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Abstract
Key messages Sixty-nine quantitative trait nucleotides conferring maize resistance to Gibberella ear rot were detected, 
including eighteen novel loci. Four candidate genes were predicted, and four kompetitive allele-specific PCR markers 
were developed.
Abstract Maize Gibberella ear rot (GER), caused by Fusarium graminearum, is one of the most devastating diseases in 
maize-growing regions worldwide. Enhancing maize cultivar resistance to this disease requires a comprehensive understand-
ing of the genetic basis of resistance to GER. In this study, 334 maize inbred lines were phenotyped for GER resistance in 
five environments and genotyped using the Affymetrix CGMB56K SNP Array, and a genome-wide association study of 
resistance to GER was performed using a 3V multi-locus random-SNP-effect mixed linear model. A total of 69 quantitative 
trait nucleotides (QTNs) conferring resistance to GER were detected, and all of them explained individually less than 10% 
of the phenotypic variation, suggesting that resistance to GER is controlled by multiple minor-effect genetic loci. A total of 
348 genes located around the 200-kb genomic region of these 69 QTNs were identified, and four of them (Zm00001d029648, 
Zm00001d031449, Zm00001d006397, and Zm00001d053145) were considered candidate genes conferring susceptibility to 
GER based on gene expression patterns. Moreover, four kompetitive allele-specific PCR markers were developed based on 
the non-synonymous variation of these four candidate genes and validated in two genetic populations. This study provides 
useful genetic resources for improving resistance to GER in maize.

Introduction

Maize ear rot is a prevalent fungal disease in maize-growing 
regions worldwide. It was first reported in Canada in 1923 
and then identified in many other countries, including the 
USA, Mexico, Brazil, Germany, and China (Mesterházy 
et al. 2012). It can be caused by various pathogens but 
mostly by Fusarium verticillioides, F. graminearum, and 
Aspergillus flavus (Gaikpa and Miedaner 2019). The fungi 
infect maize ears, and then, the husk and kernel are cov-
ered with mildew, decreasing the yield and quality. Ear rot 
reduces output in maize by 5–10% typically and by more 
than 30% in severely affected areas. In addition, ear rot con-
taminates kernels with carcinogenic mycotoxins, particu-
larly deoxynivalenol, zearalenone, and fumonisins, which 
are potential threats to human and animal health (Gaikpa and 
Miedaner 2019; Mesterházy et al. 2012). Chemical control 
methods can reduce maize ear rot severity to some extent, 
but are neither economical nor environmentally friendly 
(Andriolli et  al. 2016). Therefore, genetic resistance is 
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considered a better and more sustainable alternative to pre-
vent yield loss and mycotoxin contamination (Akohoue and 
Miedaner 2022; Munkvold 2003).

Maize resistance to ear rot is quantitatively inherited in 
additive and epistatic manners, and highly influenced by 
the environment and genotype × environment interactions 
(Gaikpa and Miedaner 2019). A recent work has shown 
that knocking out ZmFER1, which encodes histidine-rich 
calcium binding protein, can improve resistance against 
Fusarium ear rot (FER) caused by F. verticillioides without 
agronomic penalty in maize (Liu et al. 2022). Two genes, 
ZmAuxRP1 and ZmWAX2, enhance maize resistance to FER 
by regulating the growth defense balance and cuticular wax 
deposition, respectively (Ma et al. 2023; Ye et al. 2019). 
However, there is limited report on identification of candi-
date genes for resistance or susceptibility to Gibberella ear 
rot (GER) caused by F. graminearum in maize.

Thus far, more than 100 quantitative trait loci (QTL) con-
ferring maize resistance to GER have been identified in bipa-
rental segregating populations though linkage analysis (Ako-
houe and Miedaner 2022). For instance, Kebede et al. (2016) 
mapped 20 QTL conferring maize resistance to GER using 
a biparental population originating from a cross between 
Canadian resistant inbred line CO441 and public suscepti-
ble line B73. Galiano-Carneiro et al. (2021) identified four 
QTL conferring maize resistance to GER using six biparen-
tal populations originated from crosses between Brazilian 
resistant genotypes and European susceptible germplasm, 
and only one QTL, q1, was stable across test environments 
and populations. Zhou et al. (2021) detected 11 QTL con-
ferring maize resistance to GER, including 5 stable QTL, 
using a recombinant inbred line (RIL) population originated 
from a cross between Chinese resistant parent DH4866 and 
susceptible line T877. Despite the potential genetic power of 
those QTL, due to their larger interval regions, small genetic 
effects, and environmental sensitivity, none of them has been 
successfully cloned (Akohoue and Miedaner 2022).

As a high-resolution gene mapping tool, genome-wide 
association study (GWAS) has been successfully applied 
to identify candidate genes conferring disease-resist-
ance traits in maize, such as GST (Wisser et al. 2011), 
ZmFBL41 (Li et al. 2019), ZmWAX2 (Ma et al. 2023), and 
ZmBGLU17 (Liu et al. 2024). However, very limited stud-
ies have reported on the use of GWAS for maize resistance 
to GER until recently (Akohoue and Miedaner 2022). Han 
et al. (2018) failed to detect significant quantitative trait 
nucleotides (QTNs) associated with resistance to GER 
using unified mixed model with 130 dent and 114 flint 
lines from European maize breeding programs. Gaikpa 
et al. (2021) detected 8 significant QTNs associated with 
resistance to GER using FarmCPU model with 500 dou-
bled haploid lines derived from two European maize lan-
draces. Yuan et al. (2023) identified 69 and 16 significant 

QTNs associated with resistance to GER using general 
and mixed linear models, respectively, with 316 diverse 
inbred lines.

The statistical models used in previous researches are 
mainly under the framework of single-locus, which fre-
quently uses the Bonferroni multiple test correction to 
reduce spurious associations, resulting in the elimination 
of some positive loci, in particular minor-effect loci (Zhang 
et al. 2019). As an alternative, several multi-locus GWAS 
models have been recommended that consider all marker 
information simultaneously and do not require a multi-
ple test correction (Zhang et al. 2019). Recently, a novel 
multi-locus model named 3V multi-locus random-SNP-
effect mixed linear model (3VmrMLM) was proposed by 
Li et al. (2022). This model first estimates potentially asso-
ciated markers using single-marker genome-wide scanning 
and subsequently detects significant QTN using empirical 
Bayes and the likelihood ratio test in a multi-locus model; 
this undoubtedly improves its detection capability. The 
3VmrMLM has been successfully applied in the detection of 
QTNs for complex quantitative traits in plants, such as seed 
tocopherol content in soybean (Yu et al. 2022), fiber-related 
traits in cotton (Han et al. 2023b), and seed germination 
under drought stress in rice (Yang et al. 2024).

To reveal novel QTNs and candidate genes conferring 
resistance to GER in maize, in this study, an association 
mapping (AM) population consisting of 334 maize inbred 
lines was genotyped using an Affymetrix CGMB56K SNP 
Array and phenotypically evaluated in five filed trials, 
and GWAS of resistance to GER was conducted using the 
3VmrMLM. The study detected multiple novel GER resist-
ance loci, and predicted four susceptibility candidate genes, 
which could be potentially used for GER resistance breeding 
program in the near future.

Materials and methods

Plant materials and field trials

The AM population used in this study consists of 334 diverse 
maize inbred lines, which were mainly collected from the 
USA and China (Table S1), grown in five environments in 
China: Nantong, Jiangsu Province (NT, 120° E, 31° N); 
Xinxiang, Henan Province (XX, 113° E, 35° N); and Sanya, 
Hainan Province (SY, 108° E, 18° N) in 2020, and NT and 
SY in 2021. Each field trial followed a randomized complete 
block design with two replicates. Each line was grown in 
single row, which was 3 m in length and spaced 0.6 m apart, 
thereby giving a planting density of 65,000 plants/ha. The 
agronomic management of the field experiments was the 
same in the five environments.
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Phenotypic evaluation and data analysis

Artificial inoculation was conducted using an aggressive 
isolate of F. graminearum (strain F0609) according to the 
description in our previous study (Zhou et al. 2021). Briefly, 
the strain was cultured on potato dextrose agar medium for 
approximately 2 weeks, and then several agar plugs with 
fully grown mycelia were cultured in sterilized mung bean 
soup at 200 rpm for 2–3 d at 28 °C. The spore suspension 
was filtered, counted, and adjusted to a concentration of 
1 ×  106 spores/mL and supplemented with 0.001% of the 
surfactant Tween-20. For field inoculation, approximately 
10 d after silk emergence, the primary ear of each plant 
was pierced at the base, middle, and top of a husk. Using a 
10-cm-long needle, one to two kernels were pierced, but the 
spindle was not reached. Then 200 µL spore suspension was 
injected into each of the three wounds.

At the physiological maturity stage, inoculated ears were 
harvested, and the disease severity of each ear was scored 
using a 1–7 rating scale (Reid et al. 1994), where 1 = 0%, 
2 = 1–3%, 3 = 4–10%, 4 = 11–25%, 5 = 26–50%, 6 = 51–75%, 
and 7 = 76–100% kernels showing visible disease symptoms 
over the entire cob.

The phenotypic data were analyzed using R version 
4.02 for Windows (https:// www.r- proje ct. org/). Descrip-
tive statistics and correlation analysis were conducted 
using describe function of the psych package and chart.
Correlation function of the PerformanceAnalysis package, 
respectively. Analysis of variance (ANOVA) was performed 
using lmer function of the lme4 package, respectively. The 
broad-sense heritability (H2) was estimated as described by 
Knapp et al. (1985): individual environment H2 (%) = σ2

g/
(σ2

g + σ2
e/r) × 100% and multiple environments H2 (%) = σ2

g/
(σ2

g + σ2
ge/n + σ2

e/nr) × 100%, where σ2
g is the genotypic 

variance, σ2
ge is the variance for the interaction of the geno-

type with the environment, σ2
e is the error variance, n is the 

number of environments, and r is the number of replications. 
To minimize the effects of the environment, the best linear 
unbiased prediction (BLUP) for disease severity across the 
five environments was estimated using lmer function of the 
lme4 package for further analysis.

Genotyping, population structure, linkage 
disequilibrium, and relative kinship

Genotypes of the 334 maize inbred lines were evaluated 
using an Affymetrix CGMB56K SNP Array, which contains 
56,000 single nucleotide polymorphisms (SNPs), made by 
China Golden Marker Biotech Co. (Beijing, China). After 
quality control, 32,853 SNPs with minor allele frequen-
cies > 5% and missing data < 20% were used for subsequent 
analysis.

The population structure (Q) was performed using 
STRU CTU RE 2.3 (Pritchard et al. 2000). The number of 
subpopulations (K) was set from 1 to 10, with five runs for 
each K value. Parameters were set to 100,000 burn-in peri-
ods and 100,000 Markov chain Monte Carlo replications in 
each run under the admixture model. The K value was esti-
mated using the log likelihood of the data (LnP(D)) and an 
ad hoc statistic ΔK, based on the rate of change of LnP(D) 
between successive K values. Nei’s genetic distance was 
calculated and used to construct a neighbor-joining tree 
using MEGA-X (Kumar et al. 2018). The linkage disequi-
librium (LD) parameter r2 between pairwise SNPs was 
calculated using PLINK (Purcell et al. 2007), in which the 
window size was set at 1000 kb, and r2 was set at 0.2. The 
relative kinship matrix (K) of the 334 maize inbred lines 
was computed using SPAGeDi 1.3 (Hardy and Vekemans 
2002) with negative values between two individuals set 
to zero.

Genome‑wide association study

GWAS was conducted using a compressed variance com-
ponent mixed model in the 3VmrMLM package, and the 
method parameter was set to “Single_env”. The threshold of 
logarithm of odds (LOD) ≥ 3 (or P ≤ 0.0002) was selected 
as the significance threshold for association signals, and the 
remaining parameters were set to default values (Li et al. 
2022). To confirm the efficiency of the 3VmrMLM, one 
widely used GWAS statistics model, mixed linear model 
controlling for population structure and kinship (MLM 
(Q + K)), was conducted using TASSEL 5.0 (Bradbury 
et al. 2007), and the threshold was also set at P ≤ 0.0002 
(–log10(P) ≥ 3.70).

Candidate gene analysis

All potential candidate genes within 100 kb upstream and 
downstream of the detected QTNs were identified based on 
the B73 reference genome v4 (https:// www. maize gdb. org/ 
gbrow se). Gene annotation information was obtained from 
MaizeGDB (https:// www. maize gdb. org) and NCBI (https:// 
www. ncbi. nlm. nih. gov). Published gene expression data for 
maize resistance to GER were collected from Kebede et al. 
(2018) to identify the differently expressed genes (DEGs). 
The expression profiles of these DEGs were then validated 
in a susceptible inbred line T877 and a resistant inbred 
line DH4866, identified in our previous study (Zhou et al. 
2021), using quantitative real-time PCR (qRT-PCR). Finally, 
genes that were differently expressed in both published gene 
expression data and the qRT-PCR assay were considered 
candidate genes for maize resistance to GER.

https://www.r-project.org/
https://www.maizegdb.org/gbrowse
https://www.maizegdb.org/gbrowse
https://www.maizegdb.org
https://www.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov
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Quantitative real‑time PCR analysis

Maize inbred lines T877 and DH4866 were grown in Nan-
tong, Jiangsu Province, in 2022. The inoculation method 
was the same as those mentioned earlier for the phenotypic 
evaluation section. A control group was also evaluated under 
the same conditions and inoculated with  ddH2O. The ker-
nels closely surrounding the inoculation spots were collected 
from five individual plants, pooled at 1, 3, and 7 days after 
inoculation, and placed immediately in liquid nitrogen. Total 
RNA was extracted using Trizol reagent (Invitrogen, Carls-
bad, CA, USA) and purified using an RNeasy Plant Mini Kit 
(Qiagen, Valencia, CA, USA).

RNA reverse transcription reactions were performed 
using MoScript™ RT111 Super Mix with dsDNase (two-
step). qRT-PCR was performed with AceQ® qPCR SYBR® 
Green Master Mix (Q111-02/03) using an Applied Biosys-
tems™ 7500 Real-Time PCR System. The maize β-tubulin 
served as an internal control to normalize the expression of 
each gene, and the relative gene expression was calculated 
using the  2−ΔΔCt method. Three biological and technical 
replicates were evaluated separately for each sample. The 
primers for qRT-PCR are listed in Table S2.

Molecular marker developed

Based on the resequencing information for resistant line 
DH4866 and susceptible line T877, the non-synonymous 
variations of the four candidate genes between the two lines 
were selected and converted into Kompetitive allele-specific 
PCR (KASP) markers. Then, the KASP markers were used 
to genotype the AM population used in this study and the 
RIL population used in a previous study (Zhou et al. 2021) 
to further confirm the association of the candidate genes 
with maize resistance to GER. A student’s t-test was used 
to determine significant differences between the two alleles. 
Genotyping was performed using the Douglas Scientific® 
Array Tape™ Platform. All KASP markers are described 
in Table S3.

Results

Population structure, linkage disequilibrium, 
and relative kinship

STRU CTU RE software was used to calculate the Bayes-
ian clustering from K = 1 to 10, with 5 independent runs 
for each K. The LnP(D) values increased as K increased 
from 1 to 10 without an obvious inflection point, and 
ΔK reached its peak at K = 5 (Fig. 1A), suggesting that 
this AM population could be divided into 5 subgroups. 
A neighbor-joining tree was constructed based on Nei’s 

genetic distance and showed five main clusters for this 
panel (Fig. 1B), consistent with the STRU CTU RE result.

The five subpopulations were designated P, Tang-
sipingtou (TSPT), BSSS, Lancaster (LAN), and Waxy 
(Table S1). Subgroup P, including 99 inbred lines, derived 
mainly from American hybrids 3382 and 78,599, con-
tained the representative inbred lines Zheng58 and Qi319. 
Subgroup TSPT, including 51 inbred lines, derived mainly 
from Chinese maize landrace-Sipingtou, consisted mainly 
of inbred lines, such as Huangzaosi and Chang7-2. Sub-
group BSSS was derived from the synthetic variety BSSS 
and included 76 inbred lines, its representative inbred 
line was B73. Subgroup LAN included 36 inbred lines, 
its representative inbred line was Mo17. Subgroup Waxy, 
included 72 inbred lines and belonged to waxy maize.

The average LD decay of the population was estimated 
at 100 kb, where the LD parameter (r2) dropped to half of 
its maximum value (Fig. 1C). Additionally, a lower level 
of genetic relatedness among the 334 inbred lines, as pair-
wise relative kinship values of 0 accounted for 63.86% 
of all kinship values, values from 0 to 0.2 accounted for 
89.51%, and values greater than 0.5 accounted for only 
3.10% (Fig. 1D).

Phenotypic variation and heritability

The descriptive statistics for resistance to GER in the 
AM population are presented in Table 1. Wide pheno-
typic variation among the 334 inbred lines was observed 
and ranged from 1.00 to 7.00 in five environments. The 
BLUPs of disease severity varied from 2.95 to 6.06, with 
an average of 4.27. Although a significantly positive cor-
relation was observed among different environments, the 
correlation coefficients were relatively low (0.22–0.43). 
ANOVA showed significant differences between genotype, 
environment, and genotype × environment interactions, 
and the broad-sense heritability varied largely among all 
environments, from 65.09% in 21NT to 80.73% in 20SY. 
These results suggested that maize resistance to GER was 
mainly controlled by genetic factors, but was environmen-
tally sensitive.

Based on the BLUP values across the five environ-
ments, 3 of 334 maize inbred lines showed resistance 
(disease severity below 3.0) (ID: 78, 129, and 208), and 
these have the potential to be valuable resources for maize 
GER resistance breeding. On the contrary, 41 inbred lines 
showed susceptible, exhibiting very high disease severity 
of 5.0 or higher. The remaining inbred lines were moderate 
(Table S1). There was a significant difference in resist-
ance to GER among the five subpopulations. Waxy was 
the most susceptible, while BSSS was the most resistant 
(Fig. 2).
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Fig. 1  Population structure, linkage disequilibrium, and relative kin-
ship analysis of 334 maize inbred lines. A Estimated ΔK and LnP(D) 
in the STRU TUR E analysis. B Neighbor-joining tree of 334 maize 

inbred lines. C Linkage disequilibrium across 10 chromosomes. D 
Pairwise relative kinship of 334 maize inbred lines

Table 1  Phenotypic 
performance, variance 
component and heritability of 
maize resistance to Gibberella 
ear rot

20SY: Sanya in 2020; 20NT: Nantong in 2020; 20XX: Xinxiang in 2020; 21SY: Sanya in 2021; 21NT: 
Nantong in 2021; BLUP: best linear unbiased prediction; σ2

g: variance of genotype; σ2
ge: variance of inter-

action genotype and environment; H2: broad-sense heritability
**Significance level at P < 0.01

Environment Mean SD Minimum Maximum Skewness Kurtosis σ2
g σ2

ge H2 (%)

20SY 5.07 1.38 1.00 7.00  − 0.79  − 0.43 1.55** 80.73
20NT 4.38 1.17 1.00 7.00  − 0.39 0.44 0.94** 69.12
20XX 3.62 1.25 1.00 7.00  − 0.01 0.60 1.14** 72.38
21SY 4.82 1.19 1.00 7.00  − 0.50  − 0.33 1.05** 75.27
21NT 3.49 0.92 1.00 7.00 0.62 0.60 0.55** 65.09
BLUP 4.27 0.57 2.95 6.06 0.06 0.41 0.46** 0.58** 70.66
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Genome‑wide association study

A total of 69 QTNs were detected in five environments and 
BLUPs across all environments using the 3VmrMLM model, 
and each explained 1.62–7.04% of the phenotypic variation 
in resistance to GER (Fig. 3 and Table 2). However, only 13 
QTNs were detected in five environments and BLUPs across 
all environments using MLM (Q + K) model (Table S4). 
Among the 69 QTNs, 13, 14, 7, 10, 12, and 13 QTNs were 
detected in 20NT, 20SY, 20XX, 21NT, 21SY and BLUP, 
explaining 34.33, 48.83, 33.97, 41.07, 43.35, and 42.73% 
of the phenotypic variation, respectively. However, none of 
these QTNs were detected in two or more environments. 
Similar results were obtained in previous GWASs of maize 
resistance to GER (Yuan et al. 2023) and FER (Yao et al. 
2020). Referring to previous studies, 51 QTNs have been 
reported. Thus, the remaining 18 QTNs were considered 
novel (Table 2).

Identification of candidate genes

According to the LD in this AM population (Fig. 1C), 
348 potential candidate genes were identified 100 kb 
upstream and downstream of the 69 QTNs (Table  S5). 
Based on the transcriptome data published by Kebede 
et al. (2018), four (Zm00001d029648, Zm00001d031449, 

Fig. 2  Violin plot of disease severity in five subpopulations of this 
association mapping panel. Different letters indicate significant differ-
ences at P < 0.001 estimated using Student’s t-test

Fig. 3  Manhattan (left) and quartile-quartile (right) plots of genome-
wide association study results using the 3VmrMLM model. The six 
circles of the Manhattan plot from inside to outside show the results 

from Sanya in 2020 (20SY), Nantong in 2020 (20NT), Xinxiang in 
2020 (20XX), Sanya in 2021 (21SY), Nantong in 2021 (21NT), and 
best linear unbiased prediction (BLUP)
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Table 2  The QTNs for resistance to maize Gibberella ear rot identified using the 3VmrMLM model

Marker Bin Position_v4 (bp) LOD PVE (%) Env References

AX-116873549 1.03 43,645,851 5.68 3.29 BLUP Wen et al. (2020)
AX-86239602 1.03 49,802,535 8.43 3.83 21NT
AX-86239699 1.04 59,419,876 10.10 6.25 BLUP Xiang et al. (2010), Zhou et al. (2021)
AX-86306443 1.04 69,429,811 5.10 2.41 21NT Zhou et al. (2021)
AX-86239903 1.04 81,312,482 7.98 4.75 BLUP Han et al. (2016)
AX-86240584 1.05 163,156,463 5.58 2.31 22NT
AX-86307438 1.06 183,882,633 6.55 4.94 22SY
AX-86307484 1.06 190,231,452 5.84 3.72 21SY Kebede et al. (2016), Han et al. (2016)
AX-86240884 1.06 197,499,264 4.50 2.75 22SY
AX-86240905 1.07 199,720,627 6.29 5.39 21XX
AX-86265778 1.07 199,916,785 15.54 7.04 21XX
AX-86278829 1.07 213,511,580 6.00 2.92 22NT
AX-86241598 1.07 278,099,674 9.39 4.29 21SY Martin et al. (2011)
AX-86283342 2.02 6,422,884 5.25 2.86 BLUP Martin et al. (2012)
AX-86284181 2.02 10,149,988 8.24 5.51 21XX
AX-86308731 2.04 40,362,374 16.55 2.97 BLUP Wen et al. (2020)
AX-86261022 2.07 200,079,778 8.01 2.14 BLUP Han et al. (2016)
AX-86243437 2.08 206,597,745 4.50 2.66 21SY Han et al. (2016)
AX-86267990 2.10 239,867,263 5.59 4.05 22SY Zhou et al. (2021)
AX-86310321 3.00 629,072 10.33 4.03 22SY
AX-86281987 3.04 16,413,990 5.87 3.94 22SY Xiang et al. (2010), Kebede et al. (2016)
AX-86323498 3.05 160,126,277 16.42 4.31 21SY
AX-86311838 3.06 185,399,398 3.61 1.62 BLUP Xiang et al. (2010)
AX-86282886 3.08 212,721,112 3.92 2.17 BLUP Giomi et al. (2016), Han et al. (2016), Galiano-Carneiro et al. 

(2021), Wen et al. (2020)
AX-116874253 3.10 225,639,028 3.99 1.62 21NT
AX-86270249 4.05 80,308,919 5.69 4.67 22NT Xiang et al. (2010), Wen et al. (2020)
AX-95647844 4.06 165,573,983 11.66 2.94 21SY Wen et al. (2020)
AX-86313662 4.06 166,840,292 10.01 2.40 21SY Wen et al. (2020)
AX-116876233 4.09 214,745,547 4.73 3.72 21XX Zhou et al. (2021)
AX-90561872 4.09 216,218,588 4.45 2.15 21NT Zhou et al. (2021)
AX-86271203 4.09 227,982,406 13.62 4.99 BLUP Zhou et al. (2021)
AX-86261554 5.00 2,444,523 6.07 2.75 21NT
AX-86304646 5.01 67,326,175 7.20 3.05 21NT Han et al. (2016)
AX-86292814 5.04 118,284,375 3.45 2.62 22SY Wen et al. (2020)
AX-86225488 5.05 174,142,666 5.21 4.40 21XX Wen et al. (2020)
AX-86280158 5.05 184,890,420 7.95 4.51 21XX Wen et al. (2020)
AX-116876492 5.06 199,518,834 4.41 3.63 22NT Xiang et al. (2010), Han et al. (2016), Galiano-Carneiro et al. (2021)
AX-86293537 5.09 221,353,359 5.26 2.66 22SY Giomi et al. (2016)
AX-86316298 5.09 223,581,183 4.51 3.39 21XX
AX-86294147 6.02 94,243,988 7.72 6.12 22NT
AX-86259107 6.06 159,543,194 3.69 2.21 22SY Xiang et al. (2010)
AX-86317585 6.07 163,565,455 11.23 2.68 21NT Xiang et al. (2010), Martin et al. 2011)
AX-86317699 7.01 9,654,032 18.93 2.66 21NT Wen et al. (2020)
AX-86299528 7.02 22,231,435 4.04 2.57 21SY Wen et al. (2020)
AX-86274115 7.02 23,766,644 41.22 3.46 21SY Wen et al. (2020)
AX-86317892 7.02 30,366,330 5.79 4.54 22NT Wen et al. (2020)
AX-86318000 7.02 41,809,741 4.09 2.45 21SY Wen et al. (2020)
AX-86283526 7.02 84,902,618 8.05 2.20 22SY Wen et al. (2020)
AX-86251779 7.02 103,037,600 7.77 2.64 21NT Xiang et al. (2010), Wen et al. (2020)
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Zm00001d006397, and Zm00001d053145) of them were 
considered DEGs (|fold change|≥ 5) (Fig.  4A). Among 
them, Zm00001d029648 encodes ent-copalyl diphosphate 
synthase, Zm00001d031449 encodes lipoxygenase 13, 
Zm00001d006397 encodes cytokinin-O-glucosyltransferase, 
and Zm00001d053145 encodes purple acid phosphatase. 
These candidate genes were significantly upregulated after 
inoculation with F. graminearum, and expressed at high 
levels in susceptible line B73 compared with resistant line 
CO441. The qRT-PCR assay showed that these four genes 
also were significantly induced by F. graminearum, and 
expressed at high levels in susceptible line T877 compared 
with resistant line DH4866 (Fig. 4B). Therefore, we hypoth-
esize that these four genes may be involved in maize suscep-
tibility to GER.

Development and validation of molecular markers

For Zm00001d029648, the A/G (T877/DH4866) variation at 
the 1816th position in the coding sequencing region, which 
caused one amino acid substitution from aspartate to serine, 
was used as a target site to design KASP marker, K648. 
Significant differences of disease severity were observed 
between alleles AA and GG in the AM and RIL populations 
(Fig. 5A). GG was the resistance allele, and AA was the 
susceptibility allele. The disease severity of GG was 5.01 

and 4.53% lower than that of AA in the AM and RIL popula-
tions, respectively.

For Zm00001d031449, the A/G (T877/DH4866) varia-
tion at the 455th position in the coding sequencing region, 
which caused one amino acid substitution from arginine to 
glutamine, was used as a target site to design KASP marker, 
K449. Significant differences of disease severity were 
observed between alleles AA and GG in the AM population, 
while no statistical difference was detected between alleles 
AA and GG in the RIL population (Fig. 5B). GG was the 
resistance allele, and AA was the susceptibility allele. The 
disease severity of GG was 7.78% lower than that of AA in 
the AM population.

For Zm00001d006397, the A/G (T877/DH4866) variation 
at the 137th position in the coding sequencing region, which 
caused one amino acid substitution from valine to alanine, 
was used as a target site to design KASP marker, K397. 
Significant differences of disease severity were observed 
between alleles AA and GG in the AM and RIL populations 
(Fig. 5C). GG was the resistance allele, and AA was sus-
ceptibility allele. The disease severity of GG was 3.60 and 
5.59% lower than that of AA in AM and RIL populations, 
respectively.

For Zm00001d053145, the G/A (T877/DH4866) varia-
tion at the 395th position in the coding sequencing region, 
which caused one amino acid substitution from glycine to 

Env., environment; 20SY, Sanya in 2020; 20NT, Nantong in 2020; 20XX, Xinxiang in 2020; 21SY, Sanya in 2021; 21NT, Nantong in 2021; 
BLUP, best linear unbiased prediction

Table 2  (continued)

Marker Bin Position_v4 (bp) LOD PVE (%) Env References

AX-86295479 7.02 121,214,812 6.76 3.81 BLUP Wen et al. (2020)
AX-86324552 7.02 124,925,724 7.21 3.10 21NT Wen et al. (2020)
AX-86318905 7.04 159,951,197 9.69 5.72 22NT Wen et al. (2020)
AX-86264132 7.04 162,528,814 6.13 4.72 22SY Han et al. (2016), Wen et al. (2020)
AX-86279553 7.04 164,524,282 4.76 2.50 21NT Han et al. (2016), Wen et al. (2020)
AX-86252476 7.06 180,741,651 7.20 4.34 21SY
AX-86252586 8.02 13,775,624 11.32 6.87 21SY Matrin et al. (2012)
AX-86296412 8.03 80,844,720 5.60 3.42 21SY Kebede et al. (2016)
AX-86296619 8.03 104,001,857 5.02 2.81 BLUP
AX-116871606 8.05 139,410,361 3.37 1.73 21NT Kebede et al. (2016), Galiano-Carneiro et al. (2021)
AX-86263515 8.09 176,473,798 8.54 3.73 22NT
AX-86282115 9.02 13,707,254 4.03 2.51 21SY Wen et al. (2020)
AX-95651171 9.02 22,155,950 8.31 3.94 22NT Han et al. (2016), Wen et al. (2020)
AX-116873388 9.03 23,991,241 7.10 3.21 21NT Han et al. (2016), Wen et al. (2020)
AX-86255155 9.04 112,271,967 7.51 2.04 BLUP Martin et al. (2012)
AX-86321946 10.02 10,705,997 5.38 3.49 22NT Wen et al. (2020)
AX-86324800 10.03 15,723,458 6.39 3.03 BLUP Kebede et al. (2016), Wen et al. (2020)
AX-116874570 10.04 122,855,713 4.48 2.89 21SY Martin et al. (2012)
AX-86299383 10.05 135,749,532 19.06 3.47 22SY Zhou et al. (2021)
AX-86258490 10.06 137,106,570 7.47 5.76 22SY
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asparagine, was used as a target site to design KASP marker, 
K145. Significant differences of disease severity were 
observed between alleles AA and GG in the AM and RIL 
populations (Fig. 5D). AA was the resistance allele, and GG 
was the susceptibility allele. The disease severity of AA was 
3.37 and 4.86% lower than that of GG in the AM and RIL 
populations, respectively.

Discussion

In this study, 69 QTNs were identified using the 3VmrMLM. 
Of these QTNs, 51 (74%; 51/69) co-localized with previ-
ously reported genetic loci conferring maize resistance to 
GER. Moreover, 10 QTNs (AX-86307484, AX-86281987, 
AX-86282886 ,  AX-95647844 ,  AX-86313662 , 
AX-86299528 ,  AX-86274115 ,  AX-86318905 , 
AX-86296412, and AX-86324800) were located in meta-
QTL regions for maize ear rot, as estimated by Akohoue and 
Miedaner (2022). This suggested that the QTNs detected 
using the 3VmrMLM here were reliable, even though none 
of them could be detected in more than one environment or 
explained more than 10% of the phenotypic variance. More 

importantly, 18 novel QTNs conferring maize resistance to 
GER were identified in this study.

Combining genetic and transcriptome analysis is an effec-
tive approach to refining candidate genes for target traits. 
Yao et al. (2020) identified 21 candidate genes for maize 
resistance to FER by integrating GWAS and transcriptome 
analysis. Combining QTL mapping and transcriptome 
analysis, 5 and 81 candidate genes for maize resistance 
to GER and FER were identified, respectively (Cao et al. 
2022; Kebede et al. 2018). In another study, 59 candidate 
genes for maize resistance to FER and/or GER were iden-
tified by combining meta-QTL and transcriptome analysis 
(Akohoue and Miedaner 2022). In this study, four candidate 
genes for maize susceptibility to GER, which could be sig-
nificantly induced by F. graminearum, were identified by 
combining GWAS, transcriptomic data reported by Kebede 
et al. (2018), and qRT-PCR assay. These four genes were 
expressed at high levels in susceptible lines compared with 
resistant lines. TaHRC, a gene conferring Fusarium head 
blight susceptibility in wheat, could be significantly induced 
after inoculation with F. graminearum, and was more highly 
expressed in susceptible line than in resistance line (Su et al. 
2019). ChSK1, a gene conferring quantitative susceptibil-
ity to maize southern leaf blight, was highly induced in 

Fig. 4  The expression level of four candidate genes in transcriptome 
data (A) and qRT-PCR assay (B). Sample names are displayed under 
the heat map, where 1d, 2d, 3d, and 7d represent 1, 2, 3, and 7 days 
after inoculation, respectively. The fold change/relative expression is 

the ratio of being treated with Fusarium graminearum versus water. * 
and ** represent a significance level of P < 0.05 and P < 0.01, respec-
tively
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susceptible line after C. heterostrophus infection, but less 
so in resistance line (Chen et al. 2023). Based on the above 
results, we speculate that these four candidate genes might 
be associated with maize susceptibility to GER.

Among these candidate genes, Zm00001d029648, cor-
responding to the previously confirmed gene An2, displayed 
higher transcript accumulation following fungal elicitation, 
and drove the production of non-volatile antibiotic families 
termed kauralexins and dolabralexins (Christensen et al. 
2018; Harris et al. 2005; Mafu et al. 2018). In addition, 
the an2 mutant displayed increased susceptibility to FER 
(Christensen et al. 2018). Zm00001d031449, a lipoxygenase 
gene, was located in a meta-QTL for maize ear rot estimated 
by Akohoue and Miedaner (2022) and was speculated to 
be involved in regulating cell death in maize leaves (Bar-
ghahn et al. 2023). The expression level of maize lipoxyge-
nase pathway genes can be induced after F. verticillioides 
inoculation (Maschietto et  al. 2015). Two lipoxygenase 

genes, ZmLOX3 and ZmLOX12, have been confirmed to be 
involved in maize resistance to ear rot, and the lox3 mutant 
displayed increased resistance to FER but susceptibility to 
Aspergillus ear rot caused by Aspergillus flavus (Gao et al. 
2009, 2007). The lox12 mutant exhibited higher suscepti-
bility to FER (Christensen et al. 2014). Zm00001d006397 
encodes cytokinin-O-glucosyltransferase, which is a key 
enzyme for regulating the level and function of cytokinin, 
and could be induced by heat stress (Han et al. 2023a). Cyto-
kinin-mediated immunity or susceptibility has been studied 
extensively (Albrecht and Argueso 2017), and cytokinin-O-
glucosyltransferase genes have a significant role in alleviat-
ing cytokinin-induced immunity in rice (Dauda et al. 2022). 
Zm00001d053145 encodes purple acid phosphatase, which 
has been suggested to generate reactive oxygen species as 
an immune response (Kaija et al. 2002), and it was induced 
under low phosphorus stress (Gonzalez-Munoz et al. 2015). 
In summary, these four genes could respond to biotic or 

Fig. 5  The effect analysis of four KASP markers in the association 
mapping (AM) and recombinant inbred line (RIL) populations. A 
The genetic effect of K648 in the AM and RIL populations. B The 

genetic effect of K449 in the AM and RIL populations. C The genetic 
effect of K397 in the AM and RIL populations. D The genetic effect 
of K145 in the AM and RIL populations
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abiotic stress, and the function of their protein is related to 
pathogen resistance. Thus, functional validation is worth in 
further study.

Apart from the four genes mentioned above, seven genes 
(Zm00001d031437, Zm00001d002312, Zm00001d002313, 
Zm00001d038534, Zm00001d018931, Zm00001d020533, 
and Zm00001d012550) contained leucine-rich repeat 
domain that is commonly existing in innate immune recep-
tor proteins in plants (Padmanabhan et al. 2009), and two 
genes (Zm00001d031447 and Zm00001d039842) encoded 
the protein belonging to disease-resistance family proteins. 
These genes may also be involved in maize resistance to 
GER, although they were not differentially expressed in the 
transcriptome data published by Kebede et al. (2018). More 
experiments are needed to elucidate their functions.

Previous studies have demonstrated that non-synonymous 
mutations in genes can change their protein function and 
affect crop disease resistance. For example, a single base 
substitution results in a histidine-to-aspartic acid substitu-
tion in maize multiple disease-resistance gene GST, defining 
GST substrate specificity and biochemical activity (Wisser 
et al. 2011). In rice, a single base substitution results in a 
cysteine-to-arginine substitution in SPL36, causing sponta-
neous cell death and enhanced resistance to bacterial patho-
gens (Rao et al. 2021). In this study, the non-synonymous 
variations of four candidate genes were mined and converted 
into four KASP markers. The effects of these four markers 
were successfully validated in the AM and RIL populations 
(except for K449 in the RIL population). However, the effect 
of a single KASP marker could only reduce disease severity 
by less than 10%. These results further indicate that maize 
resistance to GER is controlled by polygenes with minor 
effects, as described in previous studies (Brauner et al. 2017; 
Kebede et al. 2016; Yuan et al. 2023; Zhou et al. 2021). 
Thus, it is better to pyramid these four resistance alleles in 
future maize disease breeding efforts.
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