
Abstract Genotype-environment interaction has been
analyzed in a winter-wheat breeding network using bi-
additive factorial regression models. This family of mod-
els generalizes both factorial regression and biadditive
(or AMMI) models; it fits especially well when abundant
external information is available on genotypes and/or en-
vironments. Our approach, focused on environmental
characterization, was performed with two kinds of cov-
ariates: (1) deviations of yield components measured on
four probe genotypes and (2) usual indicators of yield-
limiting factors. The first step was based on the analysis
of a crop diagnosis on four probe genotypes. Difference
of kernel number to a threshold number (DKN) and re-
duction of thousand-kernel weight from a potential value
(RTKW) were used to characterize the grain-number for-
mation and the grain-filling periods, respectively. Grain
yield was analyzed according to a biadditive factorial re-
gression model using eight environmental covariates
(DKN and RTKW measured on each of four probe geno-
types). In the second step, the usual indicators of yield-
limiting factors were too numerous for the analysis of
grain yield. Thus a selection of a subset of environmen-
tal covariates was performed on the analysis of DKN and
RTKW for the four probe genotypes. Biadditive factorial
regression models involved environmental covariates re-
lated to each deviation and included environmental main
effect, sum of water deficits, an indicator of nitrogen
stress, sum of daily radiation, high temperature, pressure
of powdery mildew and lodging. The correlations of
each environmental covariate to the synthetic variates

helped to discard those poorly involved in interaction
(with | correlation | <0.3). The grain yield of 12 geno-
types was interpreted with the retained covariates using
biadditive factorial regression. The models explained
about 75% of the interaction sums of squares. In addi-
tion, the biadditive factorial regression biplot gave rele-
vant information about the interaction of the genotypes
(interaction pattern and sensitivities to environmental
covariates) with respect to the environmental covariates
and proved to be interesting for such an approach.
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Introduction

Plant breeders have to deal with genotype*environment
interaction in most of their multilocal experiments. In
plant breeding, a huge literature is devoted to the statis-
tical models for analyzing genotype*environment inter-
action (Freeman 1973; Denis and Vincourt 1982; Lin et
al. 1986; Westcott 1986; Becker and Léon 1988;
Ceccarelli 1989; Crossa 1990; Freeman 1990; Gauch
1992; Romagosa and Fox 1993; van Eeuwijk et al.
1996; Kang and Gauch 1996; Brancourt-Hulmel et al.
1997). Especially when additional information is avail-
able, factorial regressions or biadditive factorial regres-
sions are of interest. Biadditive factorial regression
generalizes both factorial regression (Denis 1988) and
AMMI (Gollob 1968; Gauch 1992). Just as for AMMI,
synthetical environmental variates, or axes, are built,
but under the restrictions of being linear combinations
of environmental variates. Applied to a set of environ-
mental variates, Wood (1976) showed how to find sev-
eral linear functions to explain the interaction. Such a
model can be extended to covariates related to both fac-
tors, i.e. genotype and environmental factors. A general
presentation of these models has been given by Denis
(1988, 1991).
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Some literature is also devoted to the relationships be-
tween the instability of grain yield and the instability of
yield components (Sierts et al. 1987; Baril 1992; Nachit
et al. 1992; Simane et al. 1993; Jackson et al. 1994;
Biarnès-Dumoulin et al. 1996). Explaining genotype*en-
vironment interaction observed on grain yield is a real
challenge as grain yield results from complex compensa-
tions between yield components. Prihar and Steward
(1990) recommended an analysis of the harvest index,
defined as the ratio of grain yield to the above-ground
biological yield, for screening cultivars. As this criterion
is affected by environmental constraints, they stated that
fair intercrop or intercultivar comparisons should be
based on the estimated genetic harvest index for a given
environment. They proposed a procedure using an upper-
bound slope through the origin to estimate such a genetic
harvest index. According to their model, the highest
yields related to a given dry matter correspond to the up-
per-bound slope and to least-stressed and/or stress-adapt-
ed plants. Such an approach could be adapted to the
analysis of yield components. In winter wheat, grain
yield comes from two main yield components deter-
mined over two distinct periods: kernel number per
square meter (KN) and thousand-kernel weight (TKW).
Kernel number describes the time-period before flower-
ing while TKW characterizes the grain-filling period. A
way to estimate potential values for KN and TKW has
been proposed (Brancourt-Hulmel et al. 1999) and re-
ferred to a crop diagnosis (Sebillotte 1980; Doré et al.
1997). Plants free from stress or well-adapted to it would
produce yield components close to the potential values.
This can be applied to a specific set of genotypes, also
termed as probe (or reference) genotypes (Cooper and
Fox 1996; Desclaux 1996; Brancourt-Hulmel et al.
1999).

In France, climatic conditions are very diverse within
a given series of trials for wheat. This complicates the
characterization of the environments and, therefore, the
statistical analysis of interaction. Covariates are count-
less and every one explains almost nothing. Linear re-
gression models are not adapted to integrate numerous
covariates because they demand many parameters, in
contrast biadditive factorial regression is much more par-
simonious.

Environmental characterization can be achieved di-
rectly by the measurement of environmental variables,
which can be physical, biological or nutritional, or indi-
rectly by measurement of plant responses to capture the
influence of environmental conditions on plant perfor-
mance. For the indirect characterization of the environ-
ments in winter-wheat trials, analysis of the interaction
on probe genotypes can help to assess with more insight
the effect of environmental factors on the formation of
yield, particularly during grain-number formation and
grain-filling periods (Brancourt-Hulmel 1999).

In the context of an environmental characterization
with probe genotypes, linear factorial regression helped
to explain the genotype*environment interaction ob-
served for the yield of winter wheat (Brancourt-Hulmel
1999). When the variates are too numerous, this model

takes into account a small proportion of variates. In or-
der to introduce more covariates, biadditive factorial re-
gression has to be investigated. In this context, the aim
of this paper is: (1) to determine appropriate environ-
mental covariates with the help of probe genotypes; (2)
to select environmental covariates when they are too nu-
merous; and (3) to use these covariates for interpreting
the genotype by environment interaction on the whole
set of genotypes. Two kinds of environmental covariates
are investigated: deviations of yield components mea-
sured on probe genotypes and usual indicators of yield-
limiting factors. The breeder is interested in both ap-
proaches. With the first covariates, it is possible to com-
pare the behavior of a given genotype to one or several
well-known genotypes (probe genotypes for instance)
while the sensitivity of the genotypes to yield-limiting
factors can be measured with the second.

Materials and methods

Experimental data

Data were also reported in a previous paper (Brancourt-Hulmel
1999). Experiments were carried out at five INRA (France) re-
search stations in 1991 and 1992. The environments were combi-
nations of 2 years (1991, 1992) by six INRA location*treatment
combinations [Mons (MON*IN), Rennes (REN*IN), La Minière
(MIN*IN), Dijon (DIJ*IN and DIJ*S2); IN is the standard agro-
nomic treatment meanwhile S2 is a late sowing date].

The experiment was divided into two sets of genotypes, both
of them being tested in all 12 environments. The first one was a
set of four probe genotypes and was devoted to the assessment of
deviations of yield components: Talent (TAL), Soissons (SOI),
Camp-Rémy (CAR) and Arminda (ARM). These probe genotypes
show very distinct earliness. Earliness was the most important cri-
terion for their choice because it enhanced diverse patterns for the
formation of grain yield. These genotypes differed also for suscep-
tibilities to diseases or to lodging. A second set of 12 genotypes,
independently tested, [Apollo (APO), Artaban (ART), Baroudeur
(BAR), Camp-Rémy (CAR), Génial (GEN), Récital (REC), Renan
(REN), Rossini (ROS), Soissons (SOI), Talent (TAL), Thésée
(THE), and Viking (VIK)], was devoted to the analysis of grain
yield. They were commonly grown cultivars in France at that
time, and differed greatly for grain yield, earliness at heading, sus-
ceptibilities to diseases or to lodging. Three of them were tested
twice as they were common to the subset of probe genotypes.
More details about the experiment, such as characteristics of the
genotypes or the environments, plant sampling and measurements,
are reported in Brancourt-Hulmel (1999).

Definition of environmental covariates

Environmental covariates were of two kinds : (1) deviations of
yield components measured on probe genotypes and (2) usual in-
dicators of yield-limiting factors.

Assessing deviations from potential values (DKN and RTKW)
of the four probe genotypes

In each experimental plot, grain yield (GY) and the thousand-
kernel weight (TKW) were measured. The kernel number per
square meter (KN) was deduced from the relationship between
grain yield and the yield components: GY=KN*TKW. In each en-
vironment and for each probe genotype, two outputs from crop di-
agnosis were determined from the theoretical function of TKW
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with respect to KN (see Fig. 1): DKN – the difference of kernel
number (from the threshold) – is defined by 100* (KNthreshold−
KN)/KNthreshold; and RTKW – the reduction of thousand-kernel
weight (from the potential) – is defined by max[0;100*[potential-
TKW−TKW)/(potentialTKW].

KNthreshold and potentialTKW have been determined from a
long-term experiment carried out since 1987 and gathering 500
yield components per genotype on average (Brancourt-Hulmel et
al. 1999). Determination of KNthreshold and potentialTKW re-
quires both experiments and time, and were only available for the
four probe genotypes. This explains the two sets of genotypes in
our study. DKN characterizes grain-number formation: a positive
value means that kernel number is smaller than the threshold and
could have been affected by environmental factors, while a nega-
tive value indicates that kernel number is sufficient to produce
maximal grain yield. The reduction of kernel number, RKN, is a
slightly different variate which could be defined for the formation
of kernel number. For this variate, only positive values are taken
into account, the negative ones being forced to zero (Brancourt-
Hulmel et al. 1999). When negative values are forced to zero, bias
could have been introduced for the evaluation of favorable envi-
ronments; thus DKN is preferred to RKN. RTKW accounts for the
grain-filling. Environments were free from stress for the grain-fill-
ing period when TKW was equal to the potential (Fig. 1). When,
due to experimental error, observed TKW is higher than the as-

287

Fig. 1 Determination of reduction of thousand-kernel weight
(RTKW symbolized by a large dashed line) and difference of ker-
nel number (DKN in a narrow dashed line) for two examples. Fig-
ure adapted from Leterme et al. (1994)

Table 1 Deviations (in %) from KNthreshold (a) from potentialTKW (b) for the four probe genotypes in each environment
a

Environments TALdkn SOldkn CARdkn ARMdkn Mean std snk grouping at 0.05
probability level

91RENIN −31.4 −20.3 −15.0 − 5.3 −18.0 10.9 *
91MININ −15.9 −11.3 − 4.3 −12.2 −10.9 4.8 *
91DIJIN 2.7 3.6 1.4 0.5 1.8 1.8 *
92DIJS2 4.2 9.8 10.6 8.0 8.2 2.8 * *
91DIJS2 3.6 12.5 5.5 13.8 8.9 5.1 * *
91MONIN 0.5 14.5 18.9 13.1 11.8 7.9 * *
92MININ 0.9 6.0 28.9 11.9 11.9 12.2 * *
92RENIN 12.5 − 0.4 18.2 17.9 12.1 8.7 * *
92DIJIN 2.4 13.8 15.6 20.9 13.2 7.8 * *
91ONDIN − 2.9 23.1 14.4 29.6 16.1 14.1 * *
92MONIN 14.4 22.7 15.8 18.2 17.8 3.6 * *
92ONDIN 5.0 23.6 22.6 30.8 20.5 11.0 *
Mean − 0.3 8.1 11.1 12.2 7.8
std 12.4 13.7 12.3 13.1
snk grouping *
at 0.05 * * *
probability level

b

SOlrtkw CARrtkw ARMrkw TALrtkw

91MININ 6.0 13.2 16.8 11.3 11.8 4.5 *
92DIJIN 16.7 19.6 13.6 23.8 18.4 4.3 *
91RENIN 15.1 13.3 31.7 14.5 18.7 8.7 *
91DIJIN 19.4 18.8 19.9 17.0 18.8 1.3 *
91MONIN 18.3 13.1 20.1 27.4 19.7 5.9 * *
92DIJS2 18.3 15.9 24.1 22.7 20.3 3.8 * *
91DIJS2 20.0 22.9 20.6 23.3 21.7 1.6 * *
92ONDIN 21.3 24.4 7.4 35.6 22.2 11.6 * *
92MONIN 20.0 22.4 24.0 28.5 23.7 3.6 * *
92MININ 21.6 19.1 37.6 29.1 26.9 8.3 * *
91ONDIN 27.0 36.4 22.4 32.6 29.6 6.2 * *
92RENIN 22.3 26.1 36.4 41.0 31.5 8.7 *
Mean 18.8 20.4 22.9 25.6 21.9
std 5.0 4.1 8.4 7.0
snk grouping * *
at 0.05 *
probability level *
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sessed potential, RTKW is forced to zero. Below the potential val-
ue, TKW was limited by a number of factors. Leterme et al.
(1994) indicated how to interpret the different cases shown in Fig. 1.
Eight environmental covariates were provided as each variate was
calculated for each probe in each environment: ARMdkn,
CARdkn, SOIdkn, TALdkn for the difference of kernel number,
and ARMrtkw, CARrtkw, SOIrtkw and TALrtkw for the reduction
of thousand kernel weight (Table 1).

Usual indicators of yield-limiting factors

The usual environmental covariates are physical, biological or nu-
tritional; they were determined for the main two periods of the cy-
cle of wheat: (1) during grain-number formation (before flower-
ing) and (2) during grain-filling (after flowering). Indications for
the two periods have been marked by the letters “K” (for kernel
number) and “T” (for thousand-kernel weight) in the last position
of the codes, respectively. For instance, “LodgK” and “LodgT”
stand for lodging assessed in the two periods. Codes are given be-
low, between brackets.

For the first period, the following covariates were used: sum of
daily water deficits (ETm-ETa) from the ear at 1 cm to flowering
(WDK), ratio between total nitrogen absorbed by the plant and
kernel number (BK), sum of daily radiation from the ear at 1 cm
to flowering (RK), sum of daily radiation ±3 days at meiosis
[RKm], infection of powdery mildew (PMK) and pressure of lodg-
ing (LodgK). BK was used to indicate nitrogen stress. During win-
ter, the minimum daily temperature was never below −4°C.

For the grain-filling period the covariates are: sum of daily water
deficit, (WDT), daily radiation (RT), high temperature estimated by
the sum of degree-days based on 25°C (HTT), infection of powdery
mildew (PMT) and pressure of lodging (LodgT). For this period, all
climatic variates are calculated from flowering to maturity. Visual

development of diseases was observed on all the genotypes. The de-
velopment of disease in each location was described by the maxi-
mum scores noted on a given genotype (whether probe genotype or
not) and other indicators were calculated according to the cycle of
each probe genotype. Simple statistics on these environmental cov-
ariates are shown in Table 2. For more details about the determina-
tion of these variates, see Brancourt-Hulmel et al. (1999).

In addition, the environmental main effect (EFFECT) was used
as environmental covariate in the approach, as done in joint-
regression models (Finlay and Wilkinson 1963).

Statistical analysis

Genotype-environment interaction was first analyzed according
ANOVA and the classical biadditive (AMMI) model involving up to
three multiplicative terms. Definitions of these models can be found,
for instance, in Brancourt-Hulmel et al. (1997). The previous environ-
mental covariates were introduced into a biadditive factorial regres-
sion model, also termed as reduced rank factorial regression by van
Eeuwijk (1995). It is written here with three multiplicative terms:

where E[Yge] is the expectation of performance Yge for genotype g
grown in environment e; µ is the general mean; αg, is the genotype
main effect; βe is the environment main effect. Each of the multi-
plicative terms has the same structure: λ* is the size, γg* is the nor-

malized genotype vector of the genotype sensitivities,     δh*Eeh is

a normalized linear combination of the HB environmental covaria-
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Table 2 Mean and range of limiting factor indicators for kernel-number elaboration period and grain-filling period from the 12 environ-
ments. Scale for powdery mildew and lodging: 1 (without infection or pressure) to 9 (heavily damaged)

Symbol Unit Mean std Min Max

Formation of grain number
Climatic variates
Water deficit Σ(ETm−ETa) from ear at WDK mm 11.3 17.4 0.0 46.6

1 cm to flowering
Temperature Number of days with

minimum daily No frost
temp <4°C

Radiation Radiation days ±3 RKm MJ/m2 14.6 2.6 8.2 17.8
days at meiosis
Radiation days from ear RK MJ/m2 112.9 12.1 93.7 133.9
at 1 cm to flowering

Diseases
Powdery mildew PMK Score 1.5 0.7 1.0 3.2
Lodging LodgK Score 1.2 0.3 1.0 1.9
Nitrogen status

Nitrogen absorbed/ BK mg/grain 1.27 0.13 1.08 1.47
kemel number

Grain-filling period
Climatic variates
Water deficit Σ(ETm−ETa) from WDT mm 19.4 24.8 0.0 68.7

flowering to maturity
High temperature Degree days from

flowering to maturity HTT °C 28.9 14.6 10.1 55.9
based on 25°C

Radiation Radiation days from RT MJ/m2 68.6 4.5 58.1 74.9
flowering to maturity

Diseases
Powdery mildew PMT Score 1.9 1.6 1.0 5.5
Lodging LodgT Score 2.6 2.2 1.0 7.5
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tes, Eeh, assigned to the term. Similarly to standard biadditive
models, identifiability between multiplicative terms is obtained by
orthogonality constraints.

All statistical analyses were realized with the BIAREG pack-
age – set of Splus-functions – developed by Denis (1998), and
available on request to the second author of the present paper. The
environmental covariates were first centered and then scaled to
unit variance.

Interpretation of biadditive factorial regression
from the environmental viewpoint

We propose to interpret biadditive factorial regression from the
environmental viewpoint via the correlations between the synthet-

ic variates,                                   and                 and the HB initial

environmental covariates, Eeh. These correlations will be dis-
played in Cartesian diagrams as in principal component analysis.
Van Eeuwijk (1995) proposed a similar approach with the use of a
reduced rank regression biplot containing three types of vectors
whose coordinates are determined by the genotypic sensitivities,
the environmental characterizations and coefficients for the envi-
ronmental covariates within the reduced rank factorial regression
axes. Environmental characterizations result from the linear com-
binations of the true environmental covariates provided by the
model. In order to clarify such a biplot, we considered these three
types of vectors with two separate plots, one containing the geno-

typic sensitivities and the coefficients of the environmental cov-
ariates, and the other containing the same genotypic sensitivities
and the environmental characterizations. Ter Braak and Looman
(1994) discussed several aspects of the biplot technique in re-
duced-rank regression, such as displaying qualitative regressor
variables in the biplot, focusing the biplot analysis on the effects
of a particular subset of regressors, and scaling the biplots.

In correlation scaling, the plots are proposed with vectors to
underline the fact the interpretation must be done in term of the
cosine of the angles and length of the vectors, and not in term of
distances between the points. For instance, two opposite vectors
are equivalent because their cosine (correlation) is −1; see Gower
and Hand (1996) for more details about the use of this kind of rep-
resentation.

Results

ANOVA and deviations of yield components

Genotype*environment interaction was significant for
grain yield (Table 3a). Yields of the genotypes in the dif-
ferent environments differed greatly as shown in Fig. 2.
Genotype mean yields varied from 64.5 to 75.1 q/ha (at
0% moisture content) and environments yielded from
64.4 to 89.6 q/ha on average. Four genotypes showed
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Table 3 ANOVA tables for
grain yield on the 12 geno-
types. Interactive model (a).
Partitioning of interaction with
AMMI model (b), biadditive
factorial regression with devia-
tions of yield components (c)
and usual indicators (d)

Interactive model

Source of variation Degrees Sum of Mean F
of squares square
freedom

a
Genotype (G) 11 1604.2 145.8 25.9 *
Environment (E) 11 7540.7 685.5 121.8 *
G*E 121 3168.8 26.2 4.7 *
Pure residual 143 804.8 5.6

Partitioning of interaction

Source of variation Degrees Sum of Mean F Efficiency
of squares square (% of SSIa)
freedom

b
G*E 121 3168.8 26.2 4.7 * 100.0
1st term 21 1245.9 59.3 10.5 * 39.3
2nd term 19 730.1 38.4 6.8 * 23.0
3rd term 17 525.1 30.9 5.5 * 16.6
Remainder 64 667.7 10.4 1.8 *

c
G*E 121 3168.8 26.2 4.7 * 100.0
1st term 18 1235.3 68.6 12.3 * 39.0
2nd term 16 698.8 43.7 7.8 * 22.0
3rd term 14 518.7 37.1 6.6 * 16.4
Remainder 73 716.1 9.8 1.8 *

d
G*E 121 3168.8 26.2 4.7 * 100.0
1st term 20 1176.6 58.8 10.5 * 37.1
2nd term 18 689.9 38.3 6.8 * 21.8
3rd term 16 483.5 30.2 5.4 * 15.3
Remainder 67 818.8 12.2 2.2 *

* Significant at the 0.05 probability level
a SSI: sum of squares of interaction
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high ecovalences (Fig. 2a) and contributed the most to
the interaction: APO (21.4%), VIK (18.3%), SOI
(15.5%) and REN (8.3%) to a less extent. Six environ-
ments out of twelve were the most interactive (Fig. 2b):
91RENIN (19.4%), 91ONDIN (12.6%), 92RENIN
(9.9%), 92MININ (9.9%), 91MONIN (9.2%) and
92MONIN (9.2%).

Great differences were observed for deviation of ker-
nel number (DKN) in Table 1a. A positive value meant
that environments were unfavorable during the grain-
number formation. This is the case at 92ONDIN (20.5%)
or at 92MONIN (17.8%). At 91RENIN and 91MININ
the situation was more favorable as indicated by the neg-
ative values (–18.0% and –10.9% respectively). The
interaction effect was also important for DKN: TAL
scored −31.4% at 91RENIN while ARM gave 30.8% at
92ONDIN. For the reduction of thousand-kernel weight
(RTKW), a similar pattern can be noted (Table 1b).
Some environments were unfavorable during the grain-
filling period (92RENIN and 91ONDIN) while only one
environment was almost free from stress (91MININ).
For interaction, extreme values varied from 6.0% for
SOI at 91MININ to 41% for TAL at 92RENIN.

Deviations of yield components as environmental
covariates

Using deviations of yield components as environmental
covariates in a biadditive factorial regression with three
terms (or synthetic variates), the sum of squares of inter-
action (SSI) was partitioned by 77.4% (Table 3c). The
efficiency of this model for explaining the interaction is
similar to AMMI which partitioned 78.9% of SSI with 3
terms (Table 3b).

The contributions of the eight variates to synthetic
variates are not similar. Some correlations are stronger
(over 0.5 or below −0.5) for SOIdkn, TALrtkw, ARMdkn
and ARMrtkw (Table 4). SOIdkn is better correlated to
the first and second axes while the three others are better
correlated to the first and third ones. The other variates
are more or less correlated to all three axes (SOIrtkw,
CARrtkw, TALdkn) or to only one (CARdkn). It is there-
fore necessary to consider the three axes in the following
graphical analyses.

Figure 3 displays biadditive factorial regression bi-
plots with multiplicative parameters of the genotypes and
coefficients for the environmental covariates. Just as for
the AMMI model, points near the origin have little inter-
action while points distant from it are very interactive.
APO, VIK, SOI and REN which were already highlighted
in terms of ecovalence (Fig. 2a) are also highlighted in
Fig. 3a. In addition, points near each other display similar
interaction patterns (ART, THE, REC, TAL) while points
distant from each other are different. APO, VIK and SOI
are interactive and show different interaction patterns
while the behavior of REN is more similar to that of
APO. This is partly true as only 61% of SSI is captured
by the two first synthetic variates. Then a third synthetic
variate has to be considered. Figure 3b displays genotype
parameters and environment characterizations: six envi-
ronments are distant from the origin and contributed the
most to the interaction: 91RENIN, 91ONDIN, 92RENIN,
92MININ, 91MONIN and 92MONIN. Environmental
ecovalences already pointed out the same environments
(Fig. 2b) but no information was given about the interac-
tion pattern. On this plot, some of these environments are

Fig. 2 Ecovalences and main effects for the genotypes (a) and the
environments (b)

Table 4 Correlations of the eight environmental variates to the
three synthetic variates

Environmental 1st 2nd 3nd
covariate synthetic synthetic synthetic

variate variate variate

TALdkn −0.46 0.15 0.20
SOldkn −0.38 0.57 0.05
CARdkn 0.02 0.41 −0.07
ARMdkn 0.35 0.36 0.53

TALrtkw −0.47 0.15 0.52
SOlrtkw −0.20 0.24 0.38
CARrtkw 0.29 0.15 0.31
ARMrtkw 0.53 0.34 −0.50
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near each other, such as 92MONIN and 91MONIN on
one side and 91ONDIN and 92RENIN on the other. As
for the genotypes, these patterns have to be confirmed
with the analysis of the third term.

APO and REN showed positive interaction effects at
91MININ and 92MININ and negative interaction effects
at 91RENIN and 91DIJIN. Best yields of VIK are ob-
tained at 92DIJS2, 91DIJS2, 92MONIN and 91MONIN,
while it yielded poorly at 92MININ, 91ONDIN and
92RENIN. SOI generally showed little interaction except
at 91RENIN and 92RENIN (Fig. 3b).

The analysis of the genotype and environment param-
eters resulting from biadditive factorial regression helps
to explain these particular behaviors (Fig. 3). Features
from the two first axes are considered first (Fig. 3a and
3b). For SOIdkn, most of the environments are arranged
from left to right with high SOIdkn (92MONIN,
91MONIN, 92DIJIN, 92ONDIN) to low SOIdkn (91RE-

NIN). Considering SOIrtkw, 91MININ (low SOIrtkw) is
opposite to 91RENIN (high SOIrtkw). For CARrtkw,
92DIJS2 and 91MONIN (low CARrtkw) are different
from 91ONDIN (high CARrtkw).

An extra purpose of the biadditive factorial regression
biplot is to give approximations about the coefficients for
the factorial regression (van Eeuwijk et al. 1995). Project-
ing the genotype line on the concomitant variable arrows,
it can be seen that APO, REN and VIK have the highest
positive coefficients on SOIdkn, while SOI has the high-
est negative coefficient. In other words, when environ-
ments are unfavorable for the grain number formation of
SOI (high SOIdkn), SOI behaved poorly while APO,
REN and VIK behaved positively. One can assume that
they could escape the poor conditions subjected to SOI
during that period. Other conclusions can also be drawn:
negative coefficients are observed for APO and REN
with SOIrtkw. Thus APO and REN were probably not in-
fluenced by the same factors as SOI before flowering but
were subjected to the same afterwards. VIK and CAR
showed negative coefficients for CARrtkw while ART,
THE and REC displayed positive ones. VIK, like CAR,
behaved badly in unfavorable environments for CAR dur-
ing the grain-filling period. Lastly, CAR also showed a
negative coefficient with CARdkn.

Fig. 3a–d Deviations of yield components measured on the probe
genotypes as environmental covariates. Biadditive factorial regres-
sion biplots with 1st and 2nd synthetic variates (a and b) and 1st
and 3rd synthetic variates (c and d). Parameters of genotypes
(dashed lines) are displayed on all the plots while environmental
covariates (arrows) are depicted in a and c and charaterizations of
environments in b and d
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Further information is given by the analysis of a third
synthetic variate (Fig. 3c and d). On Fig. 3d, five of the
six interactive environments can be considered but
92MININ, which is close to the origin, has to be ignored.
For CARrtkw on this plot, the opposition between
91ONDIN (high) and 91MONIN (low) can be noted
once again. The same opposition is found between them
with SOIrtkw. Considering now TALrtkw, 91MONIN
and 92RENIN (high TALrtkw) are opposite to 91DIJIN
(low TALrtkw). Lastly, ARMrtkw was high at 92MININ
and 92RENIN and low at 91DIJIN. APO, VIK and REN
behaved especially well at 91MONIN. In this environ-
ment, the grain-filling period was favorable for geno-
types like CAR or SOI and unfavorable for genotypes
like TAL. Projecting the lines of the genotypes on the
concomitant arrows of TALrtkw, these genotypes show
positive coefficients for the factorial regression while
those coefficients are negative for CARrtkw and SO-
Irtkw. They yielded better in good conditions during the
grain-filling period for CAR or SOI, such as in 91MON-
IN, and yielded poorly in environments not favorable to
CAR and SOI, such as in 91ONDIN.

On Fig. 3c, one can note once again the most interac-
tive genotypes. Here SOI is quite different from REC,
TAL, ART, ROS and THE. This was not revealed in Fig.
3a. The contrast between SOI and TAL, ART, ROS and
THE can find an explanation with 92RENIN and 91DI-
JIN as these two environments are distinct for TALrtkw.
The factorial regression coefficients of TAL, ART, ROS
and THE are negative for TALrtkw but positive for SOI.
TAL, ART, ROS and THE behaved in the same way at
91DIJIN (low TALrtkw) and 92RENIN (high TALrtkw):
in the first they performed well during the grain-filling
period but performed badly in the second. The behavior
of SOI in these environments was opposite.

Usual indicators of yield-limiting factors
as environmental covariates

To consider the usual indicators of yield-limiting factors
as environmental covariates, a selection of variates is
necessary because they are too numerous. This is done
with a two-step approach where the traits DKN and

Table 5 Analysis of variance
for DKN on the four probe ge-
notypes. Interactive model (a).
Partitioning of interaction with
AMMI model (b) and biaddi-
tive factorial regression with all
usual indicator(s) or after selec-
tion (d)

Interactive model
a

Source of variation Degrees Sum of Mean F
of squares square
freedom

Genotype (G) 3 1152.4 384.1 20.5 *
Environment (E) 11 5847.6 531.6 28.4 *
G*E 33 1420.0 43.0 2.3 *
Pure residual 36 674.7 18.7

Partitioning of interaction
b

Source of variation Degrees Sum of Mean F Efficiency
of squares square (% of SSIa)
freedom

G*E 33 1420.0 43.0 2.3 * 100.0
1st term 13 733.9 56.5 3.0 * 51.7
2nd term 11 470.1 42.7 2.3 * 33.1
Remainder 9 216.0 24.0 1.3

c
G*E 33 1420.0 43.0 2.3 * 100.0
1st term 10 704.2 70.4 3.8 * 49.6
2nd term 8 371.7 46.5 2.5 * 26.2
3rd term 6 100.2 16.7 0.9
Remainder 9 243.9 27.1 1.4

d
G*E 33 1420.0 43.0 2.3 * 100.0
1st term 8 630.3 78.8 4.2 * 44.4
2nd term 6 339.8 56.6 3.0 * 23.9
3rd term 4 62.0 15.5 0.8
Remainder 15 387.9 25.9 1.4

* Significant at the 0.05 probability level
a SSI: sum of squares of interaction
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RTKW are first analyzed to identify the useful environ-
mental covariates for a further analysis of grain yield
with the selected ones.

Difference of kernel number (DKN)
in the four probe genotypes

As shown in Table 5a, genotype, environment and geno-
type*environment interaction were significant for the dif-

ference of kernel number (DKN) observed in the four
probe genotypes. On average, DKN reached 7.8%; it var-
ied from 0% (TAL) to 12% (ARM) between genotypes
and from −18% to 20% between locations (Table 1). Dif-
ferences were more extreme for combinations of geno-
type*environment: –31% (TAL at 91RENIN) to 31%
(ARM at 92ONDIN). The classical biadditive model with
two terms explained 84.8% of the interaction sum of
squares using 72.7% of the degrees of freedom (Table 5b).
Using a biadditive factorial regression with two or three
terms, DKN was analyzed with eight environmental co-
variates (Table 5c): six variates directly related to grain-
number formation (WDK, BK, RK, RKm, PMK and
LodgK), the environmental main effect (EFFECT) and the
level of lodging at maturity (LodgT). In cases of severe
lodging during the grain-filling period (at 92MININ or
92RENIN for instance), kernel number could be underes-

Fig. 4a–d Usual indicators of yield-limiting factors as environ-
mental covariates. Contributions of each covariate to the syntheti-
cal environmental variates. Analysis of difference of kernel num-
ber (DKN) in (a), reduction of thousand-kernel weight (RTKW) in
(b) and grain yield (GY) in (c and d). Analyses performed on the
four probe genotypes for DKN and RTKW, and on the 12 geno-
types for GY
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timated due to kernel losses before or during harvest. This
covariate was therefore added in the analysis of DKN.
Most interaction (75.8 %) was explained with two terms
(Table 5c); a third one was not significant.

Figure 4 gives some important clues about the contri-
bution of environmental covariates to each of the multi-
plicative terms retained in the model. As in the multiple
regression framework, it is difficult to directly interpret
these regression coefficients due to possible colinearities
between covariates. This is the reason why we recom-
mend the interpretation from Fig. 4 which displays the
correlations of the environmental covariates to the syn-
thetic variates. Only the first and second synthetic varia-
tes are significant for DKN (Table 5c) and are consid-
ered in Fig. 4a.

Three major covariates contributed to the first term of
DKN interaction: BK, RKm and LodgT (Fig. 4a). Five
covariates contributed mainly to the second term: WDK,
BK, RK, PMK and LodgT. On this second axis, WDK
and RK were opposite to the three others. The best con-
tributions were given by LodgT and, to a less extent, by
WDK, BK and PMK. In addition, some covariates were

common to both axes, such as LodgT and BK. LodgK,
and the environmental main effect EFFECT, showed lit-
tle contributions even for the third term.

Thus LodgK and EFFECT could be discarded from
the initial set of environmental covariates. The corre-
sponding results are given in Table 5d. A loss of effi-
ciency, measured by the proportion of the sum of squares
of the interaction (SSI) explained by the model, is ob-
served for this selection, but this is compensated by an
increase of parsimony.

Reduction of thousand-kernel weight (RTKW)
in the four probe genotypes

The effects of genotype, environment and genotype*en-
vironment interaction were significant in the ANOVA for
the reduction of thousand-kernel weight (RTKW) ob-
served on the four probe genotypes (Table 6a). TKW
was reduced up to 21.9% from its potential on average,
the reduction varied from 19% (SOI) up to 25% (TAL)
between genotypes, and from 12% (91MININ) to 31%

Table 6 Analysis of variance
for RTKW on the four probe
genotypes. Interactive model
(a). Partitioning of interaction
with AMMI model (b) and bi-
additive factorial regression
with all usual indicators (c) or
after selection (d)

Interactive model
a

Source of variation Degrees Sum of Mean F
of squares square
freedom

Genotype (G) 3 311.6 103.9 21.4 *
Environment (E) 11 1279.2 116.3 24.0 *
G*E 33 1188.9 36.0 7.4 *
Pure residual 36 174.7 4.9

Partitioning of interaction
b

Source of variation Degrees Sum of Mean F Efficiency
of squares square (% of SSIa)
freedom

G*E 33 1188.9 36.0 7.4 * 100.0
1st term 13 875.1 67.3 13.9 * 73.6
2nd term 11 244.2 22.2 4.6 * 20.5
Remainder 9 69.6 7.7 1.6

c
G*E 33 1188.9 36.0 7.4 * 100.0
1st term 9 746.4 82.9 16.9 * 62.8
2nd term 7 223.4 31.9 6.5 * 18.8
3rd term 5 27.2 5.4 1.1
Remainder 12 191.8 16.0 3.3 *

d
G*E 33 1188.9 36.0 7.4 * 100.0
1st term 8 672.7 84.1 17.2 * 56.8
2nd term 6 196.9 32.8 6.7 * 16.6
3rd term 4 17.6 4.4 0.9
Remainder 15 301.7 20.1 4.1 *

* Significant at the 0.05 probability level
a SSI: sum of squares of interaction
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(92RENIN) between environments. Great differences be-
tween genotype*environment combinations were also
observed: 6% was recorded for SOI at 91MIN and 41%
for TAL at 92RENIN (Table 1). AMMI models ex-
plained 94.1% of SSI at the cost of 72.7% of degrees of
freedom with two terms (Table 6b). Seven covariates
were introduced in biadditive factorial regression (Table
6c): five covariates directly related to the grain-filling
period (WDT, RT, HTT, PMT and LodgT), the environ-
mental effect (EFFECT) and the infection of powdery
mildew before flowering (PMK). PMK was introduced
because early infection of powdery mildew could affect
TKW. This model with two terms explained 81.6% of
SSI using 48.5 degrees of freedom. Higher values of ef-
ficiency were observed with three terms, but not signifi-
cantly (respectively 83.9% and 63.6%).

With respect to RTKW, Fig. 4b gives an idea of the
contributions of the environmental covariates to the two
significant synthetic variates. The vector sizes are almost
identical except for RT, indicating an equal contribution
of each covariate. Nevertheless, the best contributions to
the first term were given by PMK, whereas WDT, and to
a lesser extent HTT, contributed more to the second one.
Other covariates were related to both terms. As RT is
poorly correlated to both axes (|r| <0.3), we choose to
discard it from the analysis. The corresponding informa-
tion is given in Table 6d where 73.4% of SSI is parti-
tioned by the model.

Grain yield (GY) in the 12 genotypes

All the selected environmental variates among the usual
indicators related to DKN (initial ones except LodgK)
and those related to RTKW (initial ones except RT) were
introduced in a biadditive factorial regression model for
the analysis of grain yield observed in the 12 genotypes.
EFFECT was finally kept as it contributed to the expla-
nation of RTKW (Fig. 4b). Two terms of the model ex-
plained 58.9% of the interaction with 31.4% degrees of
freedom. Three terms partitioned 74.2% with 44.6%
degrees of freedom (Table 3d).

For grain yield, three multiplicative terms were re-
tained from the examination of Fig. 4c and d. Four cov-
ariates, all directly related to the grain-filling period –
PMT, WDT, HTT, LodgT – stood out. All other covaria-
tes also contributed.

It is interesting to consider the interaction pattern of
the 12 genotypes with respect to the ten selected envi-
ronmental covariates (Fig. 5a and b). Dashed lines refer
to genotypes and arrows to environmental covariates.
Just as for the AMMI model, points (genotypes) near
the origin display little interaction while points distant
from it represent the most interactive genotypes; APO,
VIK, SOI and REN being the most interactive. Points
near each other (in both plots because three terms are
significant in the model) display a similar interaction
pattern, such as (ART, THE, TAL) or (ROS, BAR) for
instance.

Projecting the genotype dashed lines on the concomi-
tant environment covariate arrows, it can be observed in
Fig. 5a that REN has the highest positive coefficients on
HTT, RKm or PMK, while its coefficient is negative on
WDK, WDT or PMT. Thus, in comparison to the other
genotypes of the experiment, its interaction is positive in
hot environments during grain-filling or in environments
with a high early pressure of powdery mildew. In con-
trast, its interaction pattern is negative in environments
subject to water deficits (before or after flowering). APO
gives positive coefficients on LodgT and RK, while ROS
displays negative ones. The yield of APO increases with
the duration of radiation. In comparison to others, it
yielded better in environments subjected to lodging. The
opposite is observed for ROS.

From Fig. 5b, it can be noted that there are positive
coefficients for VIK and REN on HTT and RKm, but
negative on WDK and WDT. For REN, a part of this in-
formation was already given in Fig. 5a. VIK and REN
behaved similarly when subjected to water deficits or

Fig. 5a, b Usual indicators of yield-limiting factors as environ-
mental covariates. Analysis of grain yield performed on the 12 ge-
notypes. Biadditive factorial regression biplots with parameters of
genotypes (dashed lines) and coefficients of environmental cov-
ariates (arrows). 1st and 2nd synthetic variates are depicted in (a)
and 1st and 3rd in (b)



high temperatures. REC, ART, THE and TAL behaved in
the same way but are opposite to VIK and REN.

Discussion

Biadditive factorial regression models took into account
an important component of the sum of squares from the
genotype*environment interaction by means of linear
functions of true measured environmental covariates,
called ”synthetic covariates”. They revealed some im-
portant subsets of initial covariates related to the interac-
tion. The use of contribution plots allowed more insight
by interpreting the synthetic covariates from the initial
environmental covariates. Applying a similar approach
to Dutch maize variety trials, van Eeuwijk et al. (1995)
also succeeded in identifying important environmental
variates.

Van Eeuwijk et al. (1995) emphasized the power of
biadditive factorial regression as it combines features of
AMMI model and factorial regression, and thus provides
useful information about the interaction. As for AMMI,
the interactive pattern of the genotypes and the environ-
ments can be displayed in a biplot. In addition, the same
biplot can provide a description of the environments
with the environmental covariates, and the individual
sensitivities of the genotypes can be also drawn. In com-
parison to the factorial regression model, which was also
investigated (Brancourt-Hulmel 1999), biadditive facto-
rial regression is more interesting because it took into ac-
count more information about the probe genotypes.

In this paper, the instability observed on grain yield
can be related to deviations of yield components from
potential values. These deviations, i. e. the difference of
kernel number to the threshold (DKN) and the reduction
of thousand-kernel weight from the potential (RTKW),
are characteristics measured on probe genotypes and de-
scribe the environments during grain-number formation
(DKN) and the grain-filling (RTKW). Introduced into a
biadditive factorial regression as environmental covaria-
tes, they explained up to 77.4% of SSI with three terms
(almost the same as AMMI) and helped to understand
most of the genotype*environment interaction on the
yield of a given set of genotypes.

The results obtained by Prihar and Stewart (1990) in-
volving the use of a genetic harvest index for Sorghum,
Corn and Wheat seemed to be promising for screening
cultivars. But the authors did not show how instability of
grain yield was related to it. In addition, it is impossible
to determine when the stress occurs by observation of
the harvest index since it corresponds to the whole plant
cycle. By contrast, deviations of yield components from
the potential allows one to determine the period in-
volved, i.e. grain-number formation or the grain-filling
period.

Dry matter biomass or other yield components could
be observed, such as plant number per square meter and
grain number per plant. But, obviously, further studies
are needed to determine improved procedures for ob-

taining the potential values which represent basic data
in such an approach. In this paper, they are obtained
from experimental data. It would be interesting to inves-
tigate how crop models could help breeders to deter-
mine yield and yield-component potentials which seem
to be essential in any study of genotype*environment
interaction.

For introducing the usual indicators of yield-limiting
factors in the model, which were too numerous, a two-
step approach considering subsequently the analysis of
the traits (DKN, RTKW) and grain yield was needed.
Only the environmental covariates which affected DKN
and RTKW in a first step were introduced in a second
step into a biadditive factorial regression for the analysis
of grain yield. The environmental variates were consid-
ered as poorly involved in the interaction of DKN and
RTKW when the absolute value of their correlations with
each synthetic covariate was below 0.3. An explanation
of genotype*environment interaction for grain yield was
more difficult since three multiplicative terms were
needed. Most environmental covariates involved were
related to the grain-filling period (PMT, WDT, HTT and
LodgT). The contribution of the other covariates was
less notable but the first analysis of DKN and RTKW
showed that they had to be considered as well. This
study clearly highlighted that crop diagnosis was very
useful to determine covariates involved in genotype*en-
vironment interaction on grain yield. Based only on the
analysis of grain yield, the results would have been less
powerful.

The interest and application of an approach using bi-
additive factorial regression is to provide information
about the interaction of the 12 genotypes with respect to
the ten selected environmental covariates. In the same
biadditive factorial regression biplot, the interaction pat-
tern of the genotypes, as well as their sensitivities to en-
vironmental characteristics, can be given. Hence bi-addi-
tive factorial regression, which combines features of
AMMI and factorial regression, gives detailed informa-
tion about interaction.

In the present study, indicators of yield-limiting fac-
tors or deviations of yield components throw light on the
genotype*environment interaction. Both descriptors
might be of use to plant breeders. Sometimes, it can be
easier to access probe genotypes; at other times, it is
more interesting to use other descriptors. When the
probe genotype is a well-known cultivar, for instance So-
issons which is one of the most cultivated varieties in
France at the present time, it can be obvious to compare
a given genotype with it and conclude that this genotype
could be cultivated in the same area as Soissons. It could
thus simplify the advice to farmers who could adapt the
mode of cultivation of Soissons to the newly released
cultivar. In case of the specific adaptation of a genotype,
the usual indicators of yield-limiting factors will be pre-
ferred. It could be indicated whether a genotype is sensi-
tive to a given constraint (water deficits, high tempera-
ture) and thus locations subjected to the corresponding
constraint could be discarded for its cultivation.
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In applying this approach to variety trials or research
programs,the standard design should be adapted by in-
cluding probe genotypes of interest. Earliness is an im-
portant criterion for their choice but other traits could be
added, such as sensitivities to nitrogen inputs or to the
development of diseases. This depends on the program
itself. For instance, in programs related to low-nitrogen-
input agricultural systems, genotypes of extreme sensit-
ivies to nitrogen deficiency could be introduced as probe
genotypes in the experiment.

Concerning the traits measured in the probe geno-
types, we preferred to incorporate covariates related to
grain-number formation and to grain-filling instead of
covariates defined for the whole-plant cycle in order to
better capture events occurring before yield compensa-
tions. Nevertheless, it must be assumed that some bias
could have been introduced because DKN and RTKW
were observed only for the four probe genotypes. An-
other restriction was the manner used to determine the
covariates. For instance, high temperature could be re-
placed by another criterion, the sum of degree days
based on 28°C, and the results of ANOVA could be
modified.

Since obtaining potential values for every genotype is
not easy, analyzing a small set of genotypes gives a good
compromise and the set of probe genotypes played a ma-
jor role here in understanding what happened during the
formation of yield. However, it might be objected that
the interaction of the probe genotypes have to be well-
representative of a given set of genotypes in order to be
informative.
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