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Abstract
Key message  The integration of known and latent environmental covariates within a single-stage genomic selection 
approach provides breeders with an informative and practical framework to utilise genotype by environment interac-
tion for prediction into current and future environments.
Abstract  This paper develops a single-stage genomic selection approach which integrates known and latent environmental 
covariates within a special factor analytic framework. The factor analytic linear mixed model of Smith et al. (2001) is an effec-
tive method for analysing multi-environment trial (MET) datasets, but has limited practicality since the underlying factors 
are latent so the modelled genotype by environment interaction (GEI) is observable, rather than predictable. The advantage 
of using random regressions on known environmental covariates, such as soil moisture and daily temperature, is that the 
modelled GEI becomes predictable. The integrated factor analytic linear mixed model (IFA-LMM) developed in this paper 
includes a model for predictable and observable GEI in terms of a joint set of known and latent environmental covariates. 
The IFA-LMM is demonstrated on a late-stage cotton breeding MET dataset from Bayer CropScience. The results show 
that the known covariates predominately capture crossover GEI and explain 34.4% of the overall genetic variance. The most 
notable covariates are maximum downward solar radiation (10.1%), average cloud cover (4.5%) and maximum temperature 
(4.0%). The latent covariates predominately capture non-crossover GEI and explain 40.5% of the overall genetic variance. 
The results also show that the average prediction accuracy of the IFA-LMM is 0.02 − 0.10 higher than conventional random 
regression models for current environments and 0.06 − 0.24 higher for future environments. The IFA-LMM is therefore an 
effective method for analysing MET datasets which also utilises crossover and non-crossover GEI for genomic prediction 
into current and future environments. This is becoming increasingly important with the emergence of rapidly changing 
environments and climate change.

Introduction

This paper develops a single-stage genomic selection (GS) 
approach which integrates known and latent environmental 
covariates within a special factor analytic framework. The 
factor analytic linear mixed model of Smith et al. (2001) is 
an effective method for analysing multi-environment trial 

(MET) datasets, which includes a parsimonious model for 
genotype by environment interaction (GEI). The advan-
tage of using random regressions on known environmental 
covariates, such as soil moisture and maximum tempera-
ture, is that the modelled GEI becomes predictable. The GS 
approach developed in this paper exploits the desirable fea-
tures of both classes of model.

Genomic selection is a form of marker-assisted selec-
tion that can improve the genetic gain in animal and plant 
breeding programmes (Meuwissen et al. 2001). In plant 
breeding, however, GS is often restricted by the presence 
of GEI, that is the change in genotype response to a change 
in environment. There are two appealing features of using 
known environmental covariates for GS; (i) meaningful 
biological interpretation can be ascribed to GEI and (ii) 
predictions can be obtained for any tested or untested geno-
type into any current or future environment. These features 
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represent two long-standing objectives of many plant breed-
ing programmes.

Regressions on known environmental covariates were first 
used in plant breeding by Yates and Cochran (1938). Their 
approach was later popularised by Finlay and Wilkinson 
(1963), and includes a fixed coefficient regression on a set 
of environmental mean yields (covariates) with a separate 
intercept and slope for each genotype. Hardwick and Wood 
(1972) extended the fixed regression model to include 
a more complex set of environmental covariates, such as 
moisture and temperature (also see Wood 1976). These 
approaches have distinct limitations when used to analyse 
MET datasets, however (Smith et al. 2005). An alternative 
approach is to use a linear mixed model with a random 
coefficient regression. This approach was popularised by 
Laird and Ware (1982), and requires an appropriate variance 
model for the intercepts and slopes which ensures  the 
regression is scale and translational invariant. Heslot et al. 
(2014) extended the random regression model for  GS using 
a set of genotype covariates derived from marker data and a 
set of environmental covariates derived from weather data. 
They were unable to fit an appropriate variance model for 
the intercepts and slopes, however, so that the regression was 
not translational invariant. At a similar time, Jarquín et al. 
(2014) demonstrated an even simpler random regression 
model for a very large set of correlated environmental 
covariates. They found that the environmental covariates 
explained only 23% of the overall genetic variance. These 
examples highlight the current limitations of using known 
environmental covariates for GS. That is, they are often 
highly correlated and only explain a small proportion of 
GEI, and fitting an appropriate variance model is typically 
computationally prohibitive (Brancourt-Hulmel et al. 2000; 
Buntaran et al. 2021).

The factor analytic linear mixed model of Smith et al. 
(2001) includes a latent regression model for GEI in terms of 
a small number of common factors (also see Piepho 1997). 
This approach is a linear mixed model analogue to AMMI 
(Gauch 1992) and GGE (Yan et al. 2000), or more specifi-
cally factor analysis (Mardia et al. 1979), where the factors 
involve some combination of latent environmental covari-
ates. It also bears similarities to the ordinary regression 
models with one important difference; the environmental 
covariates are estimated from the data as well as the geno-
type slopes. Several authors have discussed the addition of 
intercepts to the factor analytic model in an attempt to obtain 
a simple average (simple main effect) for each genotype, 
but note there are issues which limit their interpretability 
(Smith 1999).

The factor analytic linear mixed model has been widely 
adopted for the analysis of MET datasets (Ukrainetz et al. 
2018). The two main variants involve pedigree or marker 
data (Oakey et al. 2007, 2016). Recently, Tolhurst et al. 

(2019) demonstrated a factor analytic linear mixed model 
for GS within a major Australian plant breeding pro-
gramme. They demonstrated genomic selection tools to 
obtain a measure of overall performance (generalised main 
effect) and stability for each genotype (Smith and Cullis 
2018). There is one limitation of this approach, however. 
The common factors are latent so the modelled GEI is 
observable, rather than predictable. This limitation has 
lead to ad hoc post processing of the latent factors with 
known covariates (Oliveira et al. 2020).

Until now, the analysis of MET datasets has involved 
only one set of known or latent environmental covariates. 
The aim of this paper is to extend the GS approach of 
Tolhurst et al. (2019) to integrate both known and latent 
environmental covariates. This new approach is hereafter 
referred to as the integrated factor analytic linear mixed 
model (IFA-LMM). There are three appealing features of 
the IFA-LMM: 

1.	 The IFA-LMM includes a regression model for GEI in 
terms of a small number of known and latent common 
factors. This simultaneously reduces the dimension of 
the known and latent environmental covariates.

2.	 The regression model captures predictable GEI in terms 
of known covariates. This enables meaningful interpreta-
tion of GEI and genomic prediction into any current or 
future environment.

3.	 The regression model also captures observable GEI in 
terms of latent covariates, which are orthogonal to the 
known covariates. This enables the regression model to 
capture a large proportion of GEI overall, and thence 
enables the IFA-LMM to be an effective method for ana-
lysing MET datasets.

The IFA-LMM is demonstrated on a late-stage cotton 
breeding MET dataset from Bayer CropScience. The pre-
dictive ability of the IFA-LMM is compared to several 
popular random regression models.

Materials and methods

The Bayer CropScience Cotton Breeding Programme eval-
uates the commercial merit of test genotypes by annually 
conducting multi-environment field trials. There are two 
late-stages of field evaluation considered in this paper, 
referred to as preliminary commercial P1 and P2. The 
2017 P1 MET dataset comprises the current set of envi-
ronments and will be used to train all random regression 
models. The 2018 P2 MET dataset will be used to assess 
the predictive ability into future environments.
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Data description

Experimental design and phenotypic data

Table 1 presents a summary of the 2017 P1 MET dataset for 
seed cotton yield. There were 72 field trials conducted in 
24 environments across eight states in Southeast, Midsouth 
and Texas, USA (Fig. 1). A total of 208 genotypes were 
evaluated in all environments. Each environment consisted 
of three trials. Each trial was designed as a randomised com-
plete block design with 144 plots comprising two replicate 
blocks of 68 test genotypes plus four checks. Yield data were 
recorded on most plots with 6.54% missing. The number of 
non-missing plots per test genotype ranged from 39 to 47, 
with mean of 45. The number of non-missing genotypes in 
common between environments ranged from 173 to 208, 
with mean of 204. The mean yield and generalised narrow-
sense heritability (Oakey et al. 2006) varied substantially 
between environments and growing regions.

Supplementary Table 9 presents a summary of the 2018 
P2 MET dataset for seed cotton yield. There were 20 field 
trials conducted in 20 environments across six states of USA 
(Fig. 1). Eleven trials were conducted in the same locations 
as the 2017 P1 trials and nine were conducted in new loca-
tions. A total of 55 genotypes were evaluated in all trials, 
with all genotypes previously evaluated in 2017 P1. Each 
trial was designed as a completely randomised design with 
a single replicate of all 55 genotypes. Note that only three 
environments were harvested in the Southeast due to severe 
weather.

Environmental data

Table 2 and Supplementary Table 10 present a summary 
of the known environmental covariates in the 2017 P1 and 
2018 P2 MET datasets. There were 18 covariates available 
for all 44 environments, including latitude and longitude 
as well as 11 covariates derived from daily weather data 

Table 1   Summary of the 2017 
P1 MET dataset for seed cotton 
yield

Presented for each environment is the number of trials, genotypes (with one, two or more replicates) and 
plots (total and missing), as well as the mean yield (t/ha) and generalised narrow-sense heritability ( h2)
Note: Symbols distinguish the △ Southeast, ° Midsouth and × Texas growing regions
* Total number after missing plots removed

State Env Trials Genotypes∗ Plots Yield

Total 1rep 2rep >2rep Total NAs Mean h2

△ North carolina 17NC1 3 208 15 189 4 432 16 1.43 0.48
17SC1 3 206 0 202 4 432 5 1.63 0.59
17SC2 3 183 52 127 4 432 107 1.94 0.46

△ South carolina 17SC3 3 208 5 199 4 432 5 2.32 0.50
17GA1 3 208 2 202 4 432 3 1.72 0.59
17GA2 3 208 2 202 4 432 2 1.92 0.64
17GA3 3 208 2 202 4 432 2 1.74 0.50

△ Georgia 17GA4 3 208 2 202 4 432 2 1.62 0.49
° Missouri 17MO1 3 207 69 134 4 432 76 1.95 0.61

17AR1 3 207 18 185 4 432 20 0.99 0.24
° Arkansas 17AR2 3 205 2 199 4 432 9 1.63 0.83

17MS1 3 204 9 191 4 432 19 1.21 0.57
17MS2 3 207 6 197 4 432 10 1.93 0.63

° Mississippi 17MS3 3 207 140 63 4 432 150 0.91 0.55
17LA1 3 208 4 200 4 432 6 1.32 0.72

° Louisiana 17LA2 3 208 11 193 4 432 12 1.16 0.60
17TX1 3 208 1 203 4 432 1 2.12 0.62
17TX2 3 208 2 202 4 432 2 1.79 0.59
17TX3 3 207 4 199 4 432 7 2.05 0.72
17TX4 3 208 4 200 4 432 4 1.86 0.38
17TX5 3 198 132 62 4 432 161 1.38 0.56
17TX6 3 206 29 173 4 432 33 1.95 0.43
17TX7 3 208 7 197 4 432 7 1.77 0.56

× Texas 17TX8 3 208 18 186 4 432 19 2.57 0.40
Overall – 72 208 – – – 10,368 678 1.70 0.55
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Fig. 1   Map of the cotton growing environments in the 2017 P1 and 2018 P2 MET datasets. Note: States and years are distinguished by colour 
and growing regions are distinguished by shape 

Table 2   Summary of the known environmental covariates in the 2017 P1 MET dataset

Note: Values presented are prior to centring and scaling
Presented for each covariate is the minimum, mean and maximum for the △ Southeast, ◦ Midsouth and × Texas growing regions

△ Southeast ◦ Midsouth × Texas

Covariate Description (units) Min Mean Max Min Mean Max Min Mean Max

LAT latitude ( ◦) 31.0 33.0 35.4 31.6 33.6 36.4 31.4 33.2 34.9
LONG longitude ( ◦) − 84.7 − 81.7 − 78.0 − 91.9 − 91.1 − 89.7 − 102.3 − 101.1 − 99.5
avgCCR​ average cloud cover (%) 53.4 56.0 59.1 46.6 48.7 52.2 32.1 34.5 37.0
minHUM min humidity (%) 43.7 47.7 53.7 52.0 53.4 55.9 30.1 34.0 40.4
maxDSR max downward solar radiation (W/m2) 0.74 0.76 0.77 0.75 0.76 0.77 0.82 0.85 0.87
maxNSR max net solar radiation (W/m2) 0.62 0.64 0.66 0.63 0.64 0.65 0.68 0.68 0.70
maxPRP max precipitation (mm/hr) 2.4 2.9 3.4 1.7 2.6 3.6 1.1 1.4 1.8
totPRP total precipitation (mm/day) 3.2 3.5 4.2 3.0 3.7 4.9 1.3 1.6 2.1
maxDPT max dew point temperature ( ◦C) 20.5 21.1 22.1 18.9 20.7 22.0 13.5 15.7 17.6
maxTMP max temperature ( ◦C) 28.5 30.3 31.5 27.6 28.9 29.6 28.7 30.3 32.1
minTMP min temperature ( ◦C) 19.0 20.1 21.0 17.9 19.5 20.4 15.4 17.4 19.5
minWSP min wind speed (km/hr) 4.9 5.2 5.7 4.7 4.9 5.0 7.4 8.1 9.4
avgWDR average wind direction (azimuth degrees) 166.7 175.8 181.5 152.3 161.9 174.0 144.7 152.9 162.9
maxST1 max soil temperature 1 ( ◦C) 27.6 29.9 31.3 27.0 28.3 29.1 29.5 32.2 34.5
minST1 min soil temperature 1 ( ◦C) 19.8 21.8 23.2 19.3 20.6 21.5 19.0 20.6 22.8
avgSM3 soil moisture 3 (%) 7.0 23.8 42.3 28.0 30.1 32.7 11.4 19.0 25.6
avgSM4 soil moisture 4 (%) 10.0 29.5 44.6 29.8 32.9 35.3 8.3 15.8 21.8
minST4 min soil temperature 4 ( ◦C) 20.0 22.4 24.2 20.2 22.0 23.0 21.0 22.9 25.2
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and 5 covariates derived from daily soil data. These tables 
show that the known covariates vary substantially within and 
between growing regions, as well as between years. Each 
covariate was then centred and scaled to unit length for all 
subsequent analyses. The practical implication of this will 
be discussed in  “Regressions on latent covariates”.

Marker data

Marker data were available for 204 (of the 208) genotypes 
in 2017 P1, which included all 55 genotypes in 2018 P2. 
The markers correspond to a high confidence set of 36,009 
single-nucleotide polymorphisms. Genotypes were coded as 
either −1, 0 or 1 for the homozygous minor, heterozygous 
or homozygous major alleles at each marker. The frequency 
of heterozygous markers was low given the level of selfing 
accumulated up to the P1 stage. Monomorphic markers were 
then removed and missing markers were imputed using the 
k-nearest neighbour approach of Troyanskaya et al. (2001), 
with k = 10 . Note that the four genotypes without marker 
data are of no practical interest (see Tolhurst et al. 2019, for 
further details).

The genomic relationship matrix was constructed using 
the pedicure package (Butler 2019) in R (R Core Team 
2021). The default settings in pedicure were used as fil-
ters, with minor allele frequency > 0.002% and missing 
marker frequency < 0.998%. A total of 24,265 markers were 
retained using this criteria. The diagonal elements of the 
relationship matrix ranged from 0.004 to 2.022, with mean 
of 1.234. The off-diagonals ranged from −0.388 to 1.322, 
with mean of −0.006.

Statistical models

Preliminaries

Assume the MET dataset comprises v = 204 genotypes 
evaluated in t = 72 field trials conducted across p = 24 envi-
ronments, where t =

∑p

j=1
tj and tj = 3 is the number of trials 

in environment j. Let the n-vector of phenotypic data be 
given by � =

(
�⊤

1
, �⊤

2
,… , �⊤

p

)⊤ , where �j =
(
�⊤

j;1
, �⊤

j;2
,… , �⊤

j;tj

)⊤ 
is the nj-vector for environment j and �j;k is the njk-vector for 
trial k in environment j. The length of � is therefore given 
by:

Lastly, assume all p = 24 environments have q = 18 known 
covariates available, that is assume p > q . Let the p × q 

n =

p∑
j=1

tj∑
k=1

njk =

p∑
j=1

nj.

matrix of covariates be given by � =

[
�1 �2 … �q

]
 , with col-

umns given by the centred and scaled environment scores for 
each covariate, such that �⊤

i
�i = 1.

Linear mixed model

The linear mixed model for � can be written as:

where � is a vector of fixed effects with design matrix � , 
� is a vp-vector of random genotype by environment (GE) 
effects with n × vp design matrix � , �� is a vector of random 
non-genetic peripheral effects with design matrix �� and � is 
the n-vector of residuals.

The vector of fixed effects, � , includes the mean param-
eter for each environment. This vector is fitted as fixed 
following a classical quantitative genetics approach where 
the GE effects in different environments are regarded as 
different correlated traits (Falconer and Mackay 1996). 
This vector can be extended to a regression on known 
environmental covariates, with:

where μ is the overall mean parameter (intercept), � is the 
p × q matrix of known covariates, �� is a q-vector with ele-
ments given by the mean response of genotypes to each 
covariate and � is a p-vector of residual environmental 
effects, with � ∼ N

(
�, �2

�
�p
)
.

The vector of random non-genetic effects, �� , accom-
modates the plot structures of trials and environments 
(Bailey 2008). This vector is fitted as random to enable 
recovery of information across incomplete blocks and tri-
als (Patterson and Thompson 1971). Other effects in �� 
may accommodate extraneous variations across field col-
umns and rows (Gilmour et al. 1997).

It is assumed that:

Following Tolhurst et al. (2019), �� = ⊕
p

j=1
��j

 is diagonal 
with a separate variance component model for the jth envi-
ronment and � = ⊕

p

j=1
�j is block diagonal with a two-

dimensional spatial model for the jth environment. The form 
of � is presented below, but note that all variance matrices 
in Eq. 3 are fitted at the environment level, not trial level. 
This completely aligns the non-genetic and residual variance 
models with the genetic variance model.

(1)� = �� + �� + ���� + �,

(2)� = �p� + ��� + �,

(3)
⎡⎢⎢⎣

�

��
�

⎤⎥⎥⎦
∼ N

⎛⎜⎜⎝

⎡⎢⎢⎣

�

�

�

⎤⎥⎥⎦
,

⎡⎢⎢⎣

� � �

� �� �

� � �

⎤⎥⎥⎦

⎞⎟⎟⎠
.
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Variance model for the GE effects

The GE effects are modelled using r = 24, 265 markers, 
and therefore referred to as the additive GE effects. This 
model is an extension of the univariate GBLUP model 
(Stranden and Garrick 2009), with:

where � =

[
�1 �2 … �r

]
 is a v × r design matrix with col-

umns given by the centred genotype scores for each marker, 
�� is a rp-vector of additive marker by environment effects, 
�� is a p × p additive genetic variance matrix between envi-
ronments and �� = ��⊤

∕m is the v × v genomic relation-
ship matrix between genotypes (VanRaden 2008).

The random regression models for � considered in this 
paper include: 

1.	 Latent covariates; models with simple or generalised 
main effects.

2.	 Known covariates; models with or without translational 
invariance.

3.	 Known and latent covariates; models with generalised 
main effects and translational invariance.

All regression models are summarised in Table 3, with full 
details provided below.

(4)
� =

(
�p ⊗�

)
�� and � = �� ⊗��⊤

∕m

= �� ⊗��,

Regressions on latent covariates

The factor analytic model is effective for modelling the 
covariances between additive GE effects in terms of a small 
number of latent common factors (Kelly et al. 2007). The 
two variants considered in this paper include simple or gen-
eralised main effects.

Models with simple main effects

Smith et al. (2001) demonstrated an extension of the factor 
analytic model which includes an explicit intercept for each 
genotype. This extension will be referred to as the FAMk 
model, where k denotes the number of latent factors. The 
FAMk model is given by:

with �⋆
p
= �p∕

√
p , where �� =

(
𝛾11 , 𝛾12 ,… , 𝛾1v

)⊤ is a 
v-vector of genotype intercepts, � =

[
�1 �2 … �k

]
 is a 

p × k matrix of latent environmental loadings (covari-
ates), � =

(
�⊤
1
, �⊤

2
,… , �⊤

k

)⊤ is a vk-vector of genotype scores 
(slopes) in which �l is the v-vector for the lth latent factor 
and � =

(
�⊤

1
, �⊤

2
,… , �⊤

p

)⊤ is a vp-vector of regression residu-
als (deviations) in which �j is the v-vector specific to the jth 
environment. This specification highlights the analogy to 
an ordinary random regression, with the difference that the 
environmental covariates are estimated from the data as well 
as the genotype slopes (see Eq. 13).

(5)
� =

(
�⋆
p
⊗ �v

)
�� +

(
�1 ⊗ �v

)
�1 +…+

(
�k ⊗ �v

)
�k + �

=

(
�⋆
p
⊗ �v

)
�� +

(
�⊗ �v

)
� + �,

Table 3   Summary of the variance models for the additive GE effects considered in this paper

Presented for each model is the structure of the additive genetic variance matrix between environments ( �� ), number of estimated variance 
parameters and the reference
Note: The vp-vector of additive GE effects is given by � with var(�) = �� ⊗�� , where �p×p

�  is the variance matrix between environments and 
�v×v

�
 is the genomic relationship matrix between genotypes. Also note that �⋆

p
= �p∕

√
p , �p×k is a matrix of latent covariates with p environ-

ments and k factors, �p×q is a matrix of known covariates with q covariates and �p×(p−q) is an orthogonal projection matrix, with �⊤� = �

Model Description �� Parameters Reference

id Identity �2

ge
�p 1

diag Diagonal ��� ��� = ⊕
p

j=1
𝜎2

gej
p

comp Compound symmetry �2

g
�p + �2

ge
�p �p = �p�

⊤

p
2 Patterson et al. (1977)

mdiag Main effects plus diagonal �2

g
�p + ���

p + 1 Cullis et al. (1998)
FAMk Factor analytic plus main 

effects
𝜎2

1
�p + ���⊤

+� � = ⊕k
l=1

dl p(k + 1) − k(k − 1)∕2 + 1 Smith et al. (2001)

FAk Factor analytic ���⊤
+� � = ⊕

p

j=1
𝜓j

p(k + 1) − k(k − 1)∕2 Smith et al. (2001)
rreg

1
Random regression 1 𝜎2

g
�p + 𝜎2

s
��⊤

+� p + 2 Jarquín et al. (2014)
rreg

2
Random regression 2 𝜎2

g
�p + ����

⊤
+� �� = ⊕

q

i=1
𝜎2

si
p + q + 1 Heslot et al. (2014)

FARk Factor analytic regression [�⋆
p
�]����

⊤

�
[�⋆

p
�]⊤ +�

�� =

[
��

��

]
p + k(2q − k + 3)∕2 Jennrich and Schluchter (1986)

IFAk Integrated factor analytic [� �]����
⊤

�
[� �]⊤ +�

�� =

[
��

��

]
p(k + 1) − k(k − 1)∕2 This paper
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Following Smith et al. (2021), the loadings are assumed 
to have orthonormal columns, with �⊤� = �k , and the scores 
are assumed to be independent across factors, with non-unit 
variance. It therefore follows that:

where �2

1
 is the intercept variance, � = ⊕k

l=1
dl is a diagonal 

matrix in which dl is the score variance for the lth latent 
factor ordered as d1 > d2 > … > dk and � = ⊕

p

j=1
𝜓j is a 

diagonal matrix in which �j is the specific variance for the 
jth environment. The variance matrix for � is then given by:

where �� ≡ 𝜎2

1
�p + ���⊤

+� and �p = �p�
⊤

p
 . This variance 

matrix highlights the analogy to a random regression 
without translational invariance, that is where the intercepts 
and slopes are independent (see Eq. 14).

Note that the intercepts in �� reflect the fitted value of each 
genotype at zero values of the environmental loadings. In order 
for the intercepts to reflect true main effects, however, the 
average values of the loadings must also be zero. The analogy 
to ordinary regression models is when the known covariates 
are column centred, so that the intercepts will reflect main 
effects taken at average (zero) values of the covariates.

Smith (1999) use a Gram-Schmidt process to column centre 
the environmental loadings (see “Appendix”). The variance 
matrix in Eq. 6 can therefore be written as:

where �� ≡ �2
g�p + �⋆p�

⋆
12�

⋆⊤ + �⋆�⋆
21�

⋆⊤
p + �⋆�⋆

22�
⋆⊤ +�  , 

with �⋆⊤�⋆
p
= � . This variance matrix highlights the analogy 

to a random regression with translational invariance, that 
is where the main effects and slopes are dependent (see 
Eq. 19). This variance matrix also highlights the analogy 
to a special FA(k + 1 ) model, where the first factor loadings 
are constrained to be equal and the higher order loadings 
sum to zero.

The simple main effects are now equivalent to simple 
averages across environments, with:

where 𝜎2
g
= 𝜎2

1
+

∑k

l=1
dl𝜆̄

2

l
 is the simple main effect variance 

and 𝜆̄l = �⊤

p
�l∕p is the mean loading for the lth latent factor. 

The distinguishing feature compared to the intercepts in 
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)
⊗��,
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][ p𝜎2
g

�⋆
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�⋆
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�⋆
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�⋆
p
�⋆

]⊤
+�

)
⊗��,

(8)�� = �� +
√
p

k�
l=1

𝜆̄l�l and �� ∼ N

�
�, p𝜎2

g
��

�
,

Eq. 5 is that the simple main effects now reflect the fitted 
value of each genotype at average (zero) values of the 
loadings.

The percentage of additive genetic variance explained by 
the simple main effects is given by:

where �� is defined in Eq. 7.

Models with generalised main effects

The conventional factor analytic (FAk) model is a simplifica-
tion of the FAMk model in Eq. 5, with:

where �� = ���⊤
+� . The distinguishing feature of this 

model is that intercepts are not explicitly fitted for each 
genotype (see “Appendix”).

Smith and Cullis (2018) discuss the ability of factor analytic 
models to capture heterogeneity of scale variance, that is non-
crossover GEI, within the first factor. They proposed a set of 
generalised main effects based on this factor, with:

where 𝜆̄1 = �⊤

p
�1∕p and �1 is the p-vector of first factor 

loadings which are assumed to be positive. The generalised 
main effects can therefore be viewed as weighted averages 
across environments. This highlights an important difference 
to the simple main effects in the FAMk model, which are 
simple averages across environments.

The percentage of additive genetic variance explained 
by the generalised main effects is equivalent  to the vari-
ance explained by the first factor, which is given by:

where �� is defined in Eq.  10. This measure will be 
compared to the variance explained by the simple main 
effects in “Results”.

Regressions on known covariates

The ordinary random regression model is given by:

where �� =
(
𝛾g1 , 𝛾g2 ,… , 𝛾gv

)⊤ is the v-vector of simple main 
effects, � =

[
�1 �2 … �q

]
 is the p × q matrix of centred and 

scaled known environmental covariates, �� =
(

�⊤
�1
, �⊤

�2
,… , �⊤

�q

)⊤ 

(9)vg = 100 p�2

g
∕tr(��),
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(
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)
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(
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⊗��,
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�
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,
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,
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is a vq-vector of genotype slopes in which ��i is the v-vector 
for the ith known covariate and � =

(
�⊤

1
, �⊤

2
,… , �⊤

p

)⊤ is the 
vp-vector of regression residuals. This specification high-
lights the analogy to the FAMk model in Eq. 5. Note, how-
ever, that the known covariates are already column centred 
so that the intercepts already reflect simple main effects.

Models without translational invariance

The random regression model in Heslot et  al. (2014) 
assumes independent main effects and slopes, with:

where �2
g
 is the simple main effect variance and �� = ⊕

q

i=1
𝜎2
si
 

is a diagonal matrix in which �2
si
 is the slope variance for the 

ith known covariate. The distributional assumption for �� may 
restrict interpretation, however, when the mean response to 
specific covariates is expected to be nonzero. The regression 
form of �  in Eq.  2 overcomes this issue, with 
�� ∼ N

(
�� ⊗ �v,�� ⊗��

)
 . The variance matrix for � is 

then given by:

where �� ≡ 𝜎2
g
�p + ����

⊤
+�.

The random regression model in Jarquín et al. (2014) 
uses an even simpler variance matrix for the slopes, with 
var(��) = 𝜎2

s
�q ⊗�� , where �2

s
 is the slope variance across 

all known covariates. The variance matrix for � is then given 
by:

where �� ≡ 𝜎2
g
�p + 𝜎2

s
��⊤

+� . Note that this random 
regression is neither scale nor translational invariant.

Models with translational invariance

Jennrich and Schluchter (1986) proposed an extension of 
the random regression model which includes a factor ana-
lytic model for the known environmental covariates. This 
extension will be referred to as the FARk model, where k 
denotes the number of known factors. The FARk model for 
the simple main effects and slopes in Eq. 13 is given by:

[
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]
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,
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(16)�� =
(
�� ⊗ �v

)
� + �� and �� =

(
�� ⊗ �v

)
� + ��,

where � =
(
�⊤
1
, �⊤

2
,… , �⊤

k

)⊤ is the vk-vector of genotype scores 
which correspond to the k known factors. The FARk model 
constructs a joint regression across the main effects and  
slopes, with loadings given by:

where �⊤

�
 is a k-vector and �� is a q × k matrix. The devia-

tions in Eq. 16 are given by:

where �� is a v-vector and �� is a vq-vector.
The inclusion of the deviations in Eq. 16 may be unnec-

essary, however, particularly for higher order FARk mod-
els in which the percentage of variance explained by these 
effects is small. This leads to a reduced rank factor analytic 
model for the simple main effects and slopes (Kirkpatrick 
and Meyer 2004), with:

The main effects and slopes are assumed to be dependent, 
with:

where � = ⊕k
l=1

dl is the score variance matrix with diagonal 
elements ordered as d1 > d2 > … > dk.

The FARk model is then obtained by substituting the vec-
tors in Eq. 17 into Eq. 13, which gives:

The variance matrix for � is then given by:

where �� ≡ �����
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�
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+� , � = [�⋆
p
�] and �� =
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]
 , 

with � ⊤

�
�⊤��� = �k . This variance matrix is equivalent to 

the conventional FAk variance matrix in Eq. 10 when � is 
square and has full rank.

Regressions on known and latent covariates

The integrated factor analytic (IFAk) model is an extension 
of the FARk model to include generalised main effects based 
on latent environmental covariates, instead of simple main 
effects. The IFAk model can also be viewed as a special FAk 
model with loadings constrained to be linear combinations 
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of two orthogonal sources of GEI, that is known and latent 
environmental covariates. The loadings matrix in Eq. 5 can 
therefore be written as:

where � = [� �] is a p × p matrix of basis functions 
which is assumed to have full rank,   � =

[
�1 �2 … �q

]
 is 

the p × q matrix of known environmental covariates and 
� =

[
�1 �2 … �p−q

]
 is a p × (p − q) orthogonal projection 

matrix, with �⊤� = � . The two loadings matrices in Eq. 20 
correspond to the dependent and independent formulations 
of the IFAk model. The dependent formulation is transla-
tional invariant, and thence the focus of this paper. No fur-
ther reference will be made to the independent formulation, 
but full details are provided in the Supplementary Material.

The dependent formulation constructs a joint regression 
across the known and latent environmental covariates. The 
p × k matrix of joint factor loadings is given by:

where �� is a q × k matrix corresponding to the known 
covariates and �� is a (p − q) × k matrix corresponding to 
the latent covariates. The common factors underlying �� and 
�� are therefore referred to as the known and latent factors, 
and collectively as the joint factors.

The projection matrix in Eq.  20 is chosen to ensure 
that � has full rank and that the known and latent factors 
are orthogonal. This is achieved by projecting �� into the 
orthogonal complement to the space spanned by � . A con-
venient choice for � is the first ( p − q ) columns in:

assuming that p > q. This choice ensures that the same 
number of variance parameters are estimated as the 
conventional FAk model in Eq. 10. When p ≫ q , however, 
it may be desirable to take fewer than (p − q) columns in 
Eq. 22, and thence estimate fewer variance parameters. This 
enables the IFAk model to be scalable to a very large number 
of environments.

The IFAk model is obtained by substituting the first load-
ings matrix in Eq. 20 into Eq. 10, which gives:

where � =
(
�⊤
1
, �⊤

2
,… , �⊤

k

)⊤ is the vk-vector of genotype scores 
which correspond to the k joint factors.

The main difference to the FARk model in Eq. 18 is that 
there are now two vectors of slopes, with:
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]
,

(23)� =
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��� + ���

]
⊗ �v

)
� + �,

where �� is a vq-vector corresponding to the known covari-
ates and �� is a v(p − q)-vector corresponding to the latent 
covariates. Another important difference is the addition of 
generalised main effects in �� , with:

where 𝜆̄r1 = �⊤

p−q
��1

∕p . The IFAk model can therefore be 
viewed as a special random regression with generalised main 
effects as well as translational invariance.

The slopes in Eq. 24 are assumed to be dependent, with:

where � = ⊕k
l=1

dl is the score variance matrix with diagonal 
elements ordered as d1 > d2 > … > dk . The variance matrix 
for � is then given by:

where �� ≡ ���⊤
+� and � = �

[
��

��

]
 , with �⊤� = �k . 

This variance matrix is equivalent to the conventional FAk 
model in Eq. 10, where the factors are constrained to be 
linear combinations of known and latent environmental 
covariates.

Model estimation

All variance models for the additive GE effects were 
implemented within the linear mixed model in Eq. 1. The 
two factor analytic linear mixed models with simple and 
generalised main effects are referred to as the FAM-LMM 
and FA-LMM, respectively. The other two linear mixed 
models developed in this paper are derived below.

The factor analytic regression linear mixed model (FAR-
LMM) is obtained by substituting Eq. 18 into Eq. 1, which 
gives:

where ���
= �(��� ⊗ �v) . In this model, the covariances 

between the simple main effects and slopes are based on a 
reduced rank factor analytic model.

The integrated factor analytic linear mixed model (IFA-
LMM) is obtained by substituting Eq. 23 into Eq. 1, which 
gives:
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where ���
= �(��� ⊗ �v) and �� =

[
��

��

]
 . In this model, 

the covariances between the known and latent environmental 
covariates are based on a reduced rank factor analytic model. 
The IFA-LMM will now be used to demonstrate all remain-
ing methods. Similar results can be obtained for the other 
three linear mixed models where required.

Rotation of loadings and scores

Constraints are required in the IFA-LMM during estimation 

to ensure unique solutions for 
[
��

��

]
 and � . Following Smith 

et al. (2021), the upper right elements of 
[
��

��

]
 are set to zero 

when k > 1 and � is set to �k . Let the loadings and scores 

with these constraints be denoted by 
[
�∗

�

�∗

�

]
 and �∗ , with 

�∗ ∼ N
(
�, �k ⊗��

)
 . The loadings and scores can be rotated 

back to their original form in Eq. 23 for interpretation. This 
rotation is given by:

where � is a k × k orthonormal matrix of right singular vec-
tors and �1∕2 is a k × k diagonal matrix of singular values 
sorted in decreasing order, with � ∼ N

(
�, �⊗��

)
 . These 

matrices can be obtained from the singular value decomposi-
tion given by:

where � is a p × k orthonormal matrix of left singular 

vectors, with 
[
��

��

]
≡ �−1� and 

[
�∗

�

�∗

�

]
≡ �−1�∗ , where �∗ 

is the loadings matrix in Eq. 10 with upper right elements 
set to zero (see “Appendix”). This demonstrates how the 
factor loadings in the IFA-LMM can be obtained directly 
from the fit of the conventional FA-LMM.

Computation

The IFA-LMM was coded in R (R Core Team 2021) using 
open source libraries. The computational approach for fitting 
the IFA-LMM is provided in the Supplementary Material. 
This approach obtains REML estimates of the variance 
parameters using an extension of the sparse formulation of 
the average information algorithm (Thompson et al. 2003). 
Let the REML estimates of the key variance parameters be 

denoted by 
[
�̂�

�̂�

]
 and �̂ , with EBLUPs of the key random 

(29)
[
��

��

]
=

[
�∗

�

�∗

�

]
��−1∕2 and � =

(
�1∕2�⊤ ⊗ �v

)
�∗,

(30)�

[
�∗

�

�∗

�

]
= ��1∕2�⊤ or �∗

= ��1∕2�⊤,

effects denoted by �̃  and �̃ . All linear mixed models were 
also fitted in ASReml-R (Butler 2020), with known environ-
mental covariates included using the mbf argument. An 
example R script is provided in the Supplementary 
Material.

Model selection

Order selection in the IFA-LMM was achieved using a com-
bination of formal and informal criteria. Formal selection 
was achieved using the Akaike Information Criterion (AIC) 
and informal selection was achieved using two measures 
of variance explained. These measures are an extension of 
Smith et al. (2021) to include known environmental covari-
ates, and are similar to the R2 goodness-of-fit statistic in 
multiple regression. These measures are derived in the Sup-
plementary Material.

The percentage of additive genetic variance explained by 
the known covariates and overall by the known and latent 
covariates is given by:

where �� is defined in Eq. 26. Similar measures are also 
obtained for the jth environment, that is vsj and vj . The final 
model order is typically chosen such that v̄s and v̄ are suffi-
ciently high and the number of environments with low val-
ues of vsj and vj is small. Note that this may require a differ-
ent number of known and latent factors, that is ks and kr.

Model assessment

Model assessment of the IFA-LMM was achieved using the 
prediction accuracy for current and future environments. 
Prediction into current environments was assessed using 
leave-one-out cross-validation, where yield data for a single 
environment were excluded and then predicted. The additive 
GE effects for environment j were predicted as:

where �⊤

j
 is a q-vector of known covariates, �̃j is a vjk-vector 

of predicted scores for the vj genotypes in the jth current 
environment and �̄�

−j
= �⊤

p−q−1
�̂�

−j
∕(p − 1) ensures the 

scores are appropriately scaled by the latent covariates. Note 
that the factor loadings, �̂�

−j
 and �̂�

−j
 , are estimated using 

data on the ( p − 1 ) environments excluding the jth 
environment. The prediction accuracy for environment j was 
then calculated as:
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tr
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tr
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) ,
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)
�̃j,
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where �̄j is a vj-vector of genotype mean yields for the jth 
current environment.

Prediction into future environments was assessed using a 
similar measure, but note that yield data for the entire year 
were excluded at once. The additive GE effects for environ-
ment j were then predicted as:

where �∗⊤
j

 is a q-vector, �̃∗
j
 is a v∗

j
k-vector for the v∗

j
 genotypes 

in the jth future environment and �̄� = �⊤

p−q
�̂�∕p . In this 

case, the factor loadings, �̂� and �̂� , are estimated using data 
on the p current environments only.

Model summaries and interpretation

The main limitation of the conventional FA-LMM is that 
the common factors are latent so they cannot be used for 
interpretation or prediction. The IFA-LMM overcomes this 
limitation since it integrates known environmental covariates 
into the common factors. Interpretation is then achieved 
using a series of regression plots and four measures of 
variance explained. The regression plots are an extension of 
Cullis et al. (2014) and the measures of variance explained 
are an extension of Eq. 31.

The percentage of additive genetic variance explained by 
known covariate i is given by:

(33)rj = cor
(
�̄j, �̃j

)
,

(34)�̃∗
j
=

([
�∗
j
�̂� + �̄�

]
⊗ �v

)
�̃∗
j
,

(35)vsi = 100

[
�⊤
i
��̂��̂�̂

⊤

�i

]2
[
�̂�i

�̂�̂
⊤

�i

]
tr
(
�̂�

) ,

where �� is defined in Eq. 26. Note that v̄s ≠
∑q

i=1
vsi since 

the known covariates are not orthogonal. This issue is 
addressed in the Supplementary Material.

The percentage of additive genetic variance explained by 
known factor l and by joint factor l is given by:

Note that v̄s =
∑k

l=1
vsl and v̄ =

∑k

l=1
vl since the known and 

joint factors are orthogonal.
Lastly, the percentage of additive genetic variance in joint 

factor l explained by known covariate i is given by:

The percentage of variance explained by all covariates is 
then given by vl⋅ = 100

[
�̂

⊤

�l
�⊤��̂�l

]
 , which is equivalent to 

vsl∕vl in Eq. 36.

Results

This section presents the results of model fitting using the 
2017 P1 MET dataset and model assessment using the 2018 
P2 MET dataset. The P1 dataset is summarised in Tables 1 
and 2, and comprises v = 204 genotypes evaluated in 
p = 24 current environments with q = 18 known covariates. 
The P2 dataset is summarised in Supplementary Tables 9 
and 10, and comprises v∗ = 55 (of the 204) genotypes 
evaluated in p∗ = 20 future environments with the same 
known covariates. The results are presented according to 
model selection, assessment and interpretation.

(36)vsl = 100
d̂l�̂

⊤

�l
�⊤��̂�l

tr(�̂�)

and vl = 100
d̂l

tr(�̂�)

.

(37)vli = 100
(
�i
[
��̂�l

+ ��̂�l

])2
.

Table 4   Linear mixed models 
with random regressions on 
latent environmental covariates

Presented for each model is the number of estimated genetic variance parameters, residual log-likelihood, 
AIC and percentage of variance explained by the simple ( vg ) or generalised ( v

1
 ) main effects and overall ( ̄v)

Note: 128 non-genetic and residual variance parameters estimated in all models. The selected FAM4 and 
FA4 models are distinguished with bold font
* Models where intercepts are not explicitly fitted

Regressions on latent covariates

(a) Models with simple main effects (b) Models with generalised main effects∗

Model Pars Loglik AIC vg v̄ Model Pars Loglik AIC v
1

v̄

comp 2 10,504.2 − 20,748.4 36.2 36.2 id 1 10,156.9 − 20,055.9 − −

mdiag 25 10,563.6 − 20,821.1 33.6 33.6 diag 24 10,249.3 − 20,194.7 – –
FAM1 49 10,765.4 − 21,176.8 36.8 54.4 FA1 48 10,667.1 − 20,982.2 43.2 43.2
FAM2 72 10,893.8 − 21,387.6 37.2 67.5 FA2 71 10,827.4 − 21,256.8 44.1 60.4
FAM3 94 10,942.9 − 21,441.8 38.2 72.0 FA3 93 10,940.3 − 21,438.5 43.8 70.7
FAM4 115 10,981.7 − 21,477.5 38.1 76.9 FA4 114 10,978.3 − 21,472.5 43.8 75.2
FAM5 135 11,011.2 − 21,496.5 38.7 80.0 FA5 134 11,010.1 − 21,496.1 44.3 79.0
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Model selection

Tables 4 and 5 present the model selection criteria previ-
ously described in “Model selection”. The important results 
from each model fit are detailed below.

Baseline linear mixed models

The analyses commenced by fitting a linear mixed model 
with a diagonal model for the additive GE effects (diag; 
Table 4b). This approach reflects the initial single-site 
analyses routinely performed on MET datasets, where the 
additive GE effects in different environments are assumed 
to be independent. The single-site analyses are typically 
used to inspect the experimental design, address spatial 
variations and identify potential outliers.

The analyses continued by fitting a linear mixed model 
with a compound symmetry model for the additive GE 
effects (comp; Table 4a). This approach  reflects many 
current applications of GS in plant breeding, where the 
additive GE effects in different environments are assumed 
to be correlated. The compound symmetry model is very 
restrictive, however, since it comprises a single variance 
component for the simple genotype main effects and 
genotype by environment interaction effects. This model 
can be extended to include heterogeneous interaction 
variances across environments, that is the main effects 

plus diagonal model (mdiag; Table 4a). The AIC for this 
model is much lower, and thence much better, than the 
standard compound symmetry model. There are negligible 
differences between the overall additive genetic variance 
explained, however, with v̄ ≈ 35% for both models.

Regressions on latent covariates

A series of factor analytic linear mixed models were then 
fitted with either (a) simple or (b) generalised main effects 
(Table 4). The most notable differences between the FAM-
LMMs and FA-LMMs are observed in the lower orders, 
where the overall additive genetic variance explained by the 
latent common factors is low. At the higher orders, where 
the overall variance explained is sufficiently high, the dif-
ferences are negligible. Both models required k = 4 latent 
factors to reach a sufficient percentage of additive genetic 
variance explained for individual environments and overall, 
with vj > 40 % and v̄ > 75% . Lastly, note that the generalised 
main effects in (b) explain 5.7% more variance than the sim-
ple main effects in (a), despite very similar overall variance 
explained. This feature is now discussed.

The simple and generalised main effects are demonstrated 
in Fig. 2. This figure presents a series of regression plots 
for checks C1 and C2 in terms of the (a) FAM4 and (b/c) 
FA4 models. Recall that the FAM4 model can be viewed 
as a special FA5 model where the first factor loadings are 

vg = 38.1%  and  v2 = 14.0% v1 = 43.8% v2 = 16.3%

(a) FAM4 model,  facs 1 & 2 (b) FA4 model,  factor 1 (c) FA4 model,  factor 2
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Fig. 2   Regression plots for checks C1 and C2 in terms of the first 
two factors obtained from the a FAM4 and b/c FA4 models. Note:  
The simple main effects in a and the generalised main effects in b are 
denoted with closed circles and the growing regions are distinguished 

by shape. The percentage of additive genetic variance explained 
by each factor  is labelled. The  additive GE effects in c have been 
adjusted for those in b 
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equal and correspond to the simple main effects, whereas 
the higher order loadings sum to zero and correspond to 
the interaction effects. The first two factors are plotted for 
the FAM4 model in Fig. 2a where the simple main effects 
are denoted by the fitted values of the second factor regres-
sions at the mean loading of zero, that is 0.06 and − 0.09 t/ha 
for C1 and C2. In contrast, the generalised main effects for 
the FA4 model in Fig. 2b are denoted by the fitted values of 
the first factor regressions at the mean loading of 0.19, that 
is 0.05 and − 0.06 t/ha. There are two important differences 
between these approaches: 

1.	 The generalised main effects capture heterogeneity 
of scale variance, that is non-crossover GEI, whereas 
the simple main effects do not capture GEI. This is 
demonstrated in Fig.  2b where the regression lines 
diverge across environments so the genotype rankings 
never crossover, whereas the first factor regression lines 
in the FAM4 model are always parallel (not shown).

2.	 The higher order factors in the FA4 model predominately 
capture crossover GEI only, whereas those in the FAM4 
model capture some mixture of non-crossover and 
crossover GEI. This is demonstrated in Fig. 2c where 
the regression lines intersect so the genotype rankings 
crossover, whereas the regression lines in Fig. 2a diverge 
as well as crossover.

Regressions on known covariates

The next two linear mixed models fitted include random 
regressions without translational invariance. The random 
regression in Jarquín et al. (2014) reflects a popular appli-
cation of GS in plant breeding (rreg1 ; Table 5a). Like the 
compound symmetry model, however, this model is very 

restrictive since it only comprises two variance components. 
The only difference is that the interaction effects are now 
parametrised by known environmental covariates. This 
model can be extended to include heterogeneous interaction 
variances across covariates (rreg2 ; Table 5a). The AIC for 
the random regression in Heslot et al. (2014) is much better 
than the simpler random regression. There are negligible 
differences between the additive genetic variance explained, 
however, with v̄s ≈ 23% and v̄ ≈ 58% for both models. Inter-
estingly, the former measure matches that reported in Jarquín 
et al. (2014).

A series of FAR-LMMs with translational invariance 
were then fitted (Table 5a). This approach required k = 4 
known factors to reach a sufficient percentage of additive 
genetic variance explained for individual environments and 
overall, with vj > 40% and v̄ = 70.7 %. The AIC for the FAR4 
model is substantially better than the random regressions 
in Jarquín et al. (2014) and Heslot et al. (2014). The FAR4 
model also explains more additive genetic variance in 
the known covariates, with v̄s = 33.2% compared to only 
20.8 and 23.2 %. This demonstrates the importance of 
appropriately modelling the variance structure between 
known covariates.

Regressions on known and latent covariates

The analyses concluded by fitting a series of IFA-LMMs 
with generalised main effects and translational invariance 
(Table 5b). This approach required ks = 4 known and kr = 3 
latent factors to reach a sufficient percentage of additive 
genetic variance explained for individual environments 
and overall, with vj > 45% and v̄ = 74.9% . The AIC for the 
IFA4-3 model is substantially better than the FAR4 model. 

Table 5   Linear mixed models 
with random regressions on 
known and latent environmental 
covariates

Presented for each model is the number of estimated genetic variance parameters, residual log-likelihood, 
AIC and percentage of variance explained by the known covariates ( ̄vs ) and overall ( ̄v)
Note: 128 non-genetic and residual variance parameters estimated in all models. The models  rreg

1
 and 

rreg
2
 correspond to the random regressions in Jarquín et al. (2014) and Heslot et al. (2014). The selected 

FAR4 and IFA4-3 models are distinguished with bold font.
* Models where intercepts are not explicitly fitted

Regressions on known covariates Regressions on known and latent covariates

(a) Models with simple main effects (b) Models with generalised main effects*

Model Pars Loglik AIC v̄s v̄ Model Pars Loglik AIC v̄s v̄

rreg
1

26 10,721.2 − 21,134.3 20.8 57.1 id 1 10,156.9 − 20,055.9 − −

rreg
2

43 10,750.7 − 21,159.3 23.2 58.5 diag 24 10,249.3 − 20,194.7 − −

FAR1 43 10,636.7 − 20,931.4 6.2 40.0 IFA1 48 10,667.1 − 20,982.2 7.0 43.2
FAR2 61 10,791.4 − 21,204.8 19.2 57.0 IFA2 71 10,827.4 − 21,256.8 20.1 60.4
FAR3 78 10,887.0 − 21,361.9 29.2 66.7 IFA3 93 10,940.3 − 21,438.5 30.1 70.7
FAR4 94 10,911.7 − 21,379.4 33.2 70.7 IFA4-3 108 10,971.9 − 21,471.9 34.4 74.9
FAR5 109 10,931.3 − 21,388.7 36.2 73.8 IFA5-3 122 10,996.4 − 21,492.8 36.2 78.0
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The IFA4-3 model also explains more overall variance, that 
is v̄ = 74.9% compared to 70.7%, despite similar variance 
explained by the known covariates, with v̄s ≈ 35% for both 
models. This demonstrates the advantage of including gener-
alised main effects based on latent environmental covariates, 
instead of simple main effects.

Model comparison

The IFA4-3 model provides a good fit to the MET dataset 
and captures a large proportion of additive genetic vari-
ance (Table 5). The FAM4 and FA4 models also provide 
a good fit and capture a large proportion of variance, but 
they cannot be used for prediction into future environ-
ments (Table 4). The random regression models in Jar-
quín et al. (2014) and Heslot et al. (2014) can be used for 
prediction, but they provide a poor fit, capture the lowest 
variance of all models and are not translational invariant. 
The FAR4 model provides a better fit and captures more 
variance than the simpler random regression models, and 
is translational invariant. The IFA4-3 model provides an 
even better fit, captures more variance than the FAR4 
model and is also translational invariant; making it the 
preferred method of analysis in this paper.

Model assessment

The mean prediction accuracy of the IFA4-3 model is con-
siderably higher than all other random regression mod-
els (Table 6). The prediction accuracy was calculated in 
terms of 24 current environments in 2017 P1 and 20 future 
environments in 2018 P2. The most notable differences 
between models are observed for the 2018 environments in 
Texas, where the accuracy of the IFA4-3 model is at least 

0.22 higher. In the Southeast and Midsouth, the accuracies 
are at least 0.06 and 0.10 higher, respectively. The differ-
ences in Texas are negligible for the 2017 environments, 
where the accuracies are generally higher for all models. 
In the Southeast and Midsouth, however, the accuracies of 
the IFA4-3 model are still at least 0.09 higher.

Model summaries and interpretation

Tables 7, 8 and Figs. 3, 4 present the model summaries 
previously described in  “Model summaries and interpreta-
tion”. These summaries are presented for the IFA4-3 model 
in terms of environments, covariates and genotypes.

Summary of environments and covariates

Table 7 presents a summary of the growing environments in 
the 2017 P1 MET dataset. The additive genetic variance of 
individual environments range from 0.01 to 0.06, with mean 
of 0.03. These variances are obtained from the diagonal 
elements of the denominator in Eq. 31. The overall variance 
explained by the known and latent covariates is much higher 
than the variance explained by the known covariates alone, 
that is vj = 44.3 − 100.0 % with v̄ = 74.9% compared to 
vsj = 12.5 − 85.4 % with v̄s = 34.4% . Most variance is 
explained overall in the Midsouth (84.9% compared to only 
66.6 and 69.3%), whereas most variance is explained by the 
known covariates in Texas (41.1% compared to only 28.4 
and 33.4 %). Table 7 also presents REML estimates of the 
joint factor loadings. The first factor comprises positive 
loadings only, and explains v1 = 43.7 % of the additive 
genetic variance. The higher order factors comprise both 
positive and negative loadings, and explain vl = 4.0 − 16.2 
%, with 31.2% in total. The sign of the loadings indicate that 
the first factor captures non-crossover GEI only, whereas the 

Table 6   Summary of the 
prediction accuracies for the 
2017 current and 2018 future 
environments

Presented for each model is the minimum, mean and maximum prediction accuracy for the △ Southeast, ° 
Midsouth and × Texas, as well as overall across all regions
Note: The models rreg

1
 and rreg

2
 correspond to the random regressions in Jarquín et al. (2014) and Heslot 

et al. (2014). The highest accuracy is distinguished with bold font

Year Model △ Southeast ° Midsouth × Texas Overall

Min Mean Max Min Mean Max Min Mean Max Min Mean Max

rreg
1

0.27 0.51 0.68 0.30 0.58 0.77 0.27 0.47 0.60 0.27 0.52 0.77
rreg

2
0.27 0.52 0.69 0.29 0.58 0.76 0.27 0.47 0.61 0.27 0.52 0.76

FAR4 0.25 0.50 0.66 0.34 0.59 0.77 0.25 0.48 0.64 0.25 0.52 0.77
2017 IFA4-3 0.33 0.60 0.76 0.45 0.68 0.79 0.29 0.50 0.65 0.29 0.60 0.79

rreg
1

0.58 0.60 0.64 0.30 0.50 0.71 − 0.03 0.20 0.34 − 0.03 0.42 0.71
rreg

2
0.58 0.61 0.64 0.28 0.49 0.70 − 0.02 0.21 0.36 − 0.02 0.42 0.70

FAR4 0.58 0.61 0.67 0.26 0.49 0.71 0.02 0.22 0.36 0.02 0.43 0.71
2018 IFA4-3 0.60 0.67 0.71 0.31 0.60 0.79 0.30 0.44 0.62 0.30 0.56 0.79
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higher order factors predominately capture crossover GEI 
only (Smith and Cullis 2018).

Table  8 presents a similar summary for the known 
environmental covariates in the MET dataset. The additive 
genetic covariance of individual covariates range from − 0.33 
to 0.25, with mean of 0.01. These covariances are obtained 
from the square-root of the elements in Eq. 37. The variance 
explained by individual covariates is vsi = 0.1 − 10.1 %, 
with v̄s = 34.4 %. The most notable covariates are maxDSR 
(10.1%), avgCCR (4.5%) and maxTMP (4.0%). Table 8 also 
presents REML estimates of the known factor loadings. The 
interpretation of these loadings is similar to above, but note 
that the higher order factors explain more additive genetic 
variance than the first factor, with 29.0% in total compared to 
only 5.4%. This will be discussed further below.

Correlations between environments

Figure 3 presents heatmaps of the additive genetic corre-
lation matrices between environments in terms of the (a) 

known covariates and (b) known and latent covariates. These 
matrices are ordered based on the dendrogram constructed 
using the agnes function in the cluster package (Maechler 
et al. 2019). This dendrogram generally places environments 
closer together that have more similar GEI patterns than 
those further apart. Figure 3 suggests there is structure to 
the GEI underlying the heatmaps. There are three notable 
features: 

1.	 The overall correlations based on the known and latent 
covariates are considerably higher than the correlations 
based on the known covariates alone.

2.	 The highest overall correlations generally occur between 
environments in the same growing region. Environments 
in the Southeast and Midsouth are also well correlated.

3.	 The overall correlations between environments in the 
same growing region are less than one. This indicates 
that crossover GEI is present within regions.

Table 7   The selected IFA4-3 
model, Part 1: Summary of 
growing environments

Presented are the REML estimates of additive genetic variance, percentage of variance explained by the 
known covariates ( vsj) and overall ( vj ), as well as estimates of the joint factor loadings ( ̂�l)
Note:  The percentage of variance explained across all environments ( ̄vs and v̄ ), as well as by individual 
factors ( vl ) is presented in the final row. The measure vsj is greater than vj for 17NC1 and 17TX6 since the 
known and latent covariates are not orthogonal for individual environments

State Env Var vsj vj �̂
1

�̂
2

�̂
3

�̂
4

△ North Carolina 17NC1 0.01 85.4 69.3 0.06 − 0.04 0.33 0.06
17SC1 0.02 12.5 56.4 0.18 − 0.06 0.17 − 0.15
17SC2 0.01 40.7 48.6 0.07 − 0.03 0.27 − 0.09

△ South Carolina 17SC3 0.02 23.8 90.5 0.23 − 0.14 0.26 −0.03
17GA1 0.03 23.1 63.8 0.20 − 0.08 0.29 − 0.02
17GA2 0.03 19.1 54.0 0.19 − 0.10 0.31 0.01
17GA3 0.02 29.8 82.3 0.21 − 0.12 0.20 − 0.09

△ Georgia 17GA4 0.02 26.9 67.6 0.18 − 0.10 0.28 0.14
° Missouri 17MO1 0.06 26.6 82.2 0.39 − 0.17 − 0.15 0.39

17AR1 0.01 49.1 100.0 0.14 0.00 − 0.32 0.09
° Arkansas 17AR2 0.06 32.1 89.2 0.39 − 0.16 − 0.34 0.30

17MS1 0.03 46.0 81.6 0.23 0.00 − 0.26 − 0.44
17MS2 0.03 47.5 77.6 0.24 − 0.12 − 0.15 0.23

° Mississippi 17MS3 0.03 37.3 100.0 0.26 − 0.09 − 0.23 − 0.43
17LA1 0.03 19.9 71.8 0.23 − 0.17 − 0.01 − 0.32

° Louisiana 17LA2 0.02 22.5 76.4 0.20 − 0.10 0.11 − 0.07
17TX1 0.02 61.4 91.8 0.15 0.39 0.04 0.09
17TX2 0.02 36.6 61.9 0.12 0.28 0.10 0.17
17TX3 0.05 41.5 74.0 0.21 0.46 0.07 − 0.06
17TX4 0.01 32.6 64.6 0.10 0.22 0.07 − 0.17
17TX5 0.04 29.9 62.0 0.20 0.34 0.01 − 0.18
17TX6 0.01 80.7 44.3 0.06 0.17 0.05 0.10
17TX7 0.02 44.4 66.5 0.12 0.33 − 0.01 0.02

× Texas 17TX8 0.02 24.1 72.0 0.13 0.28 0.12 0.19
Overall – 0.03 34.4 74.9 43.7 16.2 11.0 4.0
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Table 8   The selected IFA4-3 
model, Part 2: Summary of 
known environmental covariates

Presented are the REML estimates of additive genetic covariance, percentage of variance explained 
by individual known covariates ( vsi) and estimates of the known factor loadings ( ̂��l

)
Note: The percentage of variance explained by all known covariates ( ̄vs ) and by individual factors ( vsl ) is 
presented in the final row

Covariate Covar vsi �̂�
1

�̂�
2

�̂�
3

�̂�
4

LAT 0.02 0.4 0.02 0.10 − 0.21 − 0.20
LONG 0.05 0.5 − 0.18 0.04 0.56 0.33
avgCCR​ − 0.18 4.5 − 0.37 0.31 − 0.02 0.29
maxDPT 0.25 3.7 0.47 − 0.46 − 0.68 − 0.22
maxDSR 0.25 10.1 − 0.30 0.41 − 0.10 0.17
minHUM − 0.33 3.5 − 0.62 0.24 1.03 1.10
maxNSR 0.04 1.9 0.05 0.11 − 0.19 − 0.29
maxPRP − 0.01 0.1 0.04 0.05 − 0.18 − 0.55
totPRP 0.03 1.6 0.11 − 0.01 0.05 − 0.15
maxTMP 0.18 4.0 − 0.31 0.09 0.58 0.32
minTMP − 0.18 3.1 − 0.05 0.44 − 0.67 − 1.00
minWSP 0.01 0.1 − 0.13 − 0.09 0.31 0.16
avgWDR − 0.03 1.5 0.03 0.14 − 0.01 − 0.33
maxST1 − 0.04 1.0 0.09 0.06 − 0.27 − 0.25
minST1 0.04 0.1 0.37 − 0.48 0.15 0.96
avgSM3 − 0.02 0.4 0.10 0.12 0.10 0.19
avgSM4 0.05 1.2 − 0.10 − 0.15 − 0.25 − 0.41
minST4 0.09 1.4 − 0.30 0.32 0.10 − 0.48
Overall 0.01 34.4 5.4 15.3 9.8 3.9
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Regression plots for genotypes

Figure 4a presents a series of regression plots for checks 
C1 and C2 in terms of the k = 4 joint factors in the IFA4-3 
model. These plots are used to assess genotype perfor-
mance and stability in response to the known and latent 
environmental covariates. These plots show that check C1 
is generally higher performing than C2 since it has a higher 
predicted slope for the first factor regression, that is 0.26 
compared to − 0.32. Both checks are considerably unstable, 

however, since they have large slopes for the higher order 
factors and therefore have large deviations about the first 
factor regression. Figure 4a also suggests that the second 
factor is correlated with longitude (Pearson's r = 0.80 ), 
where the loadings on the left correspond to the Southeast 
and Midsouth while the loadings on the right correspond to 
Texas. This highlights an important limitation of the con-
ventional FA-LMM, where interpretation is often limited to 
post-processing of the latent factors. This will be discussed 
further below.

v1 = 43.7% v2 = 16.2% v3 = 11.0% v4 = 4.0%

Factor 1 Factor 2 Factor 3 Factor 4
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Fig. 4   a Regression plots for checks C1 and C2 in terms of four joint 
factors and b percentage of additive genetic variance in the joint fac-
tors explained by the known covariates. Note: The generalised main 
effects in a are denoted with closed circles and the growing regions 
are distinguished by shape. The percentage of variance explained by 

each factor is labelled in a and the percentage of variance in each fac-
tor explained by all known covariates is labelled in b. The additive 
GE effects for the higher order factors are adjusted for the preceding 
factor(s). Only 10 (of the 18) known covariates are displayed in b for 
brevity
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Figure 4b presents direct interpretation of the factors 
in terms of the variance explained by the known environ-
mental covariates. This figure suggests there is structure 
to the GEI underlying the regression plots. There are three 
notable features: 

1.	 The known covariates predominately model crossover 
GEI, with vl⋅ = 89.2 − 97.9 % of the additive genetic 
variance explained in the higher order factors compared 
to only v1⋅ = 12.4% explained in the first factor. These 
measures are obtained from Eq. 36, and are equivalent 
to vsl∕vl in Tables 7 and 8.

2.	 The second factor is well explained by multiple known 
covariates. This demonstrates the biological drivers of 
crossover GEI in this factor, that is the drivers of crosso-
ver GEI due to changes in LONG.

3.	 The third and fourth factors are not well explained by 
individual covariates. This indicates that crossover GEI 
in these factors is driven by a combination of known 
covariates as well as their interaction.

Discussion

This paper developed a single-stage GS approach which 
integrates known and latent environmental covariates within 
a special factor analytic framework. The FA-LMM of Smith 
et  al. (2001) is an effective method for analysing MET 
datasets, but has limited practicality since the underlying 
factors are latent so the modelled GEI is observable, rather 
than predictable. The advantage of using random regressions 
on known environmental covariates is that the modelled 
GEI becomes predictable. The IFA-LMM developed in this 
paper includes a model for predictable and observable GEI 
in terms of a joint set of known and latent environmental 
covariates.

Regressions on known environmental covariates were 
first used in plant breeding by Yates and Cochran (1938). 
Their work was later popularised by Finlay and Wilkinson 
(1963), and includes a fixed coefficient regression on a 
set of environmental mean yields (covariates). Despite its 
popularity, however, there is a fundamental problem with 
using mean yields as covariates (Knight 1970; Freeman 
and Perkins 1971). This problem can be overcome 
by implementing environmental covariates which are 
independent of the genotypes under study,  such as soil 
moisture and daily temperature (Hardwick and Wood 1972; 
Fripp 1972). Several authors have also used fixed regressions 
on genotype covariates, such as disease resistance and 
maturity, in addition to the environmental covariates. This 
approach is often referred to as fixed factorial regression 
(Denis 1980, 1988).

An alternative approach is to use a linear mixed model 
with a random coefficient regression. This approach was 
popularised by Laird and Ware (1982), and requires an 
appropriate variance model for the intercepts and slopes 
which ensures  the regression is scale and translational 
invariant. An appropriate choice is the fully unstructured 
variance model, however, this model becomes computa-
tionally prohibitive as the number of covariates increases. 
Recently, Heslot et al. (2014) extended the random regres-
sion model for GS, but they were unable to fit an appro-
priate variance model (also see Jarquín et al. 2014). The 
FAR-LMM developed in this paper  includes a reduced 
rank factor analytic variance model for the intercepts and 
slopes. This ensures the regression is computationally 
efficient as well as both scale and translational invariant, 
regardless of the number of covariates. The selected FAR-
LMM also provides a substantially better fit and captures 
more additive genetic variance than the simpler random 
regression models.

The FAR-LMM includes a set of simple main effects 
which reflect simple averages across environments. Smith 
and Cullis (2018) discuss the limitations of simple main 
effects, and demonstrate how generalised main effects can 
be obtained from FA-LMMs. They also discuss how the 
generalised main effects capture heterogeneity of scale vari-
ance, that is non-crossover GEI, whereas the simple main 
effects do not. The generalised main effects can therefore 
be viewed as weighted averages across environments which 
are based on differences in scale variance. This highlights 
an important difference to the simple main effects, which 
are more restrictive and based on a single genetic variance 
across environments. This feature is demonstrated in Fig. 2 
for the FA-LMM and the FAM-LMM, where the generalised 
main effects capture ∼ 6% more additive genetic variance 
than the simple main effects.

The IFA-LMM is an effective method for analysing MET 
datasets which also utilises crossover and non-crossover GEI 
for genomic prediction into current and future environments. 
The IFA-LMM is effective since it exploits the desirable 
features of the FAR-LMM and the FA-LMM. That is, it 
exploits the ability of random regression models to capture 
crossover GEI for prediction using known covariates and the 
ability of factor analytic models to capture non-crossover 
GEI using latent covariates. The IFA-LMM can therefore 
be viewed as a random factorial regression, with known 
genotype covariates derived from marker data, known envi-
ronmental covariates derived from weather and soil data as 
well as latent environmental covariates estimated from the 
phenotypic data itself. The IFA-LMM can also be viewed as 
a linear mixed model analogue to redundancy analysis (Van 
Den Wollenberg 1977), where the factors are constrained to 
be linear combinations of known and latent environmental 
covariates. The selected IFA-LMM provides a substantially 
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better fit and captures more additive genetic variance than 
the selected FAR-LMM and the simpler random regression 
models.

There are three appealing features of the IFA-LMM 
which address several long-standing objectives of many 
plant breeding programmes: 

1.	 The IFA-LMM includes a regression model for GEI in 
terms of a small number of known and latent factors. 
This simultaneously reduces the dimension of the known 
and latent environmental covariates.

2.	 The regression model captures predictable GEI in terms 
of known environmental covariates. This is predomi-
nately in the form of crossover GEI, and enables mean-
ingful interpretation and prediction into any current or 
future environment.

3.	 The regression model also captures observable GEI 
in terms of latent environmental covariates, which are 
orthogonal to the known covariates. This is predomi-
nately in the form of non-crossover GEI, and enables a 
large proportion of GEI to be captured by the regression 
model overall.

The IFA-LMM was demonstrated on a late-stage cotton 
breeding MET dataset. This dataset is an example of a small 
in situ training population which comprises a subset of cur-
rent test genotypes and growing environments in 2017. A 
larger MET dataset across multiple years and locations is 
required, however, to capture the extent of transient and 
static GEI in the cotton growing regions of USA. This will 
ensure the scope of the known and latent covariates are rel-
evant for prediction into future environments. Computational 
challenges are anticipated for these larger MET datasets and 
finding efficient ways to scale the IFA-LMM is the topic of 
current research.

There are four important points from “Results”: 

1.	 The IFA4-3 model has fewer genetic variance param-
eters compared to the FA4 and FAM4 models, despite 
very similar model selection criteria (Tables 4 and 5). 
This highlights an important advantage of implementing 
known environmental information into the common fac-
tors. The IFA4-3 model also has better selection criteria 
than the FAR4 model. This also highlights the advantage 
of implementing generalised main effects based on latent 
environmental covariates, instead of simple main effects.

2.	 The known environmental covariates explain v̄s = 34.4 % 
of the overall additive genetic variance, which represents 
93.0% of the crossover GEI captured by the regression 
model. This is at least 11% more variance compared to 
the random regression models in Jarquín et al. (2014) 
and Heslot et al. (2014).

3.	 The latent environmental covariates explain 40.5% of 
the overall additive genetic variance, which represents 
87.6% of the non-crossover GEI. This feature can be 
visualised in Fig. 3 where the overall correlations based 
on the known and latent covariates are much higher than 
those based on the known covariates alone.

4.	 The mean prediction accuracy of the IFA4-3 model is 
0.02–0.10 higher than all other random regression mod-
els for current environments and 0.06 − 0.24 higher for 
future environments (Table 6). This highlights another 
important advantage of implementing known environ-
mental information into the common factors.

Point 4 is now discussed further. The mean prediction accu-
racy of the IFA4-3 model was considerably higher than 
all other random regression models, especially for future 
environments in Texas. The prediction accuracy was calcu-
lated in terms of 24 current environments in 2017 P1 and 20 
future environments in 2018 P2 (Table 6). The accuracy of 
all models were generally low for Texas in 2018, with mean 
of 0.20 − 0.44 for all models. This suggests that GEI is more 
complex in Texas and that there is substantial transient GEI 
present across years in addition to static GEI across loca-
tions (Cullis et al. 2000). It also suggests that the crossover 
GEI captured by the known covariates may not be repeatable 
across years and that the generalised main effects based on 
the latent covariates may not accurately capture the true non-
crossover GEI across years. That is, the current scope of the 
known and latent covariates is less relevant for Texas com-
pared to the Southeast and Midsouth. The application of a 
larger multi-year MET dataset should overcome these issues.

Another key feature of the IFA-LMM is the ability to 
identify the biological drivers of GEI, such as maximum 
downward solar radiation and average cloud cover. 
Interpretation within the IFA-LMM was demonstrated using 
a series of regression plots (Fig. 4). These plots are used to 
assess genotype performance and stability in response to 
the known and latent environmental covariates. Previously, 
interpretation within factor analytic linear mixed models was 
limited to post-processing of model terms, for example by 
correlating known covariates with latent factors (Oliveira 
et  al. 2020) or by examining the response of reference 
genotypes in different environments (Mathews et al. 2011). 
The distinguishing feature of the IFA-LMM is the ability 
to ascribe direct biological interpretation to the modelled 
GEI. This feature has three important practical implications: 

1.	 The first factor captures non-crossover GEI only, and 
is predominately explained by the latent environmental 
covariates. The higher order factors capture crossover 
GEI, and are predominately explained by the known 
environmental covariates. This enables the drivers of 
GEI across a set of target environments to be identified.
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2.	 The importance of known covariates as drivers of GEI 
can be quantified. This provides information on which 
covariates should be measured with high accuracy, say, 
and which covariates may be less important or don’t 
need to be measured at all. This is particularly appeal-
ing with the advent of high-throughput environmental 
data.

3.	 Genomic selection tools can be applied to obtain meas-
ures of overall performance and stability for each geno-
type. This will enable the drivers of genotype perfor-
mance and stability across a set of target environments 
to be identified. This is the topic of a subsequent paper.

The IFA-LMM is an effective method for analysing MET 
datasets which also utilises crossover and non-crossover GEI 
for genomic prediction into current and future environments. 
This is becoming increasingly important with the emergence 
of rapidly changing environments and climate change.

Appendix: Orthogonal matrix rotations

This appendix demonstrates how simple or generalised main 
effects can be obtained from factor analytic models regard-
less of whether intercepts are explicitly fitted. The simple 
main effects require rotation of the loadings and scores using 
a Gram-Schmidt process, whereas the generalised main 
effects require rotation to a principal component solution. 
The two rotations are detailed below.

Gram‑Schmidt process

Smith (1999) discuss the need to column centre the environ-
mental loadings in the FAMk model so they are orthogonal 
to the simple main effects. This is achieved using a Gram-
Schmidt process, with:
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The conventional FAk model can be viewed as a special 
FAMk model where the intercept variance, �2

1
 , is constrained 

to zero. The variance matrix in Eq. 10 can therefore be 
written as:

Simple main effects can be obtained from this model using 
a similar Gram-Schmidt process as above. The FAk variance 
matrix in Eq. 41 is now given by:
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The FAk model in Eq. 10 can therefore be written as:

where �� is a v-vector of simple main effects, with:

Principal component rotation

Constraints are required in the FAM-LMM and FA-LMM 
during estimation to ensure unique solutions for � and � . 
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where � is a k × k orthonormal matrix of right singular 
vectors and �1∕2

= ⊕k
l=1

√
dl is a diagonal matrix of singular 

values sorted in decreasing order, with � ∼ N
(
�, �⊗��

)
 . 

These matrices are obtained from the singular value 
decomposition �∗

= ��1∕2�⊤ , where � is a p × k 
orthonormal matrix of left singular vectors and � ≡ � in 
Eq. 45.

The loadings and scores can then be rotated using the 
Gram-Schmidt process in the previous section to obtain sim-
ple main effects for either model. Alternatively, generalised 
main effects can be obtained for the FA-LMM using Eq. 11. 
In terms of the FAM-LMM, however, an alternative rotation 
is required which consumes the intercept variance, �2

1
 , into the 

factors. This rotation is given by:
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The FAMk model in Eq. 5 can therefore be written as:

where �∙ is a p × (k + 1) matrix and � ∙ is a v(k + 1)-vector. 
The generalised main effects are based on the first factor, 
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