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Abstract
The agricultural sector faces colossal challenges amid environmental changes and a burgeoning human population. In this 
context, crops must adapt to evolving climatic conditions while meeting increasing production demands. The dairy industry 
is anticipated to hold the highest value in the agriculture sector in future. The rise in the livestock population is expected 
to result in an increased demand for fodder feed. Consequently, it is crucial to seek alternative options, as crops demand 
fewer resources and are resilient to climate change. Pearl millet offers an apposite key to these bottlenecks, as it is a promis-
ing climate resilience crop with significantly low energy, water and carbon footprints compared to other crops. Numerous 
studies have explored its potential as a fodder crop, revealing promising performance. Despite its capabilities, pearl millet 
has often been overlooked. To date, few efforts have been made to document molecular aspects of fodder-related traits. 
However, several QTLs and candidate genes related to forage quality have been identified in other fodder crops, which can 
be harnessed to enhance the forage quality of pearl millet. Lately, excellent genomic resources have been developed in pearl 
millet allowing deployment of cutting-edge genomics-assisted breeding for achieving a higher rate of genetic gains. This 
review would facilitate a deeper understanding of various aspects of fodder pearl millet in retrospect along with the future 
challenges and their solution. This knowledge may pave the way for designing efficient breeding strategies in pearl millet 
thereby supporting sustainable agriculture and livestock production in a changing world.

Introduction

Pearl millet (Pennisetum glaucum (L.) R. Br.) is one of 
the most important crops that provide food, fodder, feed 
and fuel to millions of poor families and their livestock. It 
originated 4900 years ago in Africa and due to evolution 
under adverse conditions, it can withstand harsh weather 
conditions in which other major cereal crops fail to grow 
(Muimba-Kankolongo 2021). Therefore, it is adapted to 
dry and hot climates and plays a major role in sustaining 
food security in arid and semi-arid regions (Satyavathi et al. 
2021). Pearl millet covers around 30 million hectares glob-
ally. It is a significant millet crop in India, cultivated over 
approximately 7.41 million hectares, with about 0.9 Mha of 

area dedicated to fodder (Satyavathi et al. 2021 Koli et al. 
2018; Directorate of Millets Development 2020). In Africa, 
pearl millet is grown on approximately 18 million hectares. 
Limited acreage is allocated to green fodder, as stover is 
primarily used as fodder instead. (Boote et al. 2022). In the 
USA, around 60,000 hectares are under cultivation for fod-
der (Myers 2002; All India Coordinated Research Project 
on Pearl Millet 2022). It is primarily grown as a grain crop 
under rainfed conditions, and as a fodder crop in summer and 
Kharif seasons. In Southern India, pearl millet is also grown 
during the Rabi season in the hottest and driest regions. It is 
an excellent forage crop and has great potential. Its fodder 
is high in protein, calcium, phosphorus and other minerals, 
while being low in undesirable components such as hydro-
cyanic acid and oxalic acid (Gupta 1975). As a fodder crop, 
it is leafy, nutritious and palatable. It can be fed to animals 
at any crop stage and is primarily present in two plant mor-
phologies: dwarf bushy type (used for grazing) and tall type 
(used for green fodder, silage and hay) (Fig. 1) (Hancock 
et al. 2009). It provides crude protein and total digestible 
nutrients to cattle at 33% and 66% less cost, respectively, as 
compared to the concentrated feed (Ravi et al. 2012), making 
it a valuable feed source for dairy farmers.
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In India, around 10 million farmers are engaged in the 
dairy sector, and for many, it serves as their sole source 
of income (Ministry of Fisheries, Animal Husbandry and 
Dairying 2022). In the most recent census, 535.70 mil-
lion livestock population is recorded, reflecting a 4.6% 
increase from the previous one (Department of Animal 
Husbandry and Dairying 2019). Therefore, feeding this 
growing population is going to be a major issue. The lack 
of fodder increases the cost of concentrated feed and fod-
der, affecting landless and marginal dairy producers and 
ultimately raising the costs of dairy products. Moreover, 
according to UNDESA’s 2017 forecast, if the current 
pace of population growth continues, the world’s popula-
tion will reach 9.8 billion by 2050, which will result in 
a decline in the amount of cultivable land available for 
food production. This could result in similar feeding chal-
lenges for both animals and humans. Given the anticipated 
increase in future fodder shortages, proactive measures 
should be implemented to address this issue. One approach 
to address this issue is to increase crop production per unit 
area by developing high-yielding and quality fodder pearl 
millet varieties/hybrids. This can be achieved by leverag-
ing the available genetic potential in the pearl millet gene 
pool along with implementing good cultivation practices.

In order to develop fodder cultivars, Dr. Glenn W. Burton 
initiated traditional breeding activities in Tifton, Georgia, in 
the 1930s. He has made several contributions to the breeding 
of pearl millet, including the discovery of the first fodder 
hybrid, Gahi 1 and CMS source A1 (Tift 23 A). The dis-
semination of his material to other parts of the globe has 
paved the way for the improvement of pearl millet as a grain. 
The research to evaluate millet as a silage crop started in the 
1950s with the development and release of improved varie-
ties of pearl millet and ‘Starr’ millet was proposed as the first 
grazing and silage cultivar for dairy cattle (Johnson 1959).

In the USA and Australia, pearl millet is widely used as 
a forage crop, as Tifleaf and Ghai cultivars were grown on 
half a million hectares of land in the USA in the 90s and still 
these are in cultivation (Andrews and Kumar 1992). Also, 
elephant grass hybrid (P. purpureum schum) is a popular 
perennial forage crop broadly grown in Brazil, East Africa 
and Southern Africa. Overall, pearl millet is grown in 30 
countries in Asia, Africa, America and Australia (Garin 
et al. 2023). Genetic diversity in Pennisetum species for 
fodder-related traits is present in greater amounts. Over 
66,000 distinct accessions representing over 140 species are 
available at the International Crops Research Institute for the 
Semi-Arid Tropics (ICRISAT), Research and Development 
Institute and Global Genebank Information System (GRIN) 
on a global scale. These accessions are primarily utilized to 
generate resources for the pearl millet, mainly focusing on 
grain production. However, there has been limited effort in 
developing genetic and genomic resources for traits that are 
valuable for fodder. Consequently, there is a lack of appro-
priate resources for mapping traits in an advanced mapping 
population that segregates fodder quality and biomass-
related traits and no information is available on key can-
didate genes and functional SNPs that govern these traits. 
This information is essential for developing improved fodder 
cultivars. Therefore, there is a need to develop resources by 
employing modern genomic tools in combination with con-
ventional breeding approaches. Recently genome sequenc-
ing of pearl millet (Varshney et al. 2017) has opened a way 
to tap into its large genetic diversity to breed varieties and 
hybrids for future needs. Mapping QTLs at higher resolu-
tion and identification of candidate genes for forage quality 
and biomass-related traits in pearl millet would facilitate the 
mapping of functionally important genes associated with 
forage traits in pearl millet. This valuable material will aid 
in uncovering genomic regions that govern fodder traits and 

Fig. 1   Plant types in pearl millet: left- dwarf type with shorter internodes and leafiness and right- tall plant type with longer internodes
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will accelerate the breeding programme for the development 
of improved cultivars.

This review will explore various aspects of the fodder 
quality and biomass of pearl millet, as well as its future sig-
nificance as a fodder crop in regions expected to face water 
scarcity and drought in the coming years.

Navigating challenges in fodder production 
for a growing global population

With the global population expected to exceed 9 billion 
by 2050 (UNDESA 2017), the livestock industry grapples 
with rising demands for meat and dairy products, strain-
ing fodder production systems. Climate change worsens 
challenges by altering growing seasons, reducing forage 
yield and increasing vulnerability to pests and diseases. 
Simultaneously, urban expansion, biofuel production and 
infrastructure development alter land use, reducing space 
for fodder cultivation (Kleemann and Riordan 2015). Water 
scarcity, particularly in arid regions, further complicates fod-
der production. Therefore, sustainable solutions, including 
precision irrigation, drought-resistant fodder varieties and 
improved water-use efficiency, are crucial (Nikolaou et al. 
2020).

In arid regions, pearl millet is valued as a staple and gains 
prominence as a high-quality fodder source (Jukanti et al. 
2016). Recent advances in breeding, nutritional enrich-
ment and sustainable cultivation practices highlight pearl 
millet’s potential. Modern breeding methods have hastened 
the development of improved varieties, emphasizing traits 
like increased biomass, disease resistance and superior for-
age quality (Yadav et al. 2021a, b, c). Incorporating genetic 
diversity from wild relatives holds promise for stress-toler-
ant and high-yielding varieties, underscoring pearl millet’s 
transformative potential in fortifying livestock production 
systems and addressing challenges linked to climate change 
and resource scarcity (Sharma et  al. 2021). Therefore, 
research collaborations are essential to fully unlock pearl 
millet’s potential as a sustainable and nutrient-rich fodder 
resource. The available resources along with avenues and 
approaches to generate novel resources for improving pearl 
millet fodder are discussed further.

Breeding for fodder pearl millet

Pearl millet has the potential as a promising fodder crop due 
to its nutritional composition, great tillering and leafiness, 
along with high digestibility, crude protein and biomass 
production (Sedivec et al. 1991). It has high regenerative 
ability, provides multi-cut fodder free from anti-nutritional 
acids, and therefore could be utilized as fodder at any stage 

of development (Miller 1984; Idris et al. 2008). In various 
studies conducted in tropical regions, where the scarcity 
of resources occurs at a high extent, pearl millet has been 
reported as a high-quality fodder crop with good biomass 
production compared to other cereal fodder crops (Burton 
et al. 1966; Miller 1984; Skerman et al. 1990; Sedivec et al. 
1991; Yadav and Bidinger 2008). Various traits have a direct 
or indirect effect on the quality and biomass of fodder (Min-
son et al. 1990), and fortunately, many of them are posi-
tively correlated with each other. Based on the observation 
methods and their relation, different fodder-related traits are 
categorized into two broad categories viz., biomass-related 
traits observed morphologically and quality-related traits 
estimated through biochemical analysis. These traits should 
be targeted for increasing crop production per unit area for 
developing high-yielding and quality fodder pearl millet 
varieties/hybrids by exploiting the available potential in the 
pearl millet gene pool.

Biomass-related traits:
In the case of pearl millet, there are two plant types, both 

of which are utilized as fodder. Firstly, dwarf cultivars pro-
duce a high proportion of leaves with more tillers and yield 
lower biomass. Despite this, they are suitable for grazing 
and are primarily used for cattle in the South-east US. In 
contrast, the second type possesses taller plant height with 
few tillers, thick stems and yields higher. It is mainly utilized 
for fodder, silage and as a dual purpose for both grain and 
stover (Hancock et al. 2009; Upadhaya et al. 2018; Yadav 
et al. 2010; Harinarayana et al. 2005).

In various studies, a significant amount of variability 
has been observed in different biomass-related traits. For 
instance, biomass yield ranged from 138.35–1080 quintals/
hectares under normal growing conditions when harvesting 
was done at 50% heading, plant height (49–442.3 cm), the 
numbers of tillers/plant (1–9.3), stem girth (5–31.2 mm), 
number of leaves (4.3–37), leaf length (19.3–130 cm) and 
leaf width (1.1–8.6 cm) (Khairwal et al. 2007; Kulkarni 
et al. 2000; Arya et al. 2009; 2010). Hence, it is evident 
that pearl millet possesses similar green fodder yield poten-
tial as other fodder crops. Thus, by improving specific traits 
related to green fodder yield, biomass production per unit 
area can be enhance. (Dhedhi et al. 2015; Hassan et al. 
2014; Kumar et al. 1989; Sheahan et al. 2014; Beniwal et al. 
2009). Therefore, to enhance biomass production, targeted 
traits should be selected based on the specific plant type-
mentioned above. For the short stature plant type, greater 
emphasis should be placed on increasing the leaf and stem 
ratio compared to other traits. For main plant type, all traits 
correlated with biomass production need to be taken into 
consideration before initiating a crop improvement program, 
such as tillers/plant, plant height, number of leaves, stem 
girth, leaf length and breadth, number of internodes, total 
leaf and stem weight.
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Quality‑related traits

Lower acid detergent fibre (ADF) and neutral detergent fibre 
(NDF) percentage, along with higher Crude Protein (CP) 
and digestibility, are desirable quality traits which favour 
high intake by animals and further increase the assimila-
tion of energy minerals and vitamins (Minson et al. 1990). 
In Vitro Organic Matter Digestibility (IVOMD) is vital for 
animal production, as a 1% increase in IVOMD can lead 
to a 6–8% increase in animal productivity (Kristjianson 
and Zerbini 1999). In pearl millet, a significant amount of 
variation has been observed for NDF (52%—65%) and CP 
(7%–11%) (Hancock et al. 2009; Hassan et al. 2014; Ward 
et al. 2001). In another investigation by Rai et al. (2012), 
variability analysis in pearl millet forage hybrids was per-
formed, reporting a good range for IVOMD (56.3–61.2%) 
and metabolizable energy (8.08–8.63 MJ/kg). The leaf-
to-stem ratio is a morphological indicator for lower lignin 
content and greater CP and digestibility. Compared to other 
cereal fodder crops, pearl millet has a favourable leaf-to-
stem ratio of 1.5, which is more than sorghum (0.92) and 
corn (0.72) (Harinarayana et al. 2005; Kumar et al. 1989; 
Jahansouz et al. 2014).

Brown midrib (bmr) is another visible marker that shows 
association with a low lignin content of the cell wall and 
expresses brown colouration in the midveins of leaves. 
Lignin is an indigestible phenolic polymer that increases 
when secondary cell wall deposition occurs at maturity and 
prevents the decomposition of microbes from doing their 
digestion work in the rumen (Miller and Stroup 2003; Here-
dia et al. 1995; Somerville et al. 2006). bmr mutants have 
low lignin content due to inhibition of one of the enzymatic 
reactions (Satller et al. 2010). However, bmr mutants have a 
negative correlation with biomass yield reducing green fod-
der yield by up to half, and genetic improvement is under-
way to overcome this problem (Cherney et al. 1991; Bean 
et al. 2013). The yield penalty imposed by bmr mutants can 
be reduced up to 25% using a higher seed rate (Hassanat 
et al. 2007).

Genetic studies for different quality and biomass-related 
traits have shown a correlation between these traits. For 
instance, a study by Govintharaj et al. (2018) suggests that 
direct selection for ME could enhance IVOMD. The study 
further recommends focusing breeding efforts on targeting 
traits such as total green fodder yield, PH, ME and CP traits 
to improve dry fodder yield and IVOMD. In dwarf types, 
d2 is gene found responsible for dwarf height. It can reduce 
the height by 50% and increase leafiness and fodder quality 
(Burton et al. 1966). The tr gene removes trichomes and 
helps in reducing transpiration, stimulating drought toler-
ance and increasing palatability and resistance to insect 
pests (Burton 1977). Both the d2 and tr genes are qualita-
tive, making dwarf plant types a good option for directly 

improving desirable quality traits. However, fodder yield is 
also essential to meet the minimum fodder needs of animals; 
therefore, the mapping genes governing quality and biomass 
traits could help improve both simultaneously.

Cultivar development chronology

Crop improvement in pearl millet began in the 1930s when 
Dr Glenn W. Burton initiated research at Tifton, USA. His 
pioneering work paved the way for worldwide pearl mil-
let breeding, with a focus on developing improved fodder 
cultivars. He studied the genetics of key traits and evalu-
ated germplasm, aiming to increase the leaf-to-stem ratio 
using dwarfing genes. In addition, he developed the widely 
used Cytoplasmic Male Sterility (CMS) source (A1) (Burton 
and Forston 1966; Burton and Athwal 1969; Andrews et al. 
1993). These findings from Tifton influenced pearl millet 
improvement efforts in India and Africa.

Pearl millet is primarily grown in India and African 
countries. Following Dr Glenn W. Burton’s initial contri-
butions to the crop, much of the improvement work was 
carried out in India by the Indian Council of Agricultural 
Research (ICAR). ICAR began pearl millet breeding in the 
1940s, marking the first phase of pearl millet improvement. 
The focus during this phase was on increasing grain yield 
through mass selection of locally adapted cultivars (Singh 
et al. 2014).

The first forage hybrid, ‘Gahi 1’ was released in 1958. 
It was derived from four inbred lines (12, 18, 23, and 26) 
at Tifton and outperformed cultivars improved by direct 
or mass selection, dominating forage yield for many years 
(Burton 1962, 1983). Hybrid breeding for pearl millet in 
India gained momentum after the 1960s. Although ‘chance 
hybrids’ involving multiple lines were already in cultiva-
tion, they were not adopted by farmers due to minimal or 
no improvement compared to open-pollinated cultivars 
(Andrews and Kumar 1996). Breeding for cultivar develop-
ment in India advanced significantly with the establishment 
of the All India Coordinated Pearl Millet Improvement Pro-
gramme (AICPMIP) in 1965. This programme played a sig-
nificant role in crop improvement, plant protection and pro-
duction practices. The Indian grassland and fodder research 
institute, Jhansi focused on forage pearl millet, evaluating 
entries from different centres across India in different eco-
logical zones. Based on performance, varieties/hybrids are 
identified for release at the National level (Table 1).

The second phase of pearl millet breeding in India began 
after the introduction of CMS lines from the US. The acci-
dental discovery of the CMS line Tift 23A by Dr. Glenn 
W. Burton in 1956 marked a transformative moment in 
pearl millet improvement. This breakthrough overcame the 
obstacles in labour and time required for emasculation and 
pollination. The first grain hybrid, ‘HB 1,’ was developed 



Theoretical and Applied Genetics (2024) 137:169	 Page 5 of 23  169

in 1965 at PAU, Ludhiana, India. This hybrid yielded 88% 
more than the best local cultivars (Athwal 1965a). This revo-
lutionized grain production, increasing from 3.5 teragrams 
in 1965 to 8 teragrams in 1970 (Burton 1983). In 1972, the 
first fodder hybrid, ‘Gahi 3,’ based on the CMS system, was 
developed. It demonstrated greater weight gain in animals 
and 10 to 19% increase in dry matter than ‘Gahi 1’ (Bur-
ton and Wilson 1995). Subsequent forage hybrids such as 
Tifleaf 1, 2, and 3, which also utilized the A1 CMS source, 
were released in later years (Burton 1980; Hanna et al. 1988, 
1997, respectively).

After the inclusion of CMS lines in breeding programs, 
improved cultivars became widespread in India and the US 
(Yadav et al. 2012). However, continuous incidences of 
downy mildew in hybrids derived from Tift23A led to the 
discontinuation of hybrid development programme based 
on A1 cytoplasm. In the third phase of pearl millet breeding 
in India, alternate CMS seed parents were developed from 
A1 CMS source through mutation breeding at the Indian 
Agricultural Research Institute (IARI). Hybrid breeding 
regained prominence in the 1980s, leading to higher genetic 
gain (Singh et al. 2014). Following this, many hybrids were 
developed using alternative seed parents based on A1 cyto-
plasm, such as BJ104 and BK560, which were widely culti-
vated from 1977–1984. However, phased out when the inci-
dence of downy mildew occurred and the same happened 
with other hybrids developed by Haryana Agricultural Uni-
versity, Haryana. The vulnerability of A1-based hybrids was 
attributed to the use of parents having narrow genetic base 
derived from the same sources (Yadav et al. 1993; Rai et al. 
1995; Rai et al. 1996). During this period, the International 
Crop Research Institute of Semi-Arid Tropics (ICRISAT) 
was established in 1972 and began OPVs-based breeding 
and succeeded in the diversification of seed parents (Kumara 
et al. 2014).

Between the third and fourth phases of pearl millet 
improvement, various CMS sources, such as A1, A2, A3, 
A4, A5, Av, Aegp were identified. In India, 167 hybrids and 
61 varieties have been released primarily using A1 and A4 

CMS sources, which are cultivated in diverse environments 
(Satyavathi et al. 2021). However, African farmers prefer 
OPVs and three-way hybrids for their economic feasibility 
and resistance to biotic and abiotic stresses. Another rea-
son for preference given to top cross hybrids over single 
crosses in forage millet is due to their broad genetic base 
and intervarietal maintenance of heterogeneity, making 
them less vulnerable to stresses (Haussmann et al. 2012; 
Kumara et al. 2014). The combining ability evaluation of 
population hybrids in African tropics, highlights the poten-
tial for increased genetic gains in West Africa in the future 
(Ouenbeda et al. 1993; Pucher et al. 2016). Therefore, future 
efforts to achieve more genetic gains, both in quality and 
yield, may require a combination of conventional and new 
biotechnology approaches, such as marker-assisted breed-
ing and Genomic selection to improve and develop fodder 
cultivars.

Due to the high level of heterosis, the private sector is 
involved on a large scale in hybrid production. Many high-
yielding grain and fodder hybrids are developed by both 
the public and private sectors. In the year 2000, ICRISAT’s 
Hybrid Parents Research Consortium collaborated with pri-
vate Sector seed companies in India and abroad to deliver 
improved hybrids and varieties to underprivileged farmers. 
They improved hybrid parents for sweet stalk traits for bio-
fuel and single cut forages and identified high green biomass 
breeding lines, germplasm and cultivars. A total of 60–70% 
of pearl millet hybrids grown in India are based on ICRI-
SAT-bred A-lines or on proprietary A-lines developed from 
improved lines bred at ICRISAT (Rao et al. 2018). Farmers 
in both India and the US prefer high-quality seeds for fodder 
cultivation to obtain quality fodder and high biomass. How-
ever, in African nations, farmers struggle to afford improved 
seeds due to their high cost and the lack of an efficient seed 
supply chain. The role of government is crucial in formulat-
ing seed policies in the tropics to ensure farmers receive high 
standard, pure seed (Prasanna et al. 2020). The development 
of improved cultivars for single and multi-cut fodder can 
be achieved by selecting lines from diverse heterotic pools 
for hybrid development through crossing and by employ-
ing CMS system. Additionally, population improvement of 
promising inbred lines can be achieved using various recur-
rent selection methods to develop open-pollinated varieties 
(Fig. 2).

Breeding interspecific hybrids

Wild relatives of cultivated species serve as reservoirs for 
desirable genes such as disease resistance, yield increase 
and various forage-related traits (Hanna et al. 1987). The 
genetic diversity within the genus Pennisetum is classified 
into three groups viz., primary, secondary and tertiary gene 
pools, based on Harlan and De Wet (1971). At ICRISAT, 

Table 1   Nutrient composition of forage pearl millet comparative to 
forage sorghum and corn silage

NDF neutral detergent fibre; ADF acid detergent fibre; CP crude pro-
tein

Nutrient compo-
sition

Forage pearl 
millet (g/kg dry 
matter)

Corn (g/kg 
dry matter)

Forage sorghum 
(g/kg dry matter)

NDF 580–685 540 605
ADF 313–425 295 379
Lignin 35–63 49 83
CP 90–180 86 133
Digestibility 640–690 730 630



	 Theoretical and Applied Genetics (2024) 137:169169  Page 6 of 23

140 species of the genus Pennisetum are conserved, contrib-
uting to crop improvement by transferring desirable traits 
from wild relatives to elite lines (Andrews and Kumar 1996; 
Serba et al. 2017). Cross-compatibility and homeologous 
pairing of haploid chromosomes after fertilization, catego-
rize species into three gene pools. The primary gene pool 
includes cultivated, weedy and wild diploids with chro-
mosome number (2n = 2x = 14). The secondary gene pool 
comprises tetraploid species with (2n = 4x = 28) such as P. 
purpureum Schum. The tertiary gene pool encompasses wild 
species with different ploidy levels (Dujardin and Hanna 
1989). It is difficult to make a cross and transfer genes from 
tertiary to primary species due to limited homology. Bridge 
species with intermediate ploidy levels are required to over-
come pre fertilization barriers between non-crossable spe-
cies (Hanna et al. 2010).

The wild species P. glaucum subsp. monodii from the 
primary gene pool is a source of A4 cytoplasm, which is 
resistant to many diseases. It is now widely used as a source 
for hybrid seed production (Hanna et al. 1989) and also leads 
the way to cytoplasmic diversity from A1 based hybrids. The 
species belonging to the secondary gene pool are reservoirs 
of fodder-related traits that might provide valuable genes 
for fodder quality and biomass production. One of the most 
famous fodder interspecific hybrids between cultivated Pen-
nisetum glaucum (2n = 2x = 14) X P. purpureum Schum (also 
known as Napier grass) (2n = 4x = 28) known as Napier bajra 
hybrid is cultivated widely. The F1 produced after cross-
ing both species is always sterile due to triploidy. After 

development, it is easily propagated using stem cuttings, 
making it suitable for perennial fodder cultivation (Jauhar 
et al. 1998). The resultant fodder hybrid combines the for-
age quality of cultivated pearl millet with dry matter and 
biomass production of Napier grass. Napier hybrid has good 
regenerative ability, green fodder yield, leaf-to-stem ratio 
and high forage quality with no anti-nutritional components. 
It can be grown in various soil types and cultivation systems, 
including mixed, relay and intercropping. The Napier hybrid 
also provides biological pest management strategy against 
stem borer (Coniesta ignefusalis) in maize and pearl millet 
cultivation through the pull–push strategy, attracting moths 
toward themselves and away from other crops (Khan et al. 
2007).

In the tertiary gene pool, several species having multi-
disease resistance, forage quality and apomixes genes are 
present. P. pedicellutum trin (Deenanath grass) and P. poly-
stachianh. schult (Mission grass) species have downy mil-
dew resistance genes along with fodder quality and biomass 
traits. Species, P. orientale and P. ciliare, are reservoirs 
of drought tolerance, fodder and apomixes traits (Hanna 
et al. 1982). P. squamulatum has winter hardiness genes. 
These desirable traits can be incorporated into elite pearl 
millet lines using bridge species or various biotechnologi-
cal approaches, such as tissue culture, to overcome pre and 
post-fertilization barriers. A combination of conventional 
and marker-assisted breeding could aid in overcoming the 
challenges posed by distinct gene pools with no or less 
homology.

Fig. 2   Hybrid and open-pollinated variety (OPV) development approaches for pearl millet. IVT- Initial varietal trial: AVT- Advanced varietal 
trials: IHT- Initial hybrid trials: AHT- Advanced varietal trials
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Cytoplasmic male sterility systems

Cytoplasmic male sterility (CMS) is maternally governed 
and is characterized by the failure of anthers to produce 
viable or functional pollen, whereas the development of 
stigma is normal. This is based on an interaction between 
nuclear and cytoplasmic genes, in which nuclear Rf genes 
act as fertility restoration of the sterile parent after cross-
ing and maintenance is done by isonucleic male fertile 
line. In pearl millet, the first A1 CMS-based line was 
widely used for hybrid seed production. Therefore, efforts 
were made to discover alternative CMS sources and that 
process led to the identification of two alternative CMS 
sources A2 and A3 from genetic stocks and their deriva-
tives (Athwal 1961, 1965a). Additional CMS sources Av 
and A4 were discovered from wild species in the primary 
gene pool of P. glaucum sbsp. monodii (Marchais et al. 
1985; Hanna 1989). Two more CMS sources Aegp and 
A5 from gene pools were also identified from cultivated 
species (Sujata et al. 1994; Rai et al. 1995).

CMS sources A1, A4, Av, A5 and Aegp were crossed 
with common fertility restorers and resulting hybrids 
derived from these crosses showed the differential male 
fertility restoration pattern, providing their distinctness 
as different CMS sources. These CMS sources were fur-
ther categorized based on their commercial viability by 
comparing them based on stability, character association 
and frequency of maintainers, and these all factors are 
responsible for their breeding efficacy as a seed par-
ent (Rai et al. 1995; Rai et al. 1996, 2009; Yadav 1996; 
Yadav et al. 2012). Inheritance of fertility restoration in 
A4 CMS system was studied by Gupta et al. (2012) report-
ing dominant monogenic inheritance of the Rf gene. Simi-
lar results were reported in an advanced study on gene 
mapping of Rf. Maintainer loci of A4 CMS system using 
an F2 population 138 plants showed the same monogenic 
segregation pattern of 3:1 (Pucher et al. 2016).

Am (m = P. glaucum subsp. monodii) = A4 CMS system 
produces the highest frequency of hybrids and is good 
for hybrid seed production. A4 and A5 both are very good 
sources of CMS due to their stability. As pollen shed-
ding in A5 CMS is very low compared to all other CMS 
sources and maintenance frequency is high, due to the 
problem of fertility restorers, it could not be used at large 
scale for grain hybrid production. Nevertheless, it can be 
used for forage hybrid production due to its easy main-
tenance with high frequency (Rai 1995). A4 CMS is now 
widely used for hybrid seed production for both grain and 
fodder in the African tropics and India due to the avail-
ability of good amount of fertility restorers.

Generation of genetic and genomic 
resources for forage improvement

Genetic resources

The availability of genomic resources is crucial for 
advancing crop improvement in response to changing 
climates. The foundation of crop development relies on 
the accessibility and generation of genetic resources, that 
are essential for identifying regions that control desirable 
agronomic and economic traits. The availability of vari-
ability for targeted traits is a prerequisite for the develop-
ment of genomic resources. Fortunately, pearl millet, with 
its cross pollination nature and adaptation to adverse con-
ditions, possesses a significant amount of genetic diversity 
for various traits (Upadhaya et al. 2007).

In the case of pearl millet, several National and Inter-
national Institutes have been involved for many years, 
resulting in 66,682 accessions globally available acces-
sions. ICRISAT hold a major share with ~ 21,594 acces-
sions from 51 countries (Singh and Upadhaya 2016). 
ICRISAT’s Core and mini core collections are utilized for 
allele mining studies, identifying loci governing various 
agronomic traits, biotic and abiotic stress resistance for the 
improvement of cultivars (Srivastava et al. 2020). Other 
gene banks, such as the Institute of Research and Develop-
ment (IRD, France), Canadian Genetic Resources (Saska-
toon, Canada) and US Germplasm Resource Information 
Network (GRIN), also house substantial genetic resources 
(Yadav 2007).

Upadhaya et al. (2018) had conducted an investigation 
which illustrates the pearl millet gene pool’s variability 
for fodder traits and its stability in various agroecolo-
gies. They evaluated 326 inbred lines of pearl millet and 
reported a significant genotype x environment interac-
tion. In longer rainy season days, late maturity, tall plant 
height and thick stems having long and broad leaves 
were observed; however, in post rainy season, antagonis-
tic results were reported. Yadav et al. (2018) character-
ized pearl millet germplasm for grain and fodder. They 
found that landraces from lower-latitude regions (below 
20 degrees north and south) mature later, grow taller and 
have high tillering, making them more suitable for fod-
der production. Hybrid parents evaluated by Govintharaj 
et al. (2017) showed significant differences in forage traits 
such as plant height, green forage yield, dry forage yield 
and crude protein, indicating notable genetic variation. 
The greater genetic diversity was observed in pollinator 
parents by Ponnaiah et al. (2019), suggesting the poten-
tial for breeding high-quality, high-yielding hybrids for 
improved forage traits. Gupta et al. (2022) reported a sig-
nificant differences for total green and dry forage yields, 
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as well as key forage quality traits across cuts. Three-way 
top cross hybrids outperformed other cultivars, offering 
superior yields and quality traits, making them preferable 
for smallholder farmers and seed companies. In summary, 
these studies highlight the genetic diversity and potential 
for breeding high-quality pearl millet hybrids for improved 
grain and fodder production.

At ICRISAT, the Pearl Millet Inbred Germplasm Associa-
tion Panel (PMiGAP) was developed, representing global 
diversity, comprises 346 lines, represents diverse cultivars, 
landraces and mapping population parents from 27 coun-
tries and re-sequenced using the whole genome resequenc-
ing (WGRS) approach. It has a repository of circa 29 mil-
lion genome-wide single nucleotide polymorphisms (SNPs). 
From this panel, 45 diverse lines were used to develop the 
RIL mapping populations, and these RILs have been used 
for mapping different traits viz., drought tolerance, grain 
Fe and Zn content, nitrogen use efficiency, components of 
endosperm starch, grain yield, etc. (Srivastava et al. 2020). 
These genetic resources could also be valuable for devel-
oping genomic resources for fodder quality and biomass-
related traits in pearl millet.

Genomic resources

The genome sequencing of pearl millet (Varshney et al. 
2017) has opened a way to tap on its broad genetic diversity 
to breed varieties and hybrids for future needs. This enables 
the characterization of germplasm and mapping of function-
ally important genes associated with diverse traits for numer-
ous individuals simultaneously (Mogga et al. 2018). The 
multiplexing approach, genotyping by sequencing (GBS), 
has emerged as a promising method for molecular marker 
discovery and genetic diversity analysis. It is considered 
as a cost-effective tool for QTL discovery, high resolution 
mapping, genomic selection and genome-wide association 
mapping for complex traits in crop improvement (Elshire 
et al. 2011; Sânchez-Sevilla et al. 2015). The advent of these 
genomic techniques has reduced genotyping costs, leading 
to a substantial allocation of project budgets to phenotyp-
ing, precise phenotyping of a large number of individuals is 
crucial for dissecting complex traits (Hall et al. 2010).

By combination of conventional methods and bioinfor-
matics tools facilitates the use of sequencing data for deci-
phering the mechanism behind the targeted traits and their 
functional studies. In pearl millet, various omics tools are 
widely applied for morphological, quality, biotic and abi-
otic stress improvement. However, the utilization of these 
tools for fodder traits is rare, with only a few reported cases. 
This indicates a significant opportunity for applying these 
tools to generate resources for fodder improvement. In plant 
sciences, various techniques are available for uncovering 
genomic regions responsible for traits, each tools varies in 

its capacity of resolution; however, each has its pros and 
cons which are discussed as under:

QTL mapping (traditional mapping using biparental 
population)

Compared to other cereal crops, there are limited reports 
on the development and application of molecular markers 
in pearl millet. The first linkage map for pearl millet was 
developed in 1994 by Liu et al. (1994), utilizing a bi-paren-
tal mapping population consisting of 132 F2 plants. They 
employed restriction fragment length polymorphic (RFLP) 
markers and successfully placed 181 markers on seven link-
age groups, covering a map length of 303 cM. Before this, 
Smith et al. (1993) had developed RFLP and random ampli-
fied polymorphic DNA (RAPD) genetic markers to char-
acterize the pearl millet genome. Their linkage analyses 
revealed 64 markers linked to QTLs associated with various 
plant traits. These QTL-linked markers laid the foundation 
for genetic study on important biomass/forage productivity 
and quality traits.

The traditional QTL mapping technique is extensively 
employed in various cereal fodder crops (Table 2). In pearl 
millet, QTLs related to various traits were mapped using 
biparental mapping populations; however, no investigation 
to date has been reported for the mapping of green fodder 
quality- and biomass-related traits. Several RIL mapping 
populations in pearl millet, developed by selecting contrast-
ing parents for different traits, have been utilized for map-
ping. For instance, Yadav et al. (2002) used a segregating 
population from a cross between two early maturing pearl 
millet inbred lines to construct linkage map. They identi-
fied QTLs related to grain and stover yield under terminal 
drought stress conditions, reporting significant variation. 
The resulting linkage map consisted of 50 markers covering 
seven linkage groups (LGs) with a genetic map length of 
352 cM. Subsequent investigations by Yadav et al. (2003) 
utilized the same genetic linkage map to map and character-
ize QTL × environment (E) interactions for traits determin-
ing grain and stover yield. They detected three classes of 
QTLs viz., QTLs associated with genotypic effects for grain 
and biomass yield on linkage group 4, the second class asso-
ciated with G × E interaction mapped on LG 5 for flowering 
time and harvest index on LG 2 and 4. The third type cov-
ered the majority of traits, and many QTLs were mapped for 
this category which are associated with G and G × E effects. 
Nepolean et al. (2006) used a set of F2 derived self-bulk 
progenies of pearl millet to map drought tolerant and stover 
quality QTLs, identified three QTLs distributed across LG 
3, 4 and 5, also introgression was carried for four parental 
lines of existing hybrids.

This pattern of limited investigations on QTL mapping 
for different fodder-related traits is observed in other major 
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Table 2   Details of mapping studies for forage quality and biomass-related traits in various fodder crops

Crop Traits PVE (%) No. of QTL/ SNP References

Pearl millet Flowering time, stover yield, biomass yield, harvest 
index

11.4–38.1 12 Yadav et al. 2002

Flowering time, stover yield, biomass yield, harvest 
index

13 Yadav et al. 2003

Flowering time, plant height 22.9–39.8 19 Kumar et al. 2017
IVOMD, ME, dry stover yield, nitrogen dry matter 8.5–26 14 Nepolean et al. 2006
IVOMD, CP 11 Govintharaj et al. 2021

Alfalfa Biomass production 41 Robins et al. 2007a
Fodder yield, plant height and forage regrowth 11–44 86 Robins et al. 2007b
Fodder quality and stem histology 86 Espinoza and Julier 2013
Fodder yield, lodging resistance, spring vigour 9.4–27.9 6 McCord et al. 2014
Forage biomass productivity under drought 2.8–8.1 Ray et al. 2015
Biomass yield, acid detergent fibre, acid detergent 

lignin, neutral detergent fibre and stem composition
2–6 17 Li et al. 2011

Lignin biosynthesis genes, acid detergent fibre, 
Neutral detergent fibre, acid detergent lignin, plant 
height and biomass yield

7 Sakiroglu et al. 2012

Spring yield and cumulative summer biomass 23 Adhikari et al. 2019
Biomass yield under drought (greenhouse) 19 Zhang et al. 2015
Neutral detergent fibre, acid detergent fibre, neutral 

detergent fibre digestibility and leaf/stem ratio
10–20.2 83 Biazzi et al. 2017

Forage quality traits 2.48–9.66 124 Wang et al. 2016a
Crude protein, mineral concentration 2.1–4.09 2–8 Jia et al. 2017
Biomass yield (drought in field conditions) 7–32 Yu 2017
Biomass 8–38 42 Liu and Yu 2017
Forage yield, nutritive value 65 Sakiroglu and Brummer 2017

Soybean Shoot fresh weight, shoot dry weight and shoot fresh 
weight/ shoot dry weight

12–34 10 Brensha et al. 2012

Shoot fresh weight 6.6–21.3 3 Asekova et al. 2016b
Crude protein neutral detergent fibre and acid deter-

gent fibre
6.6–21.3 16 Asekova et al. 2016a

Maize Crude protein and in vitro organic matter digestibility 30 In exp 1 Lubberstedt et al. 1997
26 in exp 2

Neutral detergent fibre, acid detergent fibre and 
in vitro organic matter digestibility

4.2–6.2 56 Wang et al. 2016a, b

Crude protein 7.5–13.6 4 Barrière et al. 2001
Cell wall and digestibility 34 Barrière et al. 2007
Digestibility 3–18 6 Bohn et al. 2000
Neutral detergent fibre, acid detergent fibre and acid 

detergent lignin
45–66 26 Cardinal et al. 2003

Cell wall and digestibility 10 Fontaine and Briand et al. 2003
Cell wall 17 Krakowsky et al. 2003
Cell wall 71 13 Krakowsky et al. 2005
Neutral detergent fibre and acid detergent fibre 25–58 24 Krakowsky et al. 2006
Neutral detergent fibre, acid detergent lignin and 

in vitro organic matter digestibility
7.6–13.5 13 Méchin et al. 2001

digestibility 3 Papst et al. 2001
Neutral detergent fibre, acid detergent lignin 7.7–26.7 6 Riboulet et al. 2008
Cell wall and digestibility 6.7–27.7 37 Roussel et al. 2002
Cell wall 25–47.4 47 Li et al. 2017
Neutral detergent fibre, acid detergent fibre 10–41 20 Wang et al. 2020
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fodder crops as well. In Medicago truncatula, Lagunes et al. 
(2013) utilized four connected mapping populations for QTL 
mapping of fodder quality and identified 86 QTLs across the 
years. In sorghum, Somegowda et al. (2022) investigated 
mapping QTLs related to fodder quality in terminal drought 
stress environment. These studies collectively highlight the 
efficacy of mapping populations in QTL mapping studies 
for various traits. While various biparental populations are 
available for mapping, however, RILs carried a broad spec-
trum of variability arising from recombination events that 
occur in F2, providing an opportunity for multilocation phe-
notypic analysis essential for precise mapping of quantitative 
traits influenced by the environment. Therefore, the utiliza-
tion of such an immortal population coupled with precise 
phenotyping and high-quality genotyping holds the potential 
for fruitful outcomes.

Genome‑wide association mapping

Genome-wide association studies (GWASs) are an approach 
for studying associations between a genome-wide set of 
markers and desired phenotypic traits. This quantitative 
evaluation relies on the non-random association of alleles 
at different loci (Flint-Garcia et al. 2003; Uffelmann et al. 
2021). The genotyping process involves utilizing densely 
distributed markers across the entire genome to analyse a 
panel collected in a manner that encompasses all alleles 
within the gene pool, contributing to the observed traits. 
Phenotypic data, along with various covariates, are incorpo-
rated for statistical analysis, aiming to identify associations 
between markers and traits.

Several studies have been conducted in pearl mil-
let to map various traits using genome-wide association 
mapping approach. These traits include grain iron, zinc 
and protein content, flowering, starch contributing to 
low glycaemic index and metabolite diversity related to 
nutritional traits and drought tolerance (Anuradha et al. 
2017; Pujar et al. 2020; Diack et al. 2020; Yadav et al. 
2021a,b; Sehgal et al. 2015; Varshney et al. 2017; Debieu 

et al. 2018). Recently, Govintharaj et al. (2021) conducted 
GWAS for fodder quality and biomass using three different 
sets of populations: set-I (80 single cross hybrids), set-II 
(50 top cross hybrids) and set-III (105 forage type hybrid 
parents) and evaluated at multiple locations for total dry 
fodder yield, IVOMD and CP. Their findings revealed a 
stable SNP on LG4 and nine SNPs for IVOMD distributed 
across all linkage groups except LG2. Additionally, they 
identified one gene each for crude protein at the first and 
second cuts, along with six candidate genes at the first 
cut and three at the second cut for digestibility. To date, 
this is the sole investigation in pearl millet conducted for 
fodder-related traits. These findings still require further 
validation for the utilization in breeding programmes for 
improvement of fodder quality and quantity.

Overall, research on fodder-related traits is significantly 
behind other traits. This gap requires urgent attention, par-
ticularly with the continuous increase in livestock. Other 
crops have seen a few reports utilizing GWAS and the 
development of gene-based functional markers for crop 
improvement of traits. Such as, in sorghum, Xia et al. 
(2018) conducted a GWAS analysis across 694 diverse 
sorghum inbreds, revealing an association between zinc 
finger homeodomain (ZF-HD) and midrib colour varia-
tion. Another study genotyped 245 sorghum accessions 
with 85,585 SNPs and identified 42 SNPs associated with 
five forage quality traits, including a concurrent associ-
ation of CP, ADF and NDF (Li et al. 2018). Similarly, 
in Bermunda, grass (Gitau et al. 2017), maize (Vinayan 
et al. 2013; Wang et al. 2016a, b) and alfalfa (Li et al. 
2011) studies have been conducted. Biazzi et al. (2017) 
observed differential genetic control in the leaf and stem 
of alfalfa. All these studies aimed at dissecting the genetic 
architecture of fodder quality and biomass-related traits, 
contributing to the development of genomic resources for 
enhancing targeted traits. Therefore, adopting modern 
genomic approaches with proper knowledge and expertise 
can overcome the limitations of conventional approaches 
ultimately increasing the genetic gains.

PVE phenotypic variation, QTL quantitative trait loci, SNP single nucleotide polymorphism

Table 2   (continued)

Crop Traits PVE (%) No. of QTL/ SNP References

Wheat Neutral detergent fibre, acid detergent lignin, in vitro 
organic matter digestibility, metabolizable energy 
ash and acid detergent lignin

1–17 Joshi et al. 2019

Sorghum Neutral detergent fibre, acid detergent lignin, in vitro 
organic matter digestibility, metabolizable energy 
ash and acid detergent lignin

5.15–15.34 296 in different environments Somegowda et al. 2022

Neutral detergent fibre, acid detergent lignin, hemi-
cellulose, crude lignin and crude protein

0.28–10.58 43 Li et al. 2018
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Genomic selection (GS)

The availability of cost-effective, high throughput molec-
ular markers and robust SNP genotyping platforms has 
paved the way for genomic selection, even in orphan crops 
where research always lags (Bhat et al. 2016). Initially, 
the genomic selection approach aimed to predict com-
plex traits in animals and plants (Meuwissen et al. 2001). 
Recently adopted in breeding, several investigations have 
reported better genetic gain per year compared to con-
ventional breeding approaches. Marker-assisted selection 
(MAS) and GS are marker-assisted breeding approaches 
used for crop improvement; however, MAS is often con-
sidered an inferior method due to the utilization of molec-
ular markers developed from linkage QTL mapping and 
GWAS, which may be biased toward minor QTLs. Only 
QTLs which explain a significant percentage of pheno-
typic variance are deemed useful for selection (Zhao et al. 
2014). GS is an approach that overcomes these obstacles, 
enabling efficient and rapid crop improvement. The poten-
tial of GS has been demonstrated in various studies (Das 
et al. 2020; Shikha et al. 2017; Das et al. 2020; Heffner 
et al. 2009; Zhong et al. 2009; Crossa et al. 2010; Ornella 
et al. 2012; Poland et al. 2012; Spindel et al. 2015; Muleta 
et al. 2019).

In pearl millet, GS has been adopted to predict grain 
yield for test crosses in various environments. Varshney 
et al. (2017) utilized WGRS data for GS and achieved high 
prediction accuracies of 0.6 in all environments. Further-
more, the GS strategy was employed to analyse grain yield 
data with 3,02,110 SNPs to predict hybrid performance. 
Out of the 170 promising hybrid combinations detected, 11 
were already reported to be used for hybrid production. 
However, in pearl millet, GS has not been applied for fod-
der improvement due to resource constraints. Nevertheless, 
reports exist in other crop species. For instance, in alfalfa, 
Biazzi et al. (2017) used 154 genotypes from a broadly 
based reference population, genotyped them using a GBS 
approach, and employed 11,450 polymorphic SNP markers 
for GS with three prediction models. All three models have 
provided similar selection accuracies ranging from 0.3 to 
0.4. Notably, compared to morphological traits, accuracy 
was reported to be higher for the quality-related traits. The 
findings from these experiments collectively demonstrate 
the efficiency of GS in comparison with other selection 
techniques in improving fodder-related traits within a short 
duration. According to simulations and empirical studies, 
genomic selection proves to be more effective than tradi-
tional phenotypic selection, resulting in larger gains per 
unit of time. The incorporation of genomic selection into 
current pearl millet breeding programmes will undoubt-
edly enhance selection efficiency and yield greater genetic 
gains (Kapoor et al. 2022).

Transcriptomics

In the era of omics, transcriptomics has become the main-
stream approach for expression profiling in crop plants. 
Using RNA-Seq analysis, differentially expressed genes at 
various stages in different tissues can be identified. In pearl 
millet, numerous studies have been conducted using this 
approach to decipher the mechanism behind various traits 
and genes involved in their expression, such as drought tol-
erance (Jaiswal et al. 2018; Dudhate et al. 2018; Sun et al. 
2020; Shivhare et al. 2020; Ji et al. 2021; Ndiaye et al. 2022; 
Reddy et al. 2022), heat stress (Sun et al. 2021; Yan et al. 
2023), salt stress (Shinde et al. 2018; Khan et al. 2023), 
downy mildew (Kulkarni et al. 2016) and iron and zinc 
(Mahendrakar et al. 2020; Satyavathi et al. 2022).

In pearl millet, and even in other major fodder crops, 
no report is available where the identification of candidate 
genes for fodder quality through gene expression analysis or 
transcriptomics has been conducted. However, there is wide 
scope for this approach to be used in the future for identify-
ing fodder-related traits in pearl millet. In the current era 
of information technology, which provides vast amounts of 
data at different omics levels such as genome, transcriptom-
ics and proteomics may be harnessed using various bioin-
formatics tools to develop genomic resources. Additionally, 
the homology existing between different species can be 
exploited to transfer information generated in one species 
to another. Therefore, the integrated approach of breeding, 
biotechnology and bioinformatics will assist in efficiently 
and precisely generating genetic and genomic resources for 
crop improvement. In conclusion, the potential of using gene 
expression analysis and bioinformatics tools in identifying 
candidate genes for fodder quality in pearl millet and other 
fodder crops is considerable, marking a promising avenue 
for future research and crop enhancement.

Other traits for forage quality improvement

The brown midrib (Bmr)

The brown midrib (bmr) mutants, occurring naturally in cer-
tain plant species, improve the digestibility of fodder and 
quality traits, except crude protein. They are considered to 
be one approach for favourably changing the quantity and 
quality of lignin (Cherney et al. 1991). The bmr mutants 
have lower lignin content in leaves and stems and can be 
distinguished easily from wild types due to their tan to red-
dish- brown midrib versus white or green midrib of leaves.

In maize and sorghum, the bmr trait is controlled by one 
recessive gene (Barnes et al. 1971; Cherney et al. 1988; 
Lechtenberg et al. 1972; Muller et al. 1971, 1972). Silage 
made from bmr mutants in maize outperforms that made 
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from normal fodder in terms of animal performance, as 
measured by average daily gain, feed efficiency and dry 
matter intake (Colenbrander et al. 1973; Frenchick et al. 
1976; Lechtenberg et al. 1974). In maize, brown pigmenta-
tion was initially observed in the midrib, tassel, cob and 
roots as early as 1924 (Jorgenson 1931). There are six known 
bmr mutations (bmr 1–6) and four non-allelic brown midrib 
genes found in maize (Kuc and Nelson 1964). However, the 
trait causes weak stems, leading to lodging and resulting 
in greater losses in corn compared to sorghum and pearl 
millet (Eastridge 1999). In pearl millet, Bmr mutants have 
been reported to produce 77% more fodder than typical F3 
lines and 5% higher digestibility than non-bmr lines in a 
comparative study. Additionally, bmr mutant plants were 
reported to show 11% more digestibility in the stem portion 
than non-bmr plants (Sattler et al. 2014). The bmr trait was 
reported to have outstanding potential for improving the for-
age quality of fodder and grazed millets (Table 3) (Cherney 
et al. in 1988). SDML89107, a bmr genotype, exhibits a 
16.2% higher stem IVDMD at 50% flowering than that of 
its normal counterpart, with the entire plant IVDMD being 
10.7% higher (Gupta 1995). Overall, the bmr trait was found 
to elevate the forage quality of pearl millet at par with con-
ventional corn. In pearl millet, efforts have been made to 
develop high-quality fodder varieties by introgressing the 
bmr trait (Yadav and Weltzein 1998; Blummel et al. 2003). 
Recently, at ICRISAT, inbred lines with stable expression of 
the bmr gene and high biomass potential have been identi-
fied, which can be further utilized for fodder improvement 
(Gupta et al. 2023).

In summary, the bmr trait influences both the biomass 
and quality of pearl millet fodder, positively impacting one 
aspect while negatively affecting the other. Both factors play 
a crucial role in maintaining the sustainability of the dairy 
industry, with an emphasis on higher-quality fodder over 
high yields. This preference is justified by the resulting net 
gain in animal productivity. Consequently, lines featuring 
the bmr trait emerge as promising candidates for developing 
high-quality climate-resilient fodder cultivars.

Lignin pathway and genetic alterations

Lignin is a secondary metabolite synthesized through the 
phenylalanine and tyrosine pathway in plants. Phenylala-
nine plays a key role in producing lignin subunits (Feduraev 
et al 2020). In plants, phenylalanine constitutes approxi-
mately 30% of the carbon flow (Pascual et al 2016). Lignin 
biosynthesis involves the production and transfer of lignin 
monolignols from the cytoplasm to the apoplast, where they 
undergo polymerization with the help of enzymes such as 
peroxidase (POD) and laccase (LAC) (Alejandro et al. 2012; 
Miao et al. 2010; Liu et al. 2011).

Targeting the lignin pathway using genome modification 
tools helps understand cell wall-related components and 
their genetic control. Genes involved in initial steps, such 
as PAL (phenylalanine ammonia-lyase), 4CL (4-coumarate) 
and C3H (p-coumarate 3-hydroxylase), have been reported 
to negatively affect plant growth, leading to sterility. How-
ever, downregulating genes later in the pathway namely, 
F5H (ferulate 5-hydroxylase), CCoAOMT (caffeoyl-CoA 
O-methyltransferase), CCR​ (cinnamoyl-CoA reductase), 
COMT (caffeic acid O-methyltransferase) and CAD (cinna-
myl alcohol dehydrogenase) has shown no adverse impact 
on the plant growth (Fig. 3). Lignin plays a crucial role in 
plant development, providing pests and pathogen resistance 
(Ithal et al. 2007) contributing to plant lodging resistance, 
and responding to various environmental stresses (Tripathi 
et al. 2003; Shadle et al. 2007). Genes involved in lignin 
biosynthesis have been targeted for modification in crops 
such as alfalfa (Inoue et al. 1998; Guo et al. 200; Barros et al. 
2019; Baucher et al 1999) and tall fescue (Chen et al. 2003) 
to improve forage quality.

Genes involved in the lignin biosynthesis were targeted 
to improve fodder digestibility and identified potential genes 
with low lignin content with increased digestibility having 
no impact on plant growth. Giordano et al. (2014) reported 
the increased digestibility in Paspalumdilatatum after the 
down regulation of CCR​ gene and suggested it as a poten-
tial candidate for the production of low lignin plants in C4. 
Another investigation involving CCR1 and COMT1 genes 
reported significantly reduced lignin content and composi-
tion and increased digestibility without any negative impact 
on the fitness of plant and biomass yield in ryegrass (Tu 
et al. 2010).

Other investigations involving lignin engineering in 
plants reported 20–40% reduction in lignin content along 
with the other changes in plants such as dwarfism (Gui et al. 
2011; Wagner et al. 2009), reduced resistance to diseases 
and pests (Huang et al. 2010; Duan et al. 2014; Jannoey 
et al.2017; Wang et al. 2017; Fujimoto et al. 2015; Tianpei 
et al. 2015), sutructural deformities (Wang et al. 2008) and 
increased sterility (Thevenin et al. 2011; Schilmiller et al. 
2009), seed propagation and germination (Derikvand et al. 

Table 3   Comparison of different nutrient components of normal and 
bmr mutants in pearl millet (Cherney et al. 1988)

IVDMD in vitro dry matter digestibility; NDF neutral detergent fibre

Component Normal bmr

Leaf: Stem (ratio) 2.2 2.2
IVDMD (g/kg dry matter) 659 726
NDF (g/kg dry matter) 656 635
Cellulose (g/kg dry matter) 305 293
Hemicellulose (g/kg dry matter) 303 298
Lignin (g/kg dry matter) 50 40
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2008; Liljegren et al. 2000; Liang et al. 2006) and lodging 
(Peng et al. 2014; Zheng et al. 2017; Hu et al. 2017).

Biochemical pathways involved in fodder quality

Carbohydrate metabolism involves the breakdown and use of 
carbohydrates such as cellulose, hemicellulose and pectin—
key components of plant cell walls that affect the digest-
ibility of plant matter. In crops like maize, genes associated 
with carbohydrate metabolism, including those examined 
by Li et al. (2016), play a crucial role in boosting plant pro-
ductivity and quality. Nitrogen metabolism is vital for plant 
health because nitrogen is essential for protein and amino 
acid synthesis, facilitated by key enzymes such as glutamine 
synthetase (GS) and asparagine synthetase (ASN). Chloro-
phyll synthesis is fundamental to photosynthesis and thus to 
plant growth and development, with genes such as magne-
sium chelatase (CHLH) and chlorophyll b reductase (NYC1) 

being crucial for chlorophyll production and potential targets 
for increasing the nutritional value of plant material.

Therefore, by focusing on the genes involved in the 
lignin pathway and creating mutants with the bmr pheno-
type using novel functional techniques, there exists signifi-
cant potential for improving the digestibility of fodder and 
ultimately elevating animal production in the future. While 
these mutants prove advantageous as grazing dwarf plant 
types, the development of standard fodder cultivars neces-
sitates a robust stalk to confer structural stability and resist-
ance to lodging. Addressing the detrimental impact of these 
mutants on biomass is of paramount importance. It is crucial 
to identify genes that counteract these effects in plants with 
altered lignin concentration, thereby mitigating this issue. 
Further, combination of high throughput and cost-effective 
techniques will enable the mapping of QTLs and the iden-
tification of candidate genes for numerous forage quality 
and biomass-related traits, resulting in the development of 
useful gene-based markers. By specifically targeting genes 

Fig. 3   Lignin biosynthesis pathway. Genes in red colour reported to 
be negatively impact plant growth and green colour genes represent 
the positive targets for lignin alteration in plants. PAL, phenylala-
nine ammonia-lyase; TAL, tyrosine ammonia-lyase; C4H, cinnamate 
4-hydroxylase; 4CL, 4-coumarate: CoA ligase; CCR, cinnamoyl-CoA 
reductase; HCT, hydroxycinnamoyl-CoA shikimate/Quinatehydroxy-

cinnamoyltransferase; C3H, p-coumarate 3-hydroxylase; CCoAOMT, 
caffeoyl-CoA O-methyltransferase; F5H, ferulate 5-hydroxylase; 
CSE, caffeoyl shikimate esterase; COMT, caffeic acid O-methyltrans-
ferase; CAD, cinnamyl alcohol dehydrogenase; LAC, laccase; POD, 
peroxidase
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involved in lignin biosynthesis, carbohydrate metabolism, 
nitrogen metabolism and chlorophyll synthesis, crop scien-
tists can engineer crops with superior forage quality. This, 
in turn, contributes to the advancement of animal health and 
productivity.

Special attributes

Climate resilience

Pearl millet is suitable food choice for patients with celiac 
disease because it is gluten-free and classified as a nutrice-
real (Saini et al. 2021). In addition to its health benefits for 
humans, it also serves as a quality fodder and feed crop for 
livestock and poultry (Cisse et al. 2017; Hall et al. 2004). 
Pearl millet can flower in temperatures above 40 °C with-
out compromising yield and quality, making it a climate 
change future-ready crop that requires improvement only 
in terms of yield and quality rather than its ability to with-
stand increasing temperatures and climate changes (Satya-
vathi et al. 2021). However, its genomics potential remains 
underutilized due to limited funding and its status as being 
a poor man’s crop. But now, there is a need to harness the 
available genetic variability in the gene pool of this crop spe-
cies employing a holistic and integrated approach to alleviate 
the complex problems of agriculture. With the efforts of the 
Indian Government, the United Nations declared 2023 as the 
‘International Year of Millets', which is a blessing for this 
crop and may help in understanding the different aspects of 
this nutri-cereal grown in adversity and further development 
of desirable cultivars in synchronization with the require-
ment. This can benefit many dairy farmers and may help in 
sustaining milk production in developing African and Asian 
nations and other countries.

Silage potential

Pearl millet is a versatile and valuable forage crop with the 
potential to yield high-quality forage, especially during 
growing seasons with favourable moisture. It stands out as 
a significant source of silage with good nutritive value, con-
tributing to the availability of quality fodder during the lean 
periods, such as November–December and May–June (Tri-
pathi et al. 1995). Non-legume fodders like maize, sorghum 
and pearl millet are rich in sugars and carbohydrates, mak-
ing them ideal candidates for silage production. To optimize 
silage quality, it is crucial to harvest pearl millet at the peak 
nutrient stage typically before reaching 50% flowering, with 
a recommended dry matter content of 30–35% (Bogdan et al. 
2019). The dry matter content can be assessed by forming a 
ball from chaffed fodder. If the hands do not moist, the fod-
der has the desired dry matter and is fit for silage-making.

The pearl millet silage has comparable potential to 
corn silage and has lower lignin, high crude protein and 
greater digestibility than sorghum despite consuming very 
less resources (Table 1) (Hassanat 2007). Dunavin (1970) 
conducted a study comparing pearl millet (Gahi 1) and 
sorghum-Sudangrass hybrids (Lindsey 77F and Sudax) on 
beef cattle. The results indicated higher live weight gain per 
hectare per day and increased carrying capacity for Gahi 1 
compared to Lindsey 77F and Sudax. Additionally, Amer 
and Mustafa (2010) found that pearl millet silage had com-
parable potential to corn silage, exhibiting lower lignin, 
higher crude protein and greater digestibility than sorghum, 
making it an attractive option for forage and reported that 
complete replacement of corn silage with pearl millet silage 
had no detrimental effects on dairy cow feed intake or milk 
yield. However, regular millet relative to corn silage reduced 
milk yield, energy-connected milk, and solid corrected milk 
as reported by Brunette et al. (2014). Morales et al. (2011) 
investigated the productivity and nutritive value of pearl mil-
let at different maturity stages for silage and hay conserva-
tion methods. The results indicated that the stage of maturity 
did not significantly affect silage quality, and regrowth was 
stronger when forage was cut at the booting stage. Hill et al. 
(1999) explored the potential of pearl millet silage for grow-
ing beef cattle and reported that wilting did not enhance 
fermentation compared to corn silage. However, the addition 
of silage inoculants and fermentable carbohydrate sources 
enhanced fermentation characteristics and increased dry 
matter content in later experiments. Despite these improve-
ments, steer gains were still lower on millet silage diets than 
on corn silage diets, possibly due to the inherent difference 
in energy content.

In conclusion, pearl millet emerges as a promising forage 
crop, providing high-quality silage with favourable attributes 
for livestock nutrition. While it may not completely replace 
corn silage in all scenarios, its unique nutritional composi-
tion and adaptability make it a valuable addition to forage 
options, particularly in regions where temperate conditions 
prevail. Continued research and evaluation will contribute 
to refining the optimal utilization of pearl millet for silage 
production in diverse agricultural settings. (Pattanashetti 
et al. 2015).

Conclusion

Pearl millet is a warm-season climate change-ready crop 
that is widely cultivated in Africa and Asia. In addition to 
being a staple food crop, pearl millet is also a promising 
fodder crop that can provide high-quality forage for live-
stock. The millet forage has a high nutritional value, with 
higher crude protein and digestibility and a good balance of 
essential amino acids, making it a valuable protein source 
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for livestock. Forage quality improvement relies heavily on 
the development of genetic and genomic resources in pearl 
millet for forage quality-related traits. With the availabil-
ity of chromosome-level reference genome assemblies and 
other cutting-edge genetic and genomic resources, there is 
an enormous opportunity to deploy modern genomic tools 
in pearl millet improvement. The trait-based markers and 
candidate genes may help in breeding programmes for 
improving fodder and biomass-related traits by using differ-
ent approaches like genomic selection and marker-assisted 
forward breeding and gene-editing.
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