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Abstract
Key message GhSOT (GH_D05G3950) plays a negative role in regulating plant height development by modulating 
the GA signaling.
Abstract Plant height is an important indicator affecting mechanical harvesting for cotton. Therefore, understanding the 
genes associated with the plant height is crucial for cotton breeding and production. In this study, we used bulk segregant 
analysis sequencing to identify a new quantitative trait locu (QTL) called qPH5.1, which is linked to plant height. Local QTL 
mapping using seven kompetitive allele-specific PCR (KASP) markers and linkage analysis successfully narrowed down 
qPH5.1 to ~ 0.34 Mb region harbored five candidate genes. Subsequently, RNA sequencing (RNA-seq) analysis and exami-
nation of expression patterns revealed that GhSOT exhibited the highest likelihood of being the candidate gene responsible 
for the plant height at this locus. Seven SNP site variations were identified in the GhSOT promoter between the two parents, 
and Luciferase experiments confirmed that the promoter of GhSOT from cz3 enhances downstream gene expression more 
effectively. Additionally, suppression of GhSOT in cz3 resulted in the restoration of plant height, further emphasizing the 
functional significance of this gene. Application of exogenous gibberellin acid (GA) significantly restored plant height in 
cz3, as demonstrated by RNA-seq analysis and exogenous hormone treatment, which revealed alterations in genes associ-
ated with GA signaling pathways. These results reveal GhSOT is a key gene controlling plant height, which may affect plant 
height by regulating GA signaling.

Introduction

Cotton is the most important source of natural textile fiber in 
the world. Upland cotton (Gossypium hirsutum L.) has high 
lint yield, accounting for more than 95% of world cotton 
production (Li et al. 2016; Hu et al. 2019). Given the evolv-
ing trade dynamics in the cotton industry and the push for 
mechanization, the cultivation of high-yield and high-quality 
cotton varieties becomes paramount. The plant architecture 
plays a vital role in determining cotton yield and the effec-
tiveness of mechanical harvesting (Dong et al. 2018). Plant 
architecture includes various agronomic traits, such as plant 
height, number of fruit branches, distribution of fruit branch, 
as well as bolls and leaves.

Plant height is a crucial crop trait that determines over-
all architecture impacting light interception, photosyn-
thesis, and harvesting in various crop species (Teng et al. 
2013). Breeders typically prefer plants that approach an 
optimal height value, as excessively short plants tend to 
exhibit lower yields compared to semi-dwarf varieties. The 
identification and characterization of plant height-related 
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genes are increasing, and several genes have been success-
fully cloned. Notably, recent research has demonstrated 
that the down-regulation of GhPAS1 plays an important 
role in modulating architectural traits by regulating plant 
height and fruit branch angle (Wu et al. 2021). The over-
expression of GhDREB1B has been found to result in a 
notable decrease in plant height, branch length, and branch 
angle. Regulating the expression of GhDREB1B offers a 
potential means to optimize plant architecture for dense 
planting (Ji et al. 2021). Despite the insights provided by 
previous studies, the genetic and molecular mechanisms 
underlying cotton plant height is not clear.

Presently, the regulation of cotton plant height is 
achieved through chemical means, thereby incurring sup-
plementary expenses and engendering the risk of chemical 
contamination. Alternatively, given the escalating demand 
for mechanical harvesting in China, the cultivation of vari-
eties with ideal plant height emerges as the most depend-
able and viable approach. However, plant height inherits 
as a quantitative trait governed by multiple genes and is 
readily influenced by environmental factors. Numerous 
QTLs have been reported for cotton plant height through 
the utilization of diverse genetic populations. For instance, 
Wu et al. (2022) employed QTL mapping in a recombinant 
inbred line (RIL) population across nine environments and 
three best linear unbiased predictions (BLUPs) to identify 
60 plant height QTLs. Ma et al. (2019) utilized SLAF-
seq technology to identify a stable QTL, qPH-Dt1-1, 
and a gene, GhPIN3, that regulates cotton plant height 
in an interspecific G.hirsutum × G.barbadense backcross 
inbred line (BIL) population. Su et al. (2018) identified 
eight SNPs associated with plant height, and observed that 
the silenced plants (Gh_D03G0922) exhibited increased 
plant height. Additionally, qRT-PCR analysis revealed 
that the expression of Gh_D03G0922 was upregulated in 
the apical buds and young leaves of short and compact 
cotton varieties. Additionally, Ye et al. (2023) conducted 
genome-wide association studies in three field conditions 
using unmanned aerial vehicles and identified two genetic 
loci GhUBP15 and GhCUL1 associated with plant height. 
However, the identification of candidate genes associated 
with plant height within these QTL regions is still limited.

To provide additional information for breeding, the 
genetic basis of plant height must be further investigated 
in cotton. In this study, we mapped the plant height QTL of 
mutant cotton genotype cz3 precisely by BSA-seq and RNA-
seq to locate the candidate gene region on the chromosome 
D05. GhSOT may plays an important role in regulating plant 
height development. This work will provide a foundation 
to verify the plant height function of candidate genes and 
ultimately realize the use of ideal plant height resource.

Materials and methods

Plant materials and field experiments

A dwarf cotton mutant named cz3 was identified from 
EMS-mutagenized seeds of cotton germplasm resources. 
cz3 and CIR12 were used as female and male parents, 
respectively, to generate an  F2 population of 600 individu-
als. cz3 (n = 48), CIR12 (n = 48), and  F2 (n = 600) indi-
viduals were planted in the field at Anyang, China in 2021. 
Each row of field plots was 6 m long and 80 cm wide, with 
the seeds placed 20 cm apart within the row. The sowing 
depth was about 8 cm. Plants from the center of each plot 
were selected for plant height evaluation.

DNA extraction and construction of BSA library

Genomic DNA was extracted from parental and  F2 plants 
leaves with the cetyltrimethylammonium bromide (CTAB) 
method and followed by purification through RNase A 
treatment. Two segregating pools, namely the dwarf and 
tall bulk, were created by combining equal amounts of 
DNA from 30 dwarf lines and 30 tall lines. The quality and 
concentration of the DNA were assessed using a Beckman 
Coulter DU800 spectrophotometer, and necessary adjust-
ments were made to achieve a final DNA concentration of 
100 ng  mL−1. Approximately 5 μg of DNA from the two 
segregating pools and two parental lines were utilized for 
the construction of sequencing libraries.

RNA‑seq

Total RNA was extracted from stem tissues of cz3 and 
CIR12 during the four-leaf development period, and RNA 
libraries were prepared using Illumina 2500 platform 
sequencing technology. The sequencing was performed by 
Beijing Genomics Institution (BGI) in Shenzhen, China. For 
the RNA-seq experiment, three biological replicates were 
performed to ensure the reliability of the results. The TM-1 
(AD1) genome NAU-NBI assembly v1.1 was used as the 
reference genome for mapping and analysis (Nanjing Agri-
cultural University‐Novogene Bioinformatics Technology). 
Gene expression levels were calculated and normalized 
into fragments per kilobase per million mapped fragments 
(FPKM) values using the stringtie software (Zhao et al. 
2021). To identify differentially expressed genes (DEGs), 
the deseq2 package was used with the following parameters: 
a fold change of more than two and an adjusted P-value less 
than 0.01. Gene ontology enrichment was analyzed by David 
(https:// david. ncifc rf. gov). KEGG pathway enrichment was 

https://david.ncifcrf.gov
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examined via the Novogene platform (https:// magic. novog 
ene. com).

LUC imaging assay

The coding sequences of proGhSOTcz3 and proGhSOTCIR12 
were PCR-amplified using specific primer sets listed in 
Table S1. proGhSOTcz3 and proGhSOTCIR12 were cloned in-
frame with the p0800MINI vector. These constructs were 
transformed into A. tumefaciens strain GV3101 and subse-
quently infiltrated into N. benthamiana leaves. After infiltra-
tion, the plants were maintained under a 16 h light/8 h dark 
cycle for 2 days. Firefly LUC and Renilla luciferase (REN) 
activities were quantified using a dual-luciferase reporter 
assay system (Promega, Madison, WI, USA).

Gene cloning and plant transformation

For virus-induced gene silencing (VIGS) experiment, about 
100–200 bp DNA fragments of candidate gene were each 
into pTRV2 vectors that was transformed into A. tumefaciens 

strains GV3101 to generate pTRV::candidate gene in cz3. 
The GV3101 cells with each of the above plasmids were 
mixed with an equal volume of the cells harboring pTRV1 
and infiltrated into 10-day-old cotton seedling cotyledons 
as previously described (Chen et al. 2021; Burch-Smith 
et  al. 2004; Pang et  al. 2013). The VIGS experiments 
were repeated three times, and each time with more than 
10 plants. TRV::PDS was used as the positive control and 
the empty vector pTRV2 was used as the negative control. 
All the plants grew in the greenhouse that were facilitated 
with 28 °C/22 °C day/night temperature, 16 h/8 h light/dark 
photoperiod.

Scanning electron microscopy (SEM)

SEM was employed to examine the stems of both cz3 and 
CIR12 cotton plants, adapting the method outlined with 
slight modifications to suit the specific requirements of the 
samples being analyzed (Challa et al. 2021).

Fig. 1  Plant height and longitudinal sections of the stem at the mature 
stage. A, B Plant height of cz3 and CIR12 at the mature stage. Scale 
bar = 10 cm. C The spacing between four fruit branches on the stem 
of cz3 and CIR12. D Internode numbers on the stem of cz3 and 
CIR12, ‘ns’ indicates no significant difference. E Hand-cut longi-

tudinal sections of the stem in cz3 and CIR12, respectively. Scale 
bar = 200 μm. F The internode cell size of cz3 and CIR12. Six slides 
of each sample were observed, and more than 100 cells were meas-
ured for each slide. **P < 0.01, Student's t test was used to calculate 
the P value

https://magic.novogene.com
https://magic.novogene.com
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Subcellular localization of GhSOT

The full-length coding sequence (CDS) of GhSOT, exclud-
ing the stop codon, was amplified from CIR12 using specific 
primers (Table S1) and cloned into the pCAMBIA2300-
GFP vector to construct a 35S::GhSOT-GFP fusion protein 
for transient expression. Along with the control plasmid 
(35S::GFP), the recombinant plasmid was transferred into 
A. tumefaciens strain GV3101. The subcellular localiza-
tion of GhSOT in living cells was analyzed in the leaves of 
4-week-old N. benthamiana plants infiltrated with A. tume-
faciens cells carrying the GhSOT construct. After 48 h, the 
epidermal cells of the infiltrated tobacco leaves were exam-
ined under an OLYMPUS FV1200 confocal microscope 
(Olympus, Tokyo, Japan) to determine the localization of 
the GhSOT-GFP fusion protein. The primers used for subcel-
lular localization are listed in Table S1.

Real‑time quantitative RT‑PCR

Total RNA was extracted from cotton samples using a plant 
total RNA extraction kit (Tiangen Biotech, Beijing, China) 
following the instructions provided with the kit. Subse-
quently, first-strand cDNA was synthesized using the Pri-
meScript Rt reagent Kit with gDND Eraser reagent (Takara 
Biotech, Beijing, China) for the purpose of analyzing the 
expression levels of relevant genes through qRT-PCR. The 
qRT-PCR was conducted using the MonAmp in review 
SYBR Green qPCR Mix Kit (Monad Biotech, Suzhou, 
China). The relative expression level was calculated accord-
ing to the  2−ΔΔCT method (Livak and Schmittgen 2001). In 
order to standardize the gene expression, an internal control 
GhUBQ-7 was used.

Statistical analysis

Differences between parent and progeny plant height were 
detected using SPSS18.0 (IBM, Armonk, NY, USA). Data 
represent means ± standard deviations. Graphs were drawn 
using edgeR (http:// www.r- proje ct. org/) and Origin 2018 
(OriginLab, Northampton, MA, USA).

Results and analysis

Phenotypic identification and genetic analysis 
of plant height

cz3 displayed a dwarf plant phenotype with height 
of ~ 65 cm, significantly lower than CIR12 (Fig. 1A, B). 
However, cz3 and CIR12 have the same number of inter-
nodes, indicating that the observed plant height difference 
between the two lines is caused by differences in the length 
of the internodes, rather than the number of internodes 
(Fig. 1C, D). Cytological observation revealed that internode 
cell sizes in CIR12 were significantly larger than those of 
cz3 (P < 0.01) (Fig. 1E, F), indicating that the longer inter-
nodes in CIR12 relative to cz3 are caused by increased cell 
sizes, not increased cell numbers.

BSA‑seq analysis

In order to facilitate phenotypic scoring, we opted to uti-
lize plant height as the quantitative trait for the initial 
identification of the plant height locus. To achieve this, a 
pooled sequencing strategy was employed, involving two 
parent-bulk samples, cz3 (P1-pool) and CIR12 (P2-pool). 
From these samples, we selected 30 extreme-dwarf plants 

Fig. 2  QTL-seq approach for mapping genomic regions controlling 
cotton plant height. The colored dots represent the ∆(SNP index) 
value of every SNP locus. The red lines show the ∆(SNP index) 

value of the fitting results, the green dotted line shows the association 
threshold value (0.95) and the yellow dotted line shows the associa-
tion threshold value (0.99)

http://www.r-project.org/
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(D-pool) and 30 extreme-tall plants (T-pool) based on  F2 
plant height data, which were then pooled into two bulks 
(Fig. S1). The HAU versions of TM-1 genomes were cho-
sen as the references. Subsequently, an average SNP-index 
was calculated using a sliding window approach (with a 
1 Mb interval and 1 kb step width) for the two extreme 
bulks. The mapping ratio of the clean reads is between 
97.07 and 97.76%, while the sequencing depths varied 
from 12.30-fold to 20.92-fold for cz3, CIR12, D-pool, and 
the T-pool, respectively. The Delta SNP-index was calcu-
lated and graphed across the entire genome using the Delta 
SNP-indexes for D-pool and T-pool. Regions with SNP-
index values exceeding the threshold were identified as 

candidate QTL regions. Under a 95% level of confidence, 
only one genomic region (58.1–62.1 Mb) on chromosome 
D05 qualified presence a major-effect QTL controlling 
plant height, which was designated as qPH5.1 (Fig. 2).

Fine‑mapping of qPH5.1 locus

In order to conduct a more detailed mapping of qPH5.1, a 
larger population of  F2 individuals consisting of 1200 plants 
was developed in the year 2022. A total of 1800  F2 plants, 
including 600 plants for bulk construction, were genotyped 
using KASP1 and KASP7 markers, which were developed 
based on BSA data (Table S2, Fig. S3). Additionally, all 

Fig. 3  Fine-mapping and analysis of candidate genes. A Fine-map-
ping of the qPH5.1 locus. Genotyping of recombinant plants from 
1800  F2 individuals. Annotation of the ~ 0.34 Mb region. Letters rep-
resent significant differences at the 0.05 level based on Tukey’s test. 
Yellow boxes indicate exons, and black lines indicate introns. Arrow 
indicates the orientation of the gene. B Mapping interval for qPH5.1 
locus and its corresponding physical map of chromosome D05 on 

cotton. C Heat map of gene expressions in the candidate gene region 
between cz3 and CIR12 from RNA-Seq, with expression level pre-
sented as  log2-transformed mean values from three biological rep-
licates. The color spectrum from blue to red represents low to high 
expression levels, respectively. D Expression patterns of the five can-
didate genes in cz3 and CIR12. Data were obtained from the website 
(http:// cotton. zju. edu. cn/ 10. rnase arch. html)

http://cotton.zju.edu.cn/10.rnasearch.html
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progeny plants were genotyped using 7 markers (KASP1-
KASP7), resulting in the identification of 20 recombinant 
plants. Subsequently, we assessed the performance of 
these plants for plant height in the field. Statistical analysis 
revealed a significant decrease in plant height for L3 and 
L4 in comparison to CIR12 (P < 0.01), while no significant 
differences were observed between contrasting genotypes 
in L1, L2, and L5 families. These findings provide evidence 
that the candidate gene is located within a physical inter-
val of approximately ~ 0.34 Mb, which is flanked by mark-
ers KASP5 (61,068,056 bp) and KASP6 (61,403,436 bp) 
(Fig.  3A), this mapping interval is consistent with the 
qPH5.1 (Fig. 3B). The BSA data of QTL-seq and the find-
ings from fine-mapping reveal a total of 4838 SNP sites, 
with 4402 being intergenic, 91 exonic, 30 synonymous, and 
60 non-synonymous mutations. Among these, 22 SNP sites 
are located on the qPH5.1 interval, with 14 in exon, one in 
the interregion, and seven on the promoter. Out of these 14 
exonic SNP sites, eight are synonymous, six are nonsynony-
mous. Further investigation will involve a comprehensive 
analysis of the genes associated with these SNP sites.

Identification of expressed genes in the candidate 
interval

To further investigate candidate genes, we conducted an 
analysis of the transcriptome data from stem tissues in 
cz3 and CIR12. A total of 968 genes showed statistically 
significant expression differences between cz3 and CIR12 
(Table S3). Compared to CIR12, two genes were up-reg-
ulated and three genes were down-regulated of the stable 
QTL in cz3 (Fig. 3C). Additionally, examination of the 
expression patterns of these five genes revealed that GhSOT 
(GH_D05G3950) is predominantly expressed in the stem, as 
reported in the CottonFGD database (http:// cotton. zju. edu. 
cn/ 10. rnase arch. html) (Fig. 3D). Subsequent analysis identi-
fied seven SNP variants in the promoter region of GhSOT 
among the five DEGs, supporting this finding through 
sequencing of GhSOT from CIR12 and cz3 (Fig. 4A, B). 
LUC experiments provided additional support, demonstrat-
ing that the promoter of GhSOT from cz3 exhibited a greater 
enhancement of downstream gene expression (Fig. 4C). 
The alteration in the promoter sequence may influence the 
expression of the downstream gene, potentially contribut-
ing to the observed change in plant height. The amino acid 

Fig. 4  Promoter analysis of the candidate genes. A Venn diagram 
showing the overlap between DEGs and nonsynonymous genes in 
fine-mapping interval. B Seven SNP variants of the GhSOT promoter 
region in CIR12 and cz3. C LUC experiments of GhSOT promoter 
in CIR12 and cz3, demonstrating that the promoter of GhSOT from 

cz3 exhibited a greater enhancement of downstream gene expres-
sion. **P < 0.01, Student's t test was used to calculate the P value. D 
Gene structure of GhSOT. E Evolutionary analysis of GhSOT (GH_
D05G3950)

http://cotton.zju.edu.cn/10.rnasearch.html
http://cotton.zju.edu.cn/10.rnasearch.html
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sequences of GhSOT were subjected to BLAST searches 
against public databases for the identification of homologous 
sequences. The protein sequences of GhSOT and its four 
most similar homologous genes were used for phylogenetic 
analysis. The results showed that GhSOT shares 45% amino 
acid sequence identity with the soybean and 44% identity 
with the Arabidopsis SOT16 proteins (Fig. 4D, E). These 
results suggest that GhSOT may be the candidate gene for 
plant height.

VIGS of GhSOT brings an increase in plant height

To better understand GhSOT function, we conducted quan-
titative real-time RT-PCR analysis to examine its relative 
expression patterns in various tissues. Our analysis indicated 
that GhSOT was mainly expressed in the stem, with signifi-
cantly lower expression in the leaf, bract, sepal, torus, and 
fiber tissue (Fig. 5A). In addition, to explore the subcellular 
localization of GhSOT in cell, a coding sequence construct 
was introduced into the epidermal cells of N. benthamiana 
leaves. The construct was fused with GFP at the N-terminal 
of GhSOT The results demonstrated that the GhSOT-GFP 

fusion protein was localized in the nucleus and plasma mem-
brane (Fig. 5B). To elucidate the role of GhSOT in cotton, 
VIGS experiments were conducted on cz3 to suppress the 
expression of GhSOT genes. Results showed that silencing 
GhSOT in cz3 plants led to a 41.0% increase in plant height 
compared to control plants, suggesting that down-regula-
tion of GhSOT partially restored plant height (Fig. 5C–E). 
Conversely, VIGS of CIR12 did not result in a significant 
change in plant height (Fig. S2), indicating that the expres-
sion level of GhSOT plays an important role in regulating 
plant development.

GhSOT may regulate plant height based on GA 
signaling

We employed the RNA-seq to investigate the pathways 
associated with stem development in a mutant organism, 
and identified the top 20 pathways that exhibited enrich-
ment in DEGs. Notably, the Glycerolipid metabolism path-
way displayed significant enrichment, with down-regulation 
observed in the related genes (GPAT3, GPAT5, EXL3, etc.) 
(Fig. 6A). Previous studies have indicated that GPAT1 plays 
a role in regulating plant height by influencing cell length 

Fig. 5  Functional validation of GhSOT. A Expression analysis of 
GhSOT gene in different tissues. GhHistone3 was used as an inter-
nal reference gene for data normalization. Data are presented as 
mean ± SD for three independent experiments. B Subcellular localiza-
tion of GhSOT protein. Fusion of GhSOT with GFP protein was tran-
siently expressed in N. benthamiana leaves, with free GFP serving as 
the control. H2B was employed as a nuclear maker. The visualization 
was conducted using confocal microscopy. C Phenotypes of blank 

control and GhSOT gene silenced in cz3. TRV::156 (empty, negative 
vector control), TRV::GhSOT (silenced cotton plants). D Quantifica-
tion of GhSOT expression in blank control and VIGS in cz3. GhHis-
tone3 was used as an internal reference gene for data normaliza-
tion. E Plant height statistics of TRV::GhSOT and TRV::156 of cz3. 
Data are presented as mean ± SD for three independent experiments. 
**P < 0.01, Student's t test was used to calculate the P value
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(Bai et al. 2021). Additionally, four DEGs have been iden-
tified as key players in Auxin-related signaling pathways, 
including an Aux/IAA member, an Aux-responsive GH3 
member, and two SAUR genes (Fig. 6B). Quantitative anal-
ysis of IAA and GA levels in the main stem between the 
first and second fruit branches revealed significantly higher 
levels in CIR12 compared to cz3 (P < 0.01) (Fig. 6C, D). 
Further, we started spraying IAA,  GA3 and  H2O on the cot-
ton plants planted in the laboratory from the seventh day 
of sowing, with a concentration of 100 mg  L−1 every two 
days. It is obvious that the plant height increment of cz3 is 
higher than CIR12 compared to the control after spraying 
 GA3 (Fig. 6E). However, there was no significant change in 
plant height increment after spraying IAA with a concentra-
tion of 100 mg  L−1 every two days (Fig. 6F). These findings 
indicate that the regulation of cotton plant height by GhSOT 
potentially relies on GA signaling.

Discussion

Cotton plant architecture breeding programs have become 
an effective method for improving yields (Song and Zhang 
2009). The plant height is a crucial aspect of its overall 
structure and has implications for various agricultural fac-
tors such as mechanized harvesting, harvest index, and final 
yield performance. Plant height is a quantitative trait and 
many plant height QTLs in cotton have been reported that 
they are distributed over multiple linkage groups (Ye et al. 
2023; Liu et al. 2020; Huang et al. 2017; Su et al. 2018; Wen 
et al. 2019; Zhang et al. 2019). These QTL fine-mapping and 
map-based cloning are supported by high-density genetic 
map and a series of near-isogenic lines. And the BSA-seq 
technology has proven to be successful for rapidly identify-
ing the chromosome region harboring the genes/QTLs of 
interest in numerous crop species (Takagi et al. 2015; Lei 
et al. 2020; Xin et al. 2020). The BSA-seq technology can 
reduce the genotyping cost of large sets of individuals by 
choosing only extreme individuals for genotyping (Elshire 
et  al. 2011). The present study mapped a major locus, 

Fig. 6  Analysis of regulatory pathways. A KEGG pathway enrich-
ment analysis of DEGs between cz3 and CIR12. The top 20 KEGG 
pathways with the most abundant DEGs were presented. The y-axis 
and x-axis represent the pathway name and rich factor, respectively. 
The size of the circle dot indicates the gene count in each pathway. B 
RNA-seq is used to evaluate expression level of putative downstream 
genes involved in Aux-related and GA signaling between cz3 and 
CIR12, with expression level presented as  log2-transformed mean val-

ues from three biological replicates. The color spectrum from blue to 
red represents low to high expression levels. C, D IAA and GA quan-
tification from the main stem between first and second fruit branches 
of cz3 and CIR12. Data show mean ± SD (n = 3), **P < 0.01, Stu-
dent's t test was used to calculate the P value. E, F Plant height in 
cz3 and CIR12 plants after treatment with  GA3, IAA. Plant height is 
shown as the means ± SD (n > 30)
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qPH5.1, which is located at a different position from all of 
the previous studies in cotton.

Within the mapping interval, it was confirmed that 
GhSOT belonging to the sulfotransferase (SOT/ST) family 
regulates the development of plant height. Analysis of the 
GhSOT promoter revealed seven SNP site variations between 
the two parental genes. LUC experiments indicated that the 
promoter from cz3 effectively enhances the expression of 
the downstream gene GhSOT. Previous research has demon-
strated the significant involvement of SOT/ST family genes 
in various plant processes (Komori et al. 2009; Igarashi et al. 
2012; Zhou et al. 2010). In this study, RNA-seq analysis 
was conducted to investigate the role of GhSOT in regulat-
ing plant height development, with a suggesting potential 
modulation by the GA signaling pathway. Previous research 
has extensively documented the role of GA in the regulation 
of plant height (Wang and Wang 2022). The development of 
semi-dwarf varieties with increased yields during the 'Green 
revolution' is attributed to significant modifications in GA 
biosynthesis and signaling pathways (Evenson and Gollin 
2003). Improving plant height by altering the GA pathway 
has proven to be an effective way (Tester and Langridge 
2010; Wang et al. 2017). Additionally, there is evidence 
of crosstalk between GA and other phytohormones, such 
as Aux, brassinosteroids (BRs), and jasmonates (JAs), in 
the regulation of plant height (Ferrero-Serrano et al. 2019). 
Auxin response factor (ARF) and Aux/IAA family members 
play a direct role in up-regulating the expression of GA cata-
bolic genes GA20ox and GA2ox, thereby coordinating GA 
metabolism during the process of organ elongation (Alamin 
et al. 2018). Therefore, GA signaling plays a crucial role in 
controlling plant height.

In this study, a SOT/ST family gene GhSOT was detected 
via BSA-seq and transcriptome sequencing. We have found 
seven SNP variants in the gene promoter between CIR12 
and cz3. RT-PCR analysis indicated that GhSOT was mainly 
expressed in the stem. And its function was verified by 
VIGS, knock-down GhSOT expression partially restored the 
height of cz3 plants. These results reveal GhSOT is a key 
gene controlling plant height. Transcriptomics data analysis 
has demonstrated that the expression levels of genes associ-
ated with GA biosynthesis and signaling, as well as those 
involved in cell wall organization and biogenesis, ultimately 
led to the elongation of cell length and consequently an 
increase in plant height. We found the plant height incre-
ment of cz3 is higher than CIR12 compared to the control 
after application of GA3. There was no significant change in 
plant height increment after spraying IAA (Fig. 6E, F). We 
speculated the regulation of cotton plant height by GhSOT 
potentially relies on GA signaling. However, this inference 
needs further experiments to be authenticated.

Conclusion

In the present research, we have mapped a new QTL, 
qPH5.1, associated with plant height on chromosome D05 
using BSA-seq and RNA-seq methods with  ~ 0.34  Mb 
region. This region contains five genes, including GhSOT 
which is the candidate gene for plant height. These find-
ings will boost further research on the genetic mechanisms 
underlying plant height.
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