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Abstract
Key message A stable genomic region conferring FSR resistance at ~250 Mb on chromosome 1 was identified by 
GWAS. Genomic prediction has the potential to improve FSR resistance.
Abstract Fusarium stalk rot (FSR) is a global destructive disease in maize; the efficiency of phenotypic selection for improv-
ing FSR resistance was low. Novel genomic tools of genome-wide association study (GWAS) and genomic prediction (GP) 
provide an opportunity for genetic dissection and improving FSR resistance. In this study, GWAS and GP analyses were 
performed on 562 tropical maize inbred lines consisting of two populations. In total, 15 SNPs significantly associated with 
FSR resistance were identified across two populations and the combinedPOP consisting of all 562 inbred lines, with the 
P-values ranging from 1.99 ×  10–7 to 8.27 ×  10–13, and the phenotypic variance explained (PVE) values ranging from 0.94 
to 8.30%. The genetic effects of the 15 favorable alleles ranged from −4.29 to −14.21% of the FSR severity. One stable 
genomic region at ~ 250 Mb on chromosome 1 was detected across all populations, and the PVE values of the SNPs detected 
in this region ranged from 2.16 to 5.18%. Prediction accuracies of FSR severity estimated with the genome-wide SNPs were 
moderate and ranged from 0.29 to 0.51. By incorporating genotype-by-environment interaction, prediction accuracies were 
improved between 0.36 and 0.55 in different breeding scenarios. Considering both the genome coverage and the threshold 
of the P-value of SNPs to select a subset of molecular markers further improved the prediction accuracies. These findings 
extend the knowledge of exploiting genomic tools for genetic dissection and improving FSR resistance in tropical maize.

Introduction

The Food and Agriculture Organization (FAO) estimates 
that the world’s population will surpass 9 billion by 2050 
(Nations and United Nations. 2019). Fulfilling the food and 
feed demand, the average genetic gain per year of maize 
should be accelerated to more than 2%, which is a big chal-
lenge under the effect of climate change (Prasanna et al. 
2021). With the change in precipitation, temperature, and 
humidity, crop diseases become the key factor that affects 
genetic gain. Stalk rot and ear rot are the two crucial major 
maize diseases having the highest impact on climate change 
(Prasanna et al. 2021).

Stalk rot, one complex fungal disease, can be caused 
by Fusarium verticillioides (F.v), F. graminearum (Gib-
berella), Colletotrichum graminicola (Anthracnose), and 
Pythium aphanidermatum, as well as some bacterial spe-
cies of Erwinia with similar symptoms caused by Fusarium 
spp. (Chambers 1987). Fusarium stalk rot (FSR), caused 
by F.v, is one of the most disastrous diseases worldwide, 
especially in the tropical and subtropical zones (Savary et al. 
2019; Chivasa et al. 2021). In South and Central America, 
the incidence of FSR is usually above 50% (Christensen 
et al. 2014). Generally, the incidence of FSR ranges from 
30 to 70%, and it could surge to 90% in some specific years 
in India, China, and the Philippines (Duan et al. 2019). FSR 
can cause 38–100% yield loss of maize; furthermore, it can 
produce low molecular-weight secondary metabolites known 
as mycotoxins in the grain and the plant, bringing fatal harm 
to humans and other animals (Maize AICRP 2014; Subedi 
et al. 2016; Mueller et al. 2022). As one of the most aggres-
sive pathogens, F.v can infect any part of maize from the 
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beginning to the end of the cropping season, and it keeps 
alive on the residue of maize or the rotation crops during 
winter (Munkvold 2003; White 1999). Currently, the effi-
ciency of controlling FSR disease in the field was relatively 
low, because the effective fungicides to control FSR disease 
are rare (Zhu et al. 2021; Holland et al. 2020). Alternatively, 
development and deployment of maize varieties with genetic 
resistance to FSR are the most cost-effective and environ-
ment-friendly approach.

Novel genetic tools, such as GWAS (Genome-wide 
association study), provide the opportunity to dissect the 
genetic architecture of FSR resistance for the development 
of maize varieties with genetic resistance to FSR more rapid 
and effective. Various genetic studies had reported that FSR 
resistance is a complex quantitative inherited trait, hundreds 
of QTL (quantitative trait loci) and genomic regions associ-
ated with resistance to stalk rot caused by different patho-
gens have been reported, including qRfg1 (Yang et al. 2010; 
Wang et al. 2017), qRfg2 (Zhang et al. 2012; Ye et.al. 2018), 
qRfg3 (Ma et al. 2017) and Rgsr8.1 (Chen et al.2017) for 
Gibberella stalk rot, Rpi1 (Yang et al. 2005), RpiQI319-1, 
RpiQI319-2 (Song et al. 2015), RpiX178-1 and RpiX178-2 
for Pythium stalk rot (Duan et al. 2019), and Rcg1 (Jung 
et al. 1994) for Anthracnose stalk rot. The causal genes of 
qRfg1 and qRfg2 have been cloned, and functional markers 
were developed for the implementation of marker-assisted 
selection for improving stalk rot resistance.

A key genomic region on chromosome 6 at 168 Mb con-
ferring FSR resistance, with the PVE values ranging from 
6.16 to 8.38%, was identified by a GWAS analysis recently, 
which was further validated by linkage mapping in two  F2:3 
populations (Rashid et al. 2022). The candidate gene con-
ferring FSR resistance in this crucial region is annotated 
as a nucleic acid binding protein, playing an integral part 
in gene silencing pathways, and responding to diverse abi-
otic stress tolerances in maize (Zhai et al. 2019; Qian et al. 
2011). However, no more GWAS research was reported to 
dissect the genetic architecture of maize FSR resistance; 
more GWAS researches are required for a comprehensive 
understanding of the genetic architecture of FSR resistance 
in different genetics and breeding populations.

Genomic prediction (GP), another novel genomic tool, 
provides opportunities for improving breeding efficiency 
and accelerating the development of maize varieties with 
genetic resistance to FSR. GP was also known as genomic 
selection (GS), which offers an attractive alternative to con-
ventional breeding or marker-assisted selection (Meuwissen 
et al. 2001). In GS, the effects of all the molecular mark-
ers across the entire genome were estimated to predict the 
genomic estimated breeding value (GEBV) of candidates to 
be selected (Vivek et al. 2017; Jannink et al. 2010; Meuwis-
sen et al. 2001). Prediction accuracy was always used to 
evaluate the effectiveness of GS for improving the target 

trait; it was reported that key factors affecting prediction 
accuracy include trait heritability, prediction model, marker 
density, genotype-by-environment interaction (G × E), the 
relationship between the training and testing population, 
etc. (Edriss et al. 2017; Crossa et al. 2017; Guo et al. 2020; 
Mageto et al. 2020). However, the potential of exploiting 
GP for improving FSR resistance has not been reported; the 
potential of GS for improving FSR resistance needs to be 
further investigated by estimating the prediction accuracy of 
FSR resistance in different breeding scenarios and assess-
ing the effects of different factors on the estimation of the 
prediction accuracy.

In this study, GWAS and GP analyses were performed on 
562 tropical and subtropical maize inbred lines, where all of 
the maize inbred lines were screened in four environments 
under artificial inoculation to evaluate their response to FSR 
resistance and genotyped with genotyping-by-sequencing. 
The main objectives of the present study are to: (1) dis-
sect the genetic architecture of FSR resistance, identify the 
significantly associated single-nucleotide polymorphisms 
(SNPs) and stable genomic regions conferring FSR resist-
ance, and estimate the genetic effects of the favorable alleles 
and haplotypes in improving FSR resistance; (2) evaluate 
the prediction accuracy of FSR resistance in different breed-
ing scenarios to explore the potential of GP for improving 
FSR resistance by performing the predictions with various 
cross-validation schemes and different prediction models, 
within and across populations; and (3) investigate the effects 
of key factors on estimation of prediction accuracy of FSR 
resistance, including to incorporate the G × E into predic-
tion, utilize the combined phenotypic datasets from the same 
year or same location for GP analysis, and select a subset of 
molecular markers by considering both the genome cover-
age and the threshold of the P-value of SNPs for prediction.

Materials and methods

Plant materials

In the present study, 562 tropical and subtropical maize 
inbred lines from two populations were used to conduct 
GWAS to dissect the genetic architecture of FSR resistance 
and estimate the prediction accuracy of FSR resistance 
under different scenarios. The first population, designated 
as the CIMMYT maize lines (CML) panel, consists of 280 
tropical and subtropical maize inbred lines developed by 
the International Maize and Wheat Improvement Center 
(CIMMYT). From 1984 to 2023, CIMMYT developed and 
released a total of 647 CMLs, which represent a significant 
portion of the genetic diversity of CIMMYT maize germ-
plasm (Wu et al. 2016). In the present study, the lowland 
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tropical, mid-altitude/subtropical lines between CML300 
and CML603 were selected for screening their response to 
FSR resistance.

The second population, designated as the Drought Tolerant 
Maize for Africa (DTMA) panel, consisted of 282 tropical 
and subtropical inbred lines developed by CIMMYT. These 
lines originated from different breeding programs of CIM-
MYT, consisting of different kinds of lines with tolerance or 
resistance to an array of abiotic and biotic stresses (Yuan et al. 
2019).

Experimental design

The CML and DTMA populations were screened for FSR 
resistance at two CIMMYT experimental stations, Agua Fria 
(AF), in the state of Puebla in Mexico (97°38′ W, 20°28′Ν, 
110 m above sea level); and Tlaltizapan (TL), in the state of 
Morelos, Mexico (99°07'W, 18°4'N; 940 m above sea level). 
The CML population was planted in AF and TL in the sum-
mer season of 2018 and 2019. The DTMA population was 
planted in AF and TL in the summer season of 2014 and 2019. 
A randomized complete block design was used for all experi-
ments with three replications per location and a single-row plot 
per replication. Each plot was 2.5 m long with 11 plants. The 
distance between rows was 0.80 m, and the distance between 
plants in a plot was 0.25 m.

The environment was defined as a combination of year and 
location. Therefore, each population would have phenotypic 
data from four environments and 12 data points. For example, 
the CML population was screened in four environments, desig-
nated as 2018AF, 2018TL, 2019AF, and 2019TL, respectively.

Artificial inoculation and evaluation

All the 562 inbred lines were artificially inoculated with the 
pathogen of Fusarium verticillioides (F.v), which was the main 
pathogen causing stalk rot in maize in Mexico (Prasanna et al. 
2021). It was cultured in fresh potato dextrose agar plates in 
which sterile toothpicks were inserted. The culture was incu-
bated at 25 °C for 2 weeks, and the infected toothpicks were 
used for inoculation (Lal and Singh 1984). Fourteen days after 
flowering, all plants in each plot were inoculated by inserting 
infected toothpicks into a drilled hole on the first stem segment 
(approximately 0.1 m above the soil surface). A recent study 
reported that the toothpick inoculation method is effective with 
similar performance as other widely used inoculation methods, 
such as soil inoculation, drilling inoculation, and needle injec-
tion (Asiedu et al. 2024).

At the harvest, the plants were cutoff at the height of the 
cob approx. 0.50 to 1.00 m high above the ground, and the 
stalks were split longitudinally through the points of inocula-
tion. Disease severity was estimated by the formula below:

The FSR severity ranges from 0 to 100%. The FSR severity 
close to 0% (no visible disease symptoms or lesions identifi-
able on the stalk) means that the line has the highest level of 
resistance to FSR, i.e., the lowest FSR severity, whereas the 
FSR severity close to 100% means that the line has the lowest 
level or no resistance to FSR, i.e., the highest FSR severity.

Phenotypic data analysis

For the CML and DTMA population, the best linear unbi-
ased estimate (BLUE) values and broad sense heritability 
(H2) of FSR severity were analyzed within the single environ-
ment analysis and the combined analysis across environments 
(CombinedENV) by META-R software (https:// hdl. handle. 
net/ 10883/ 20997) (Alvarado et al. 2020) using the mixed lin-
ear model. The mixed linear model applied in META-R was 
implemented with the ‘lme4’ (Bates et al. 2015) R-package 
using the function of ‘lmer’. Meanwhile, the estimation of 
variance components in the mixed linear model was used the 
function of ‘reml’. The formula was as follows:

where yijk is the FSR severity, µ is the overall mean, gi , ej , 
and geij are the effects of the ith genotype, jth environment, 
and ith genotype by jth environment interaction, respec-
tively. rkej is the effect of the kth replication within the jth 
environment. �ijk is the residual effect of the ith genotype, jth 
environment, and kth replication. Genotype is treated as the 
fixed effect, whereas all other effects are declared as random 
effects. Moreover, there is no geij (interaction between geno-
type and environment) in the single environment analysis.

The environment with an estimated heritability below 0.40 
was excluded from the CominbedENV analysis. The H2 of 
FSR severity in individual environment analysis and Com-
binedENV analysis were calculated as:

where Vg is genetic variance, Vge is the variance of interac-
tion between genotype and environment, Ve is error variance, 

FSR severity (%) = visible lesion area∕

whole longitudinal cut area × 100%

Individual environment ∶ yijk = � + gi + ej + rkej + �ijk

Combined environments ∶ yijk

= � + gi + ej + geij + rkej + �ijk

Individual environment analysis ∶ H2 =
Vg

Vg +
Ve

k

CombinedENVanalysis ∶ H2 =
Vg

Vg +
Vge

j
+

Ve

jk

https://hdl.handle.net/10883/20997
https://hdl.handle.net/10883/20997


 Theoretical and Applied Genetics (2024) 137:109109 Page 4 of 20

j is the number of environments, and k is the number of 
replications within each environment.

In addition, description statistics of phenotypic data 
analysis was carried out in IBM SPSS Statistics, version 
22.0 (IBMCorp. 2022). The distributions of FSR severity 
in the individual environment and CombinedENV analysis 
were plotted in R (R Core Team 2020) using the ‘ggplot2’ 
package (Wickham 2016). The Pearson correlations of FSR 
severity among each single and combined environment in 
the populations of CML and DTMA were calculated using 
the BLUE values and visualized in R using the package 
‘ggcorrplot’ (Wickham et al. 2016). Moreover, the top 10 
lines with the lowest FSR severity and the bottom 10 lines 
with the highest FSR severity were identified within each 
population.

Genotyping, GBS, and SNP calling

Total genomic DNA was extracted from bulked young leaves 
for all lines using a CTAB procedure (Doyle and Doyle 
1987). Genotyping was performed at Cornell University Bio-
technology Resource Center (Ithaca, NY). Genomic DNA 
was digested with the restriction enzyme of ApeK1. Geno-
typing-by-sequencing (GBS) libraries were constructed in 
the 96-plex and sequenced on Illumina HiSeq2000 (Elshire 
et al. 2011). SNP calling was performed using the TASSEL 
GBS Pipeline, where the GBS Version 2.7 TOPM (tags on 
physical map) file downloaded from Panzea (www. panzea. 
org) was used to anchor reads to the maize reference genome 
of B73 RefGen_v2 (Glaubitz et al. 2014; Wang et al. 2020). 
For each inbred line, 955,690 SNPs were called, 955,120 
SNPs of them were evenly distributed on the ten maize chro-
mosomes, while the other 570 SNPs were without position 
information.

GWAS analysis

Before GWAS analysis, quality control of the genotypic 
data is an important step to ensure the accuracy of the 
later analysis. The combined population consisting of all 
the 562 inbred lines was abbreviated as CominbedPOP. 
The raw GBS datasets were filtered with a minor allele fre-
quency (MAF) above 0.05, missing data rate below 30%, 
and heterozygosity rate below 5% in TASSEL V5.0 in the 
populations of CML, DTMA, and CombinedPOP, respec-
tively. Then, the imputation was performed with the default 
parameters in TASSEL 5.0 (Bradbury et al. 2007) using the 
LD KNNi method (Money et al. 2015). The imputed GBS 
datasets and the BLUE values of FSR severity were used to 
conduct GWAS analyses in all three populations mentioned 
above.

Bayesian information and linkage disequilibrium itera-
tively nested keyway (BLINK) model (Huang et al 2019) 

was chosen to detect the associations between the SNPs and 
FSR severity in the GWAS analysis, because this model 
effectively reduces the false positives. In addition to the 
capability to incorporate principal components (PCs) and 
kinship (K) as covariates to reduce false positives, BLINK 
iteratively incorporated associated markers as covariates to 
eliminate their unclear connection to the individuals. Moreo-
ver, the SNPs sampled in the BLINK model were selected 
according to linkage disequilibrium, optimized for Bayesian 
information content (BIC), and re-examined across multiple 
iterative to reduce false positives. The BLINK conducted 
two fixed effect models and one filtering process (Huang 
et al. 2019).

The GWAS analysis using the BLINK model was run 
by GAPIT version 3 (Wang et al. 2021) in R. Meanwhile, 
PC analysis and K matrix calculation were also conducted 
using default parameters. The default threshold of P-value 
in BLINK for selecting SNPs significantly associated with 
FSR resistance was defined as the Bonferroni multiple test 
threshold of 0.05/n, and n is the number of SNPs. The results 
of PC analysis were visualized in R using the first two prin-
cipal components by the package ‘ggplot2’ (Wickham et al. 
2016). The Manhattan and quantile–quantile (QQ) plots of 
GWAS results were drawn by the ‘complot’ package (Van 
den Ende et al. 2019) in R.

Genetic effect of the favorable allele

For each SNP significantly associated with FSR resistance 
detected by GWAS, the allele with a lower average FSR 
severity was assigned the favorable allele, whereas another 
allele with a higher average FSR severity was assigned the 
unfavorable allele. The formula for calculating the effect of 
each favorable allele was shown below:

Effect of each favorable allele = Average FSR severity of 
the lines carrying the favorable allele–Average FSR severity 
of the lines carrying the unfavorable allele.

Candidate gene analysis

The average linkage disequilibrium (LD) decay for each 
chromosome was measured in TASSEL V5.0, using sliding 
window analysis with a window size of 50 SNPs. Squared 
Pearson correlation coefficient (r2) between vectors of SNPs 
was used to assess the level of LD decay on each chromo-
some, and the average LD decay distance across ten chromo-
somes at r2 = 0.1 was used to measure the LD decay distance 
in the populations of CML, DTMA, and CominbedPOP (Yan 
et al. 2009). The LD decay results were plotted against phys-
ical distance (kb) in R by the package ‘ggplot2’ (Wickham 
et al. 2016).

Considering LD decay distance, the interval of the physi-
cal position of SNP ± LD decay distance was defined as a 

http://www.panzea.org
http://www.panzea.org
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genomic region. The overlapped or partially overlapped 
genomic regions were joined together as one region. Putative 
genes located in all the genomic regions were considered 
as candidate genes conferring FSR resistance. Annotation of 
candidate genes was performed on NCBI (https:// www. ncbi. 
nlm. nih. gov) and MaizeGDB (https:// www. maize gdb. org).

Haplotype analysis within the genomic regions 
conferring FSR resistance

Haplotype blocks in genomic regions associated with FSR 
resistance were built using LDBlockShow software (Dong 
et al. 2021) based on standardized disequilibrium coeffi-
cients (D′) (Flint-Garcia et al. 2003), and the significantly 
associated SNPs selected at the threshold of P-value at  10–3 
with in each genomic region were used to build the haplo-
type blocks.

Genomic prediction analysis

A five-fold cross-validation (CV) scheme with 20 replica-
tions was used to generate the training and validation sets 
randomly and assess the prediction accuracy. The average 
value of Pearson correlations between the true breeding 
values and the genomic estimated breeding values in the 
testing population was defined as the prediction accuracy 
(Liu et al. 2021). GP analysis was conducted using whole 
genome-wide SNPs and the BLUE values of FSR sever-
ity from single environment analysis in the populations of 
CML, DTMA, and CombinedPOP, respectively. The GP 
analysis was conducted using the BGLR library (Pérez et al. 
2014) in the R program, where deviance information crite-
rion (DIC) value was calculated for each model at the same 
time. The lower DIC value means that the model was more 
precise (Tomohiro 2011).

Two CV schemes were applied. The first scheme of CV1 
was used to mimic one breeding scenario that predicts the 
newly developed lines, and it means that these lines have not 
been observed in any environment. The second scheme of 
CV2 was used to mimic sparse testing, in which some lines 
were observed in some environments but absent in others 
(Mageto et al. 2020).

To compare the prediction accuracy between phenotypic 
selection and GS and to assess the effects of incorporat-
ing genotype-by-environment interactions in improving 
prediction accuracy, three prediction models were applied. 
The first prediction model of M1 is a phenotypic prediction 
model, where the effects of the environment and lines were 
employed for prediction. The second prediction model of 
M2 is a general GP model where the effects of molecular 
markers were employed for prediction. The third prediction 
model of M3 is an extension of M2 incorporating G × E 

into prediction. More details of these three models were 
described in Method S1.

To evaluate the effects of year and location on estima-
tion of prediction accuracy, the phenotypic data of FSR 
severity were analyzed within the CML population and the 
DTMA population by combining the data from the same 
location (CombinedAF and CombineTL) or the same year 
(Combined2018 and Cominbed2019 in the CML population, 
Combined2014 and Cominbed2019 in the DTMA popula-
tion). Within each population, the prediction accuracy was 
estimated using the BLUE values of FSR severity from the 
same location or the same year.

To investigate the GP accuracy estimated with the signifi-
cantly associated SNPs conferring FSR resistance, different 
numbers of SNPs detected by GWAS at different thresholds 
of the P-value of  10–3,  10–4, and  10–5 were selected for con-
ducting GP analyses with M3 in CV2, only the unique SNPs 
across all the GWAS analyses were selected for GP analyses.

GP accuracy was also estimated between the CML popu-
lation and the DTMA population, by training one population 
to predict the other as a testing population, where both the 
genome-wide SNPs and the significant SNPs conferring FSR 
resistance detected by GWAS at a P-value threshold of  10–3 
were used for GP analyses with all three prediction models 
and CV2 scheme.

Results

Phenotypic variation of FSR severity and correlation 
analysis

The FSR severity had broader variations and higher aver-
age values in the CML population than those in the DTMA 
population across the individual environment and Com-
binedENV analyses, except for in 2019TL (Table 1, Fig. 1a 
and c). In the CombinedENV, the FSR severity in the CML 
population ranged from 29.17 to 92.50%, with an overall 
mean of 56.24%. The FSR severity in the DTMA popula-
tion ranged from 17.41 to 79.86%, with an overall mean 
of 46.70%. The phenotypic differences between these two 
populations indicated their differences in genetic variations 
responding to FSR resistance, and in the disease, pressure 
occurred in different years.

The estimated heritabilities of FSR severity were medium 
to high in both populations, ranging from 0.67 to 0.85 in the 
CML population, and from 0.53 to 0.79 in the DTMA popu-
lation by excluding the lowest heritability of 0.38 observed 
in the environment of 2014AF. In the CombinedENV analy-
sis, the heritability of FSR severity in the populations of 
CML and DTMA was 0.77 and 0.55, respectively (Table 1).

The Pearson correlation coefficients of FSR severity 
among all the individual and combined environments were 

https://www.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov
https://www.maizegdb.org
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positive and moderate to high (Fig. 1b and d). The Pearson 
correlation coefficients between the CombinedENV and the 
individual environments were higher than those between 
the individual environments in both populations. In the 
CML population, the correlation coefficients between the 
individual environments ranged from 0.26 to 0.56, and the 
correlation coefficients between the CombinedENV and the 
individual environments ranged from 0.56 to 0.82. In the 
DTMA population, the correlation coefficients between the 
individual environments ranged from 0.15 to 0.44, and the 
correlation coefficients between the CombinedENV and the 
individual environments ranged from 0.64 to 0.77.

Within each population, the top ten resistant lines with 
the lowest FSR severity values and the bottom ten suscepti-
ble lines with the highest FSR severity values were identi-
fied based on the BLUE values in CombinedENV analysis 
(Supplementary Table 1). The FSR severity values of the 
top ten resistant lines ranged from 29.17% to 37.50% in the 
CML population (CML552, CML596, CML581, CML601, 
CML389, CML478, CML582, CML600, CML307, and 
CML401), and from 17.41% to 28.15% in DTMA popu-
lation (DTMA175, DTMA143, DTMA180, DTMA155, 
DTMA187, DTMA192, DTMA146, DTMA261, DTMA60, 
and DTMA145). The bottom ten susceptible lines with the 
highest FSR severity values ranged from 78.33% to 92.50% 
in the CML population (CML511, CML360, CML590, 
CML334, CML467, CML584, CML585, CML591, 
CML329, and CML362), and from 67.78% to 79.86% in 
DTMA population (DTMA107, DTMA241, DTMA166, 
DTMA65, DTMA231, DTMA98, DTMA13, DTMA120, 
DTMA126, and DTMA29).

Population structure analysis and LD decay distance

After QC, 215,914, 209,111, and 221,190 SNPs were 
selected to perform further genetic analysis in the popu-
lation of CML, DTMA, and CominbedPOP, respectively. 
The high-quality SNPs were distributed evenly on ten chro-
mosomes in all three populations. The average MAF was 
0.22, 0.19, and 0.20 in the population of CML, DTMA, and 
CominbedPOP, respectively. The average missing rate was 
9%, 3%, and 6% in the population of CML, DTMA, and 
CominbedPOP, respectively (Fig. S1).

The result of population structure in all three populations 
was illustrated by the PCA plot, where the first two princi-
pal components of PC1 and PC2 together explained a total 
of 5.6%, 8.1%, and 4.7% of the phenotype variation in the 
populations of CML, DTMA, and CombinedPOP, respec-
tively (Fig. 2a–c). All three populations have been divided 
into two clusters of tropical lines and subtropical lines based 
on their pedigree information.

The average LD decay distance at r2 = 0.10 across the 
ten chromosomes was 3.60 kb, 3.47 kb, and 2.83 kb in the Ta
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populations of CML, DTMA, and CombinedPOP, respec-
tively (Fig. 2d–f).

Significantly associated SNPs and genomic regions 
conferring FSR resistance detected by GWAS 
and annotation of candidate genes

In total, 15 SNPs significantly associated with FSR resist-
ance were detected in GWAS analyses across all three 
populations at the P-value threshold of 0.05/n (n is the 
number of genome-wide SNPs used for GWAS), i.e., 
2.3 ×  10–7, 2.4 ×  10–7, and 2.3 ×  10–7 in the populations of 
CML, DTMA, and CombinedPOP, respectively (Table 2, 
Fig. 3a, c and e). The QQ plots from the three GWAS 
analyses indicated that the population structure was well 
controlled, and the BLINK model applied in the present 
study is powerful to identify reliable SNPs conferring FSR 

resistance (Fig. 3b, d and f). These 15 SNPs significantly 
associated with FSR resistance were distributed on all ten 
chromosomes, only except for on chromosomes 9 and 10. 
Five of them were detected in the CML population, which 
were located on chromosomes 1, 2, 3, and 5. Seven of 
them were detected in the DTMA population, which were 
distributed on chromosomes 1, 3, 4, 6, 7, and 8. Three of 
them were detected in the CombinedPOP, which were con-
centrated on chromosomes 1 and 4. The P-values of the 15 
significantly associated SNPs ranged from 1.99 ×  10–7 to 
8.27 ×  10–13, whose phenotypic variance explained (PVE) 
values ranged from 0.94 to 8.30%, with an average PVE 
value of 3.63% (Table 2). The significantly associated SNP 
of S6_112215613 detected in the DTMA population had 
the lowest P-value of 8.27 ×  10–13, with a PVE value of 
2.09% and a MAF of 0.32. Among these 15 SNPs, four of 
them had PVE values greater than 5%. The significantly 

a

b

**

* ** **

**

**

CombinedENV

*

**

CombinedENV

**

** **

** ** **

** ** ** **

c

d

Fig. 1  a The violin plot for the distribution of Fusarium stalk rot 
(FSR) severities in the CML population. b The phenotypic correla-
tions of FSR severity among different environments in the CML 
population. c The violin plot for the distribution of FSR severities in 
the DTMA population. d The phenotypic correlations of FSR severity 
among different environments in the DTMA population. The individ-

ual environment was defined as a combination of year and location. 
Agua Fria and Tlaltizapan were abbreviated as AF and TL, respec-
tively. The combined analysis across all environments was abbrevi-
ated as CombinedENV. Correlation coefficients with ** represent 
extremely significant correlations, and correlation coefficients with * 
represent significant correlations
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associated SNP of S2_41485521 detected in the CML pop-
ulation had the largest PVE value of 8.30%, with a P-value 
of 1.99 ×  10–7 and MAF of 0.11. The significantly associ-
ated SNP of S4_211481644 detected in CombinedPOP had 
the second largest PVE value of 6.98%, with a P-value of 

1.66 ×  10–7 and a MAF of 0.05. These results showed that 
FSR resistance in tropical maize is controlled by multiple 
QTL (quantitative trait loci) with small to medium effects, 
and it is highly influenced by the genetic background of 
the populations studied.

a b

d e f

LD decay = 0 LD decay = LD decay =

c

Fig. 2  a, b, c Principal component (PC) analysis plots in the popula-
tions of CML, DTMA, and the CombinedPOP consisting of all 562 
inbred lines. The tropical lines and subtropical lines in PCA plots 

were colored in different colors. d, e, f The linkage disequilibrium 
decay plots in the populations of CML, DTMA, and the Combined-
POP

Table 2  Information of significantly associated SNPs conferring FSR resistance detected by GWAS using BLINK model in populations of CML, 
DTMA, and CombinedPOP

SNP Population Bin Allele P-value PVE (%) MAF No Genomic region

S1_250295975 CML 1.09 T/C 1.81E-08 2.16 0.22 1 Chr1:250,089,724–251044933
S1_251041463 DTMA 1.09 T/G 1.04E-08 5.18 0.10
S1_250092554 CombinedPOP 1.08 C/T 2.73E-08 3.14 0.24
S2_41485521 CML 2.04 G/A 8.07E-09 8.30 0.11 2 Chr2:41,481,921–41,489,121
S2_180835270 CML 2.06 C/T 6.76E-09 2.88 0.39 3 Chr2:180,831,670–180838870
S3_165448326 CML 3.05 C/T 1.11E-07 4.27 0.29 4 Chr3:165,444,726–165,451,926
S5_204626484 CML 5.06 T/C 8.16E-09 5.56 0.09 5 Chr5:204,608,587–204630084
S1_225626297 DTMA 1.07 G/A 4.55E-11 3.17 0.30 6 Chr1:225,622,827–225,629,767
S3_202767355 DTMA 3.07 T/C 1.99E-07 4.07 0.06 7 Chr3:202,763,885–202770825
S4_69998604 DTMA 4.05 G/C 4.59E-08 0.94 0.47 8 Chr4:69,995,134–70,002,074
S6_112215613 DTMA 6.04 T/C 8.27E-13 2.09 0.32 9 Chr6:112,212,143–112,219,117
S7_9545142 DTMA 7.01 C/G 6.67E-08 1.76 0.36 10 Chr7:9,541,672–9,548,612
S8_21865355 DTMA 8.03 C/A 3.04E-09 1.91 0.27 11 Chr8:21,861,885–21,868,825
S1_163787906 CombinedPOP 1.05 A/G 6.95E-08 2.07 0.39 12 Chr1:163,785,076–163790736
S4_211481644 CombinedPOP 4.09 G/A 1.66E-07 6.98 0.05 13 Chr4:211,478,814–211,484,474
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Fig. 3  a-f Manhattan and Quantile–Quantile (QQ) plots of the GWAS 
result using the BLINK model in populations of CML (a, b), DTMA 
(c, d), and CombinedPOP (e, f). The green bar showed the stable 

genomic region conferring FSR resistance at 250Mb on chromosome 
1 across all three populations. g The distribution of annotated candi-
date genes based on their physical positions in this region
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The genetic effects of the 15 SNPs significantly associ-
ated with FSR resistance had significant or extremely sig-
nificant differences between the favorable and unfavorable 
alleles in all the populations (Fig. 4). In the CML population, 
the genetic effect differences between the favorable and unfa-
vorable alleles for each SNP ranged from −7.19 to −14.12%, 
with an average genetic effect of −9.62%, while those values 
in the DTMA population ranged from −4.29 to −9.65%, 
with an average genetic effect of −7.09%. The genetic effect 
differences between the favorable and unfavorable alleles 
for each SNP in the CombinedPOP ranged from −5.26 to 
−12.22%, with an average genetic effect of −8.47%. For the 
15 SNPs significantly associated with FSR resistance, the 
frequencies of the favorable alleles of 11 SNPs were greater 
than 0.50, and the frequencies of the favorable alleles of the 
rest of 4 SNPs, i.e., S2_41485521 and S3_165448326 in 
CML population, and S6_112215613 and S8_21865355 in 
the DTMA population, were smaller than 0.50.

Based on the information of LD decay distance within 
each population and the physical position of the significantly 
associated SNPs detected, 13 key genomic regions confer-
ring FSR resistance were identified (Table 2), including five 
genomic regions in CML located in bins 1.09, 2.04, 2.06, 

3.05, and 5.06, seven genomic regions in DTMA located in 
bins 1.07, 1.09, 3.07, 4.05, 6.04, 7.01, and 8.03, and three 
genomic regions in CombinedPOP located in bins 1.04, 
1.08, and 4.09. In total, nine haplotype blocks were built for 
all 13 key genomic regions, only except for the key genomic 
region at ~ 250 Mb on chromosome 1 detected across all 
three populations (Fig. S2).

In these genomic regions, 26 putative candidate genes 
conferring FSR resistance were identified (Supplemen-
tary Table  2). GRMZM2G414537, GRMZM2G059106, 
and GRMZM2G042027 were associated with transmem-
brane transport, which may be involved in the invasion 
and anti-invasion process between pathogen and plant 
(Sailer et  al 2018). Furthermore, AC213890.4_FG004, 
GRMZM2G070323, and GRMZM2G002555 have the func-
tion of protein phosphorylation, known as a switch or coor-
dinator, which can help crops to make responses to some 
specific stresses by coordinating the expression of some 
functional genes (Yao and Xu 2017).

E= -9.21

CML-S2_41485521

****
E= -8.14

CML-S2_180835270 

**** ****

** **** ** **** ****

**** **** **** **** ****

****

CML-S1_250295975 CML-S3_165448326 CML-S5_204626484 

****

DTMA-S1_225626297 DTMA-S1_251041463 DTMA-S3_202767355 DTMA-S4_69998604 DTMA-S6_112215613

DTMA-S7_9545142 DTMA-S8_21865355 CombinedPOP-S1_163787906 CombinedPOP-S1_250092554 CombinedPOP-S4_211481644

E= -9.43 E= -7.19 E= -14.12

E= -4.29 E= -9.65 E= -7.56 E= -5.80 E= -7.13

E= -6.12 E= -9.07 E= -5.26 E= -7.94 E= -12.22

Fig. 4  The distribution, effect, and comparison analysis of FSR sever-
ity between the materials carrying favorable and unfavorable alleles 
for five significantly associated SNPs in the CML population (green 

and pink), seven SNPs in the DTMA population (indigo and yellow), 
and three SNPs in the CominbedPOP (rose madder and blue)



Theoretical and Applied Genetics (2024) 137:109 Page 11 of 20 109

A stable genomic region associated with FSR 
resistance at ~ 250 Mb on chromosome 1

Across all three populations, a stable genomic region 
conferring FSR resistance was consistently detected 
at ~ 250 Mb on chromosome 1, in an interval of 0.95 Mb 
from 250,089,724 bp to 251,044,933 bp (Table 2) based on 
the reference genome of B73 RefGen_v2. In addition, a sig-
nificantly associated SNP of S1_253271793 close to this 
genomic region was also identified in the GWAS analysis 
in the DTMA population using the phenotypic data from 
the environment 2019AF (data not given), confirming the 
importance of this genomic region. The P-values of the 
three significantly associated SNPs detected in this genomic 
region ranged from 1.04 ×  10–8 to 2.73 ×  10–8, with PVE val-
ues ranging from 2.16 to 5.18%, and the differences of the 
genetic effects between the favorable and the unfavorable 
alleles ranging from −7.94 to −9.65% (Table 2 and Fig. 4).

In total, 21, 16, and 20 haplotype blocks were identi-
fied in the stable genomic region conferring FSR resistance 
at ~ 250 Mb on chromosome 1 in the populations of CML, 
DTMA, and CombinedPOP, respectively. Among them, 28 
unique haplotype blocks were repeatedly detected in at least 
two populations, including nine unique haplotype blocks 
repeatedly detected across all the three populations. Moreo-
ver, eight of these nine unique haplotypes carried favorable 
genetic effects conferring FSR resistance. The informa-
tion of physical position and the D’ of each pair of SNPs 
within each of eight haplotype blocks is shown in Fig. 5. 
The eight haplotype blocks were distributed evenly in this 
stable genomic region, with the length ranging from 3 bp 

to 110.24 kb, and the number of SNPs ranging from 2 to 
10. The average D’ value of each pair of SNPs across each 
haplotype block was higher than 0.90, indicating that all the 
SNPs within each haplotype block were all strongly linked 
(Fig. 5).

In total, 12 putative candidate genes in this genomic 
region were identified, the distribution of these candidate 
genes based on their physical positions in this genomic 
region is shown in Fig. 3g, and their annotated functions 
associated with the responses to biotic or abiotic stresses 
in crops are listed in Supplementary Table  2. Among 
them, GRMZM2G457357, GRMZM2G364069, and 
GRMZM5G829103 were associated with zinc ion bind-
ing and zinc finger proteins. Zinc finger proteins main-
tain a finger-like spatial configuration by binding to zinc 
ions through amino acids in the peptide chain, which are 
widely distributed on the plasma membrane under abi-
otic stress, and may have functions as sensors or absci-
sic acid (ABA) receptors in abiotic stress signaling (Han 
et al 2020). GRMZM2G457357 and GRMZM2G027991 
belonged to the ubiquitin–proteasome system (UPS), 
which is a rapid regulatory mechanism for selective pro-
tein degradation and plays crucial roles in an integral part 
of plant adaptation to stresses, such as drought, salin-
ity, cold, nutrient deprivation, and pathogens (Xu et al. 
2019). GRMZM2G070323 and AC213890.4_FG004 have 
phosphoprotein phosphatase activity as mentioned above. 
Additionally, the rest of the putative candidate genes were 
directly associated with the intracellular signal transduc-
tion or response to abiotic stresses. Results of the anno-
tated functions of these candidate genes revealed the 

Fig. 5  Eight haplotype blocks carrying favorable genetic effects conferring FSR resistance located in the stable genomic region at ~ 250 Mb on 
chromosome 1 detected in all three populations
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importance of this genomic region at ~ 250 Mb on chro-
mosome 1 involving in positive responses to biotic and 
abiotic stresses, in particular in improving FSR resistance.

Prediction accuracies of FSR severity estimated 
from different breeding scenarios

Prediction accuracies of FSR severity estimated from dif-
ferent breeding scenarios, including two CV schemes and 
three prediction models, are shown in Fig. 6a–c. Results 
showed that prediction accuracies of FSR severity estimated 
from the CV2 were higher than those values estimated from 
the CV1 across all the populations and prediction models, 
indicating that the predictions could benefit from previous 
records of lines whose FSR severity values have already 
been observed in other environments. Across all the CV 
schemes and populations, GP model of M2 obtained higher 
accuracies of FSR severity than those values obtained from 
the phenotypic prediction model of M1, and the GP model 
of M3 incorporating G × E obtained the highest accuracies 
of FSR severity.

In the CV1 of mimicking the breeding scenario that pre-
dicts the newly developed lines never been tested in any 
environment, the accuracies of FSR severity estimated 
with the phenotypic prediction model of M1 were close 
to zero across all the three populations. The accuracies 
of FSR severity estimated with the GP model of M2 were 
0.36, 0.29, and 0.34 in the populations of CML, DTMA, 
and CombinedPOP, respectively. The accuracies of FSR 
severity estimated with the GP model of M3 incorporating 
G × E were 0.40, 0.36, and 0.36 in the populations of CML, 
DTMA, and CombinedPOP,  respectively.

In the CV2 to mimic breeding scenario of sparse testing, 
in which some newly developed lines were observed in some 
environments but absent in others, the accuracies of FSR 
severity estimated with the phenotypic prediction model of 
M1 were 0.48, 0.29, and 0.48 in the populations of CML, 
DTMA, and CombinedPOP, respectively. The accuracies 
of FSR severity estimated with the GP model of M2 were 
0.51, 0.34, and 0.51 in the populations of CML, DTMA, 
and CombinedPOP, respectively. Among all the three pre-
diction models, the highest accuracies of FSR severity 
were observed in the GP model of M3 incorporating G × E, 
which were 0.55, 0.42, and 0.53 in the populations of CML, 
DTMA, and CombinedPOP,  respectively.

Prediction accuracies of FSR severity estimated 
with the phenotypic data from four individual 
environments and the combined phenotypic data 
from the same location or same year

Prediction accuracies of FSR severity estimated with the 
BLUE values from the combined analysis across the same 

location or same year were higher than those values esti-
mated with the BLUE values from the combined analysis 
across four individual environments. In the CML population, 
the prediction accuracy of FSR severity in M3 and CV2 
estimated with the BLUE values from the combined analy-
sis across four individual environments was 0.55, which 
was improved to 0.60 using the BLUE values from the 
combined analysis across years, i.e., Cominbed_2018 and 
Cominbed_2019, and to 0.62 using the BLUE values from 
the combined analysis across locations, i.e., Cominbed_AF 
and Cominbed_TL, (Fig. 6d and f). Similar trend was also 
observed in the DTMA population (Fig. 6e, f).

Prediction accuracies of FSR severity estimated 
with different numbers of significant SNPs detected 
by GWAS

Prediction accuracies of FSR severity estimated with the 
whole genome-wide SNPs, 2105, 197, and 26 significantly 
associated SNPs selected at the thresholds of P-values at 
 10–3,  10–4, and  10–5 are shown in Fig. 7a-c. Prediction accu-
racies of FSR severity estimated with 2105 significantly 
associated SNPs selected at the thresholds of P-values at 
 10–3 were the highest across all the three populations, and 
the prediction accuracies estimated with the whole genome-
wide SNPs were higher than those values estimated with 
197 and 26 significantly associated SNPs selected at the 
thresholds of P-values at  10–4 and  10–5 across all the three 
populations. Prediction accuracies of FSR severity in CV2 
and M3 estimated with 2105 significantly associated SNPs 
selected at the threshold of P-value at  10–3 were 0.69, 0.60, 
and 0.69 in populations of CML, DTMA, and Combined-
POP, respectively.

Prediction accuracies of FSR severity estimated 
across different populations

Prediction accuracies of FSR severity estimated across 
different populations, i.e., training the CML population to 
predict the DTMA population as the testing population, 
or vice versa, are shown in Fig. 7d-e. Moderate prediction 
accuracies of FSR severity were observed across population 
in the GP model of M2 and the GP model of M3 incorpo-
rting G × E, when the whole genome-wide SNPs or 2105 
significantly associated SNPs selected at the threshold of 
P-value at  10–3 were used for prediction. By training the 
CML population to predict the DTMA population as test-
ing population, the prediction accuracies of FSR severity 
across populations in CV2 and M3 estimated with the whole 
genome-wide SNPs and the 2105 significantly associated 
SNPs selected at the threshold of P-value at  10–3 were 0.35 
and 0.49, respectively. By training the DTMA population 
to predict the CML population as testing population, the 



Theoretical and Applied Genetics (2024) 137:109 Page 13 of 20 109

M1 M2 M3 M1 M2 M3

CV1 CV2

M1 M2 M3 M1 M2 M3

CV1 CV2

M1 M2 M3 M1 M2 M3

CV1 CV2

a b c

ed

f

2018AF
2018TL
2019AF
2019TL

Combined_2018
Combined_2019

Combined _AF
Combined_TL

2014AF
2014TL
2019AF
2019TL

Combined_2014
Combined_2019

Combined _AF
Combined_TL

0.0% 100.0%0.0% 100.0%

2018AF

2018TL

2019AF

2019 TL

Combi ned_2018

Combi ned_2019

Combi ned_AF

Combi ned_TL

2014AF

2014TL

2019AF

2019TL

Combined_2014

Combined_2019

Combined_AF

Combined_TL

Fig. 6  a-c Prediction accuracies of FSR severity estimated using three 
prediction models of M1, M2, and M3, in two cross-validation (CV) 
schemes in the populations of CML, DTMA, and CombinedPOP. d-e 
The distribution of FSR severity in the environments used in the CML 

and DTMA populations when conducted GP. f The prediction accu-
racy of FSR severity estimated in CML (left side) and DTMA (right 
side) populations using CV2 and M3
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prediction accuraciesof FSR severity across populations in 
CV2 and M3 estimated with the whole genome-wide SNPs 
and the 2105 significantly associated SNPs selected at the 
threshold of P-value at  10–3 were 0.44 and 0.59, respectively.

Discussion

Similar to the observations were reported in other maize 
stalk rots caused by different pathogens (Pè et al. 1993; Duan 
et al. 2019; Mu et al. 2019; Jung et al. 1994), this study also 
showed that the FSR resistance in maize is a complex quan-
titative trait with medium to high heritabilities and signifi-
cantly affected by G × E, it is controlled by multiple loci with 
minor effects. In total, 15 SNPs significantly associated with 
FSR resistance were identified across all three populations, 
with the P-values ranging from 1.99 ×  10–7 to 8.27 ×  10–13, 
and PVE values ranging from 0.94 to 8.30%. These findings 
extend the knowledge of understanding the genetic architec-
ture of FSR resistance in tropical maize.

In a previous study of Rashid et al. (2022), 342 tropi-
cal/sub-tropical maize inbred lines in the CAAM panel 
were also used to conduct GWAS analysis for genetic map-
ping the FSR resistance. Although this previous and the 

present studies both focused on the genetic dissection of the 
resistance to FSR in tropical maize, the genetic mapping 
populations, FSR screening environments, and validation 
approaches were different between these two studies, result-
ing in the detection of different loci significantly associated 
with the FSR resistance. In the previous study of Rashid 
et al. (2022), the maize inbred lines in the CAAM panel 
for GWAS analysis are adapted to Asian tropical ecologies 
with predominantly yellow kernel color. In the present study, 
the CML and DTMA populations represented a broader 
genetic diversity of tropical maize germplasm developed 
by CIMMYT with mostly white kernel color. The CAAM 
panel was screened for FSR resistance in two locations in 
India in the previous study, whereas the CML and DTMA 
populations used in the present study were screened for FSR 
resistance in two locations in Mexico. Moreover, the vali-
dation approaches were different in these two studies, the 
peak at 168 Mb on chromosome 6 detected by GWAS was 
validated in further QTL mapping analyses in the previous 
study of Rashid et al. (2022), and the peak at ~ 250 Mb on 
chromosome 1 detected by the present study was validated 
across two independent GWAS populations. Although there 
are several major differences between these two studies, the 
importance of the crucial genomic region conferring FSR 

Fig. 7  a-c Prediction accuracies of FSR severity estimated with the 
different number of significantly associated SNPs selected from 
GWAS results at P-value thresholds of  10–3 (2105 SNPs),  10–4 (197 
SNPs), and  10–5 (26 SNPs) in populations of CML, DTMA, and 
CombinedPOP using CV2 and M3. d-e Prediction accuracies of FSR 

severity estimated with the whole genome-wide 221,190 SNPs, and 
2105 SNPs detected by GWAS at the P-value threshold of 1 ×  10–3 
in M1, M2, and M3 by training the CML population to predict the 
DTMA population or by training the DTMA population to predict the 
CML population
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resistance at 168 Mb on chromosome 6 identified by Rashid 
et al. (2022) was also partially validated in the present study 
(Supplementary Table 3), six SNPs highly linked with FSR 
resistance in the genomic region between 162 and 168 Mb 
on chromosome 6 were detected by the mixed linear model 
in GWAS analysis using the populations from the present 
study (Supplementary Table 3). The P-value of these six 
SNPs ranged from 2.88 ×  10–5 to 7.07 ×  10–4, and the PVE 
values ranged from 2.60 to 6.13%, indicating the consistency 
of the results across different studies.

In addition, a stable genomic region conferring FSR 
resistance at ~ 250 Mb on chromosome 1 was identified by 
the present study, providing additional valuable informa-
tion on crucial genomic region conferring FSR resistance to 
further investigate the possibility of developing trait markers 
for deployment in breeding programs. Several QTL associ-
ated with stalk rot resistance caused by different pathogens 
have been reported on chromosome 1 as well. In our previ-
ous study, a genomic region in bin 1.06 on chromosome 1 
conferring FSR resistance was identified in different GWAS 
panels developed by CIMMYT (Song et al. 2024). In addi-
tion, QTL in bin 1.03 and 1.09 associated with Pythium 
stalk rot resistance were reported previously by Song et al. 
in 2015 and Duan et al. in 2019, respectively. In this crucial 
genomic region conferring stalk resistance, several putative 
candidate genes highly associated with responses to abiotic 
and biotic stresses were also reported.

One of the novel genomic tools of GP, also known as 
GS, had been reported as an effective approach for crop 
improvement, despite the prediction accuracies were highly 
affected by the trait heritability, prediction model, marker 
density, genotype-by-environment interaction, the rela-
tionship between the training and testing population, etc. 
(Sitonik et al. 2019; Nyaga et al. 2019; Zhang et al. 2017). 
Extensive research has been conducted on evaluating the 
potential of the utilization of GP for improving breeding effi-
ciency for various traits, including the major maize diseases 
(Yu et al. 2022; Guo et al. 2020; Beyene et al. 2015; Oakey 
et al. 2016). In the previous studies, prediction accuracy for 
resistance to northern corn leaf blight reached to 0.70, for 
resistance to maize lethal necrosis ranged from 0.46 to 0.86, 
and for resistance to Fusarium ear rot ranged from 0.46 to 
0.67 (Technow et al. 2013;  Sitonik et al. 2019; Kuki et al. 
2020; Liu et al. 2021; Holland et al. 2020). In the present 
study, GP accuracies of FSR severity estimated with the 
whole genome-wide SNPs were moderate and ranged from 
0.29 to 0.51 in different breeding scenarios across two CV 
schemes and three populations. Moreover, moderate predic-
tion accuracies of FSR severity estimated with the whole 
genome-wide SNPs were also observed across populations. 
These results show the high potential of GP for improving 
the FSR resistance.

For further improving the prediction accuracy of FSR 
resistance, the effects of the key factors on estimations of 
prediction accuracy were investigated in the present study, 
focusing on how to sample the most informatic molecular 
markers, and incorporate the effects of environments and 
G × E into prediction models. Generally, GP using the whole 
genome-wide SNPs was expected to achieve the highest pre-
diction accuracy (Massman 2013, Lorenz et al. 2011; Bud-
hlakoti et al. 2020). However, the low-density markers were 
also cost-effective for the implementation of GS (Zhang 
et al. 2015; Abed et al. 2018; Werner et al. 2018). In the 
present study, the prediction accuracies of FSR severity esti-
mated with the 2105 significantly associated SNPs selected 
at the threshold of P-value at  10–3 were higher than those 
prediction accuracies estimated with the whole genome-
wide SNPs across all the three populations, whereas the 
prediction accuracies of FSR severity estimated with the 197 
and 26 significantly associated SNPs selected at the thresh-
olds of P-values at  10–4 and  10–5 were lower than those pre-
diction accuracies estimated with the whole genome-wide 
SNPs across all populations. These results indicated that 
considering both the genome coverage and the threshold of 
the P-value of SNPs to select a subset of molecular mark-
ers could improve the GP accuracy. Similar trends were 
also observed in the total PVE values estimated with the 
different SNP datasets (Fig. 8). Across all populations, the 
total PVE values estimated the 2105 significantly associated 
SNPs selected at the threshold of P-value at  10–3 were higher 
than those estimated with the whole genome-wide SNPs, 
whereas the total PVE values estimated with the 197 and 26 
significantly associated SNPs selected at the thresholds of 
P-values at  10–4 and  10–5 were lower than those total PVE 
values estimated with the whole genome-wide SNPs. These 
results indicated that the subset of SNPs representing more 
genotypic information conferring the FSR resistance could 
achieve higher prediction accuracy. Furthermore, analysis 
of the variance components estimated with different SNP 
datasets also validated that the prediction accuracies of 
FSR severity estimated with the 2105 significantly associ-
ated SNPs selected at the threshold of P-value at  10–3 were 
highest across all populations, due to the minimum value of 
residual variance and the lowest deviance information cri-
terion (DIC) value representing more effective and precise 
prediction (Supplementary Table 4). The previous studies 
showed that GP model incorporating G × E achieved higher 
prediction accuracy (Burgueño et al. 2012; Guo et al.2013; 
Jarquín et al. 2017;  Zhang et al. 2015; Monteverde et al. 
2018). In the present study, the analysis of variance com-
ponents of the random effects in each prediction model and 
the percentage of the total variance explained by each ran-
dom effect were performed (Supplementary Tables 5 and 
6). In Supplementary Table 5, GP model of M3 incorporat-
ing G × E had the lowest percentage of the total variance 
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explained by the residual effect, the highest percentage of 
the total variance explained together by the environment and 
the genotyped-by-environment interaction, and the lowest 
DIC values among all the three models in both populations. 
These results support the conclusion that GP model of M3 
incorporating G × E could improve the prediction accuracy. 
Similar results are also observed in Supplementary Table 6, 
the GP model employing the phenotypic data combined the 
same year or same location had the lower percentage of the 
total variance explained by the residual effect, the higher 
percentage of the total variance explained together by the 
environment and the G × E, compared with the GP model 
employing the phenotypic data form individual environment. 
These results enhance the understanding of exploiting GP 
for improving FSR resistance.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00122- 024- 04597-x.
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