893, EST1454,
EST1576, EST1635-3', EST1643, EST1750, EST1934,
EST1955, EST2009, EST2253, EST2274 and EST2610)
mapped closely to their RFLP counterparts. Estimated
map locations for corresponding ESTP and RFLP
markers were aways very similar (Fig. 3), with small
differences attributable to sampling or estimation. In
fact, no recombinant gametes were observed. On the other
hand, six ESTPs (EST0149, EST1626, EST1950,
EST2166, EST2781 and EST2889) were not linked to
their corresponding RFLPs, and EST2615 was separated
from its corresponding RFLP locus by about 28 cM. This
iS not surprising as pine genomes are complex with multi-
gene families, and cDNA probes reveal multiple loci
(e.g., PtIFG1626, Fig. 3; Kinlaw and Neale 1997; Sewell
et a. 1999); the RFLPs and ESTPs might, therefore,
have detected unlinked members of a gene family. In
addition, DGGE revealed polymorphisms for some ESTs
(EST0107, EST0464 and EST0500) that were monomor-
phic using RFLPs. Several redundant clones from seed-
ling tissues (e.g., PtIFO893 and PtIF2540) were identi-
fied on the basis of their RFLP patterns, and only one of
the ESTs was mapped. In some instances, however,
RFLP patterns did not clearly indicate clones that be-
longed to the same gene family, and ESTPs mapped
redundantly. In one such case, clones PtIFG1165,
PtIFG1626, PtIFG1950 and PtIFG2610 are of the same
gene family but this was detected only after mapping
their respective ESTs. cDNAs from the xylem library
have not yet been mapped using RFLPs.

Discussion

EST sequencing projects of conifers have started to gener-
ate a considerable amount of primary sequence data
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(Allona et a. 1998). However, determining the genomic
location of ESTs remains a challenge. For many vertebrate
species, including humans, and for some plant species,
ESTs can be mapped physically using resources such as
bacterial or yeast artificia chromosomes (BACs, YACs),
cytogenetic analyses such as fluorescent in situ hybridiza-
tion (FISH), or by using radiation hybrid analysis (Fonstein
and Haselkorn 1995; Antonarakis 1998). Because technolo-
gies such as these are rudimentary in conifers, the genomic
location of ESTs must be determined through linkage anal-
ysis. Harry et al. (1998) outlined a foundation for develop-
ing codominant PCR-based genetic markers from loblolly
pine ESTs. This approach has been expanded, modified,
and streamlined to provide an effective means of generating
ESTPs and locdizing them onto the consensus genetic
map of loblolly pine (Sewell et al. 1999).

Once cDNA sequences are available, the rate-limiting
step in developing ESTPs is in detecting DNA poly-
morphisms. Several strategies were adapted in order to
streamline this process and increase overal efficiency.
First, PCR primers were selected to have similar physical
properties (e.g., T,, length, and GC content) so that PCR
reactions could be done using standardized conditions
(Harry et al. 1998). Other authors (Tsumura et al. 1997,
Plomion et al. 1999) used severa sets of conditions. We
had previously determined an optimum gradient of dena-
turant for individual primer sets using a perpendicular
gradient gel (Temesgen et al. 2000). We have since re-
alized that eliminating this step would simplify the overall
process and also enable simultaneous screening of multiple
ESTs, saving time and increasing overall efficiency.

Another step that helped improve success was the use
of primers from the 3' end of DNA seguences. More than
95% of primer sets from xylem sequences with 3" UTRs
amplified genomic DNAS, whereas only about 60% of
primers from random seedling sequences successfully
amplified genomic samples. The latter figure was achieved
after repeated attempts were made to select and test addi-
tional primers. Thefina results (Table 1) seem to contradict
these observations. From a total of 50 seedling primers
that amplified genomic DNAs, 64% of them were
mapped, whereas only 42% primers from xylem sequences
could finally be mapped (Table 1). However, sequences
from the seedling library had previously been more-
thoroughly characterized, evaluated using RFLP banding
patterns from Southern blots, and were extensively
analyzed using both PCR-RFLP and DGGE. Furthermore,
the simultaneous use of multiple mapping populations
enhanced the detection of more genetic polymorphisms.

Differences were observed in the occurrence of introns
contained in the amplified genomic fragments using
primers from the two libraries. PCR primers designed to
amplify about 300-bp fragment near the 3' UTR of genes
usually did not amplify introns. Only about 20% of prim-
ers based on the xylem library included introns, whereas
more than 50% of those from the seedling library ap-
peared to contain introns. The lack of introns in or near
3 UTRs is consistent with observations in other species
(e.g., humans; Wilcox et al. 1991).

The presence of introns within amplified genomic frag-
ments poses a potential tradeoff in developing ESTPs. Rel-
ative to coding sequences, introns may exhibit a higher rate
of base substitution, revealing more DNA polymorphisms.
In this sense, introns would seem desirable for developing
ESTPs. On the other hand, introns of unknown size, se-
quence, and location can lead to unpredictable results, such
as failure to amplify genomic DNAs and the inability to
predict and analyze melting profiles. Because of the gener-
al lack of intronsin the 3 UTRs, we found that sequences
with 3" UTRs (from the xylem library) were advantageous
for developing ESTPs compared to using those from the
random coding regions (seedling library).

The emphasis on 3' sequences for primer selection
also simplified the detection and interpretation of genetic
polymorphisms. Kinlaw and Gerttula (1993) demonstrat-
ed that >70% of cDNAs from the seedling library belong
to gene families. Amplification products arising from
multiple members of a gene family can result in uninter-
pretable banding patterns or smearing during DGGE.
Harry et al. (1998) restricted EST marker development
from the seedling library to those of relatively simple
families. Restrictions on complexity were not imposed
for xylem ESTSs, but subsequent Southern hybridizations
have shown that most belong to more complex gene fam-
ilies. Where comparisons can be made, it is evident by
the simple DGGE profiles that primers from the 3' end
tended to selectively amplify single members of afamily.

To-date, little effort has been directed toward generating
PCR-based EST markers for conifers. A semi-automated
method enabling the mapping of ESTs on the basis of
length variation is being developed for P. radiata and P.
taeda by the PCR-amplification of regions flanking genes
and by a laser-based fluorescence detection technique
(Cato et a. 2000). Perry and Bosguet (1998) detected many
length variants in black spruce [Picea mariana (Mill.)
B.S.P] by using only agarose gels. However, these authors
sampled many more unrelated individuals than were
included in the present study. In contrast, most DNA poly-
morphisms that we have detected involved base substitu-
tions rather than short insertions or deletions, requiring the
use of such methods as PCR-RFLPs or DGGE. The rarity
of length variants was established even in fragments
containing introns. Only 2 of 27 seedling ESTs and 3 of 13
xylem ESTsthat contained introns detected length variants.

The efficiency of DGGE could be improved by analyzing
and manipulating the predicted melting profiles of specific
DNA fragments using computer programs such as Mac-
Melt. MacMelt helps to assess how melting profiles would
be affected using different combinations of PCR primers,
and it also helps to assess whether GC clamps would be
advantageous (Myers et al. 1985a,b). GC clamps prevent
complementary DNA strands from completely denaturing
as they migrate into regions of increasing denaturant con-
centration within agel. In comparison to the 4-6 bp restric-
tion site assayed by PCR-RFLP, hundreds of base pairs
included in the lowest melting domain can be scanned
simultaneously by adding a GC clamp with as few as 3-15
Gs and Cs, justifying our shift from PCR-RFLPsto DGGE.



Other gel-based methods such as single-strand conforma-
tion polymorphism (Orita et al. 1989) analysis have also re-
cently been employed in pines (Plomion et al. 1999) and
could be used to test for polymorphisms that were unde-
tected or poorly resolved by DGGE.

Loblolly pine cDNAS hybridize to genomic DNA from
a variety of other pines and conifers (Ahuja et al. 1994),
and EST-based primers are being used to amplify genomic
DNA from other conifer species (unpublished data).
Therefore, such amplified fragments could be useful as
orthologous markers (Lyons et a. 1997) and facilitate
comparative mapping in conifers. Currently, anchor loci
are being generated for the genus Pinus using primers
from loblolly pine sequences (Brown et al., in preparation).
Because these strategies are based on expressed genes,
they may provide an opportunity to identify candidate
genes affecting adaptive or commercially important traits.
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