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Abstract

Faba bean (Vicia faba) is a grain legume crop widely cultivated in temperate areas for food and feed. Its productivity can be
constrained by numerous diseases and pests that can be managed by a number of strategies, complemented with the deploy-
ment of resistant cultivars in an integrated manner. Few sources of resistance are available to some of them, although their
phenotypic expression is usually insufficiently described, and their genetic basis is largely unknown. A few DNA markers
have been developed for resistance to rust, ascochyta blight, and broomrape, but not yet for other diseases or pests. Still,
germplasm screenings are allowing the identification of resistances that are being accumulated by classical breeding, suc-
ceeding in the development of cultivars with moderate levels of resistance. The adoption of novel phenotyping approaches
and the unprecedented development of genomic resources along with speed breeding tools are speeding up resistance char-

acterization and effective use in faba bean breeding.

State of the art on faba bean breeding
for disease and pest resistance

Faba bean (Vicia faba) is an annual grain legume crop
(pulse) mainly grown as a valuable source of seed protein for
food and feed, providing an alternative to soybean (Glycine
max) in the temperate regions (Khazaei et al. 2021). Faba
bean has a high protein content and contributes to sustain-
ability of cropping systems by fixing atmospheric nitrogen
in symbiosis with Rhizobium leguminosarum, reducing the
dependence on extensive use of synthetic nitrogen fertiliz-
ers (Karkanis et al. 2018; Minguez and Rubiales 2020). In
spite of decades of decline, faba bean cultivation is speedily
recovering and extending to new areas (FAOSTAT 2021),
which calls for the adjustment of cropping practices and the
breeding of more adapted and productive cultivars able to
address both producers’ and consumer’s needs.

Faba bean can be constrained by a number of diseases and
pests to which some management strategies are in place that
should be integrated in a concerted manner (e.g. Stoddard
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et al. 2010). The deployment of genetic resistance is a core
component of any integrated control strategy. However,
resistance breeding is shown to be slow in faba bean com-
pared to cereal crops, or even compared to other legumes
crops for which deployment of modern genomic tools has
improved the efficiency of breeding programs over the past
decade (Kumar et al. 2011; Varshney et al. 2019). The rea-
sons for the slower progress in faba bean are the reduced
investment in the crop, leading to an insufficient understand-
ing of both genetic basis of most resistances identified and
the etiology and genetic diversity of the pests and diseases.
A battery of sources of resistance has been identified, but in
most instances these have been poorly described, and their
genetic basis is largely unknown. Furthermore, for most of
the pests and pathogens there is little information on patho-
genic variation, or not consensus on existence of races, and
when these have been suggested, they have not been sys-
tematically monitored anywhere. This is paired with poorly
developed genomic resources, complicating faba bean resist-
ance breeding. This is largely due to its sizeable genome
(approx. 13 Gbp) and significantly lower genomics research
activity compared to other major legume crops. But signifi-
cant progress is underway due to turbo-charged research in
this crop (Khazaei et al. 2021). Its gigantic genome size
paired with six large chromosomes made faba bean a model
for cytogenetics, with asynaptic mutants identified (Sjodin
1970), that served on to develop series of trisomics that
later allowed assignment of genetic markers to physical
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chromosomes (Vaz Patto et al. 1999). However, at the same
time, the large genome size, together with an abundance
of transposable elements (Carrillo-Perdomo et al. 2020),
has delayed the faba bean genome and map-based cloning
(Cooper et al. 2017). Meanwhile, transcriptome analysis is
being used for enrichment of genomic resources (Mokhtar
et al. 2020). This has retarded the successful application of
marker-assisted selection (MAS) in faba bean breeding pro-
grams compared to other legume crops (Torres et al. 2006,
2010; Khazaei et al. 2021). Mapping studies have been
using the technologies available at the time, from earlier
studies with RAPD (random amplified polymorphic DNA)
till SNP (single nucleotide polymorphism) markers allow-
ing the development of high density genetic maps derived
mainly from biparental populations (e.g. Satovic et al. 2013;
Webb et al. 2016; Carrillo-Perdomo et al. 2020). Genomic
resources are continuously expanding, till the most recent
report of a high-throughput faba_bean_130K targeted next-
generation sequencing (TNGS) genotyping platform (Wang
et al. 2021). These genomic resources will facilitate MAS
and gene discovery in faba bean. The purpose of this paper is
to review and critically discuss the state of the art and future
strategies on genetics and breeding of faba bean for disease
and pest resistance.

Faba bean genetics resources

Access to well-characterized germplasm collections that
adequately represent the available natural genetic diversity
is a critical resource in any pre-breeding program. Several ex
situ faba germplasm collections are held in genebanks glob-
ally, with a total of over 38,000 accessions including lan-
draces, breeding lines, and improved varieties (Crop Trust
2017). Genesys displays information for about 16,000 faba
bean accessions (GENESYS 2021). ICARDA (International
Center for Agricultural Research in the Dry Areas) hosts
the largest collection of faba bean (21%), followed by the
ICGR-CAAS (Institute of Crop Germplasm Resources of the
Chinese Academy of Agricultural Sciences), and the ATFCC
(Australian Temperate Field Crops Collection). Still, charac-
terization and preliminary evaluation for pre-breeding activi-
ties remains a challenge, mainly due to partial out-crossing
behaviour in this species (4—84%, see Bond and Poulsen
1983). As long as all attempts to produce fertile progenies
with related Vicia species have failed so far, the genetic
diversity available for faba bean breeding is still restricted
to V. faba germplasm, where considerable genetic diversity
is available (Duc et al. 2010), including variable levels of
resistance to major diseases and pests that are presented in
this paper. Novel tools such as FIGS (Focused Identification
of Germplasm Strategy) may also speed up the discovery
of resistance genotypes or genes in germplasm collections.

@ Springer

However, FIGS might be less effective when looking for
resistance to insects (Stenberg and Ortiz 2021). The FIGS
approach has been already shown to be an effective tool to
enhance the discovery of new genes for abiotic stress adapta-
tion in faba bean (Khazaei et al. 2013). The development of
high-throughput genotyping platforms, a reference genome,
and following pan-genomes will facilitate characterization of
the genetic diversity and structure of this species (Khazaei
et al. 2021). It will also aid exploitation of the diversity as a
key resource for breeding for biotic stress resistance.

Current knowledge on resistance to fungi
and oomycete

Faba bean rust, incited by the biotrophic fungus Uromyces
viciae-fabae (syn. U. fabae), is serious disease worldwide
(Emeran et al. 2011; Ijaz et al. 2018). It is an authoicos
macrocyclic rust, not requiring an alternate host to complete
its lifecycle, although sexual reproduction is not commonly
seen in temperate regions. In fact, U. viciae-fabae is a spe-
cies complex in which formae speciales might be distin-
guished, with faba bean, vetch (V. sativa), and lentil (Lens
culinaris) host-specialized isolates (Emeran et al. 2005;
Rubiales et al. 2013; Ijaz et al. 2020).

Insights into the faba bean rust genome have been initi-
ated (Link et al. 2014), which can help in the search for
secreted proteins and effectors. However, basic knowledge
of pathogenic variation is still insufficient. Races have been
suggested within the faba bean infecting isolates (Conner
and Bernier 1982; Rojas-Molina et al. 2006; Ijaz et al. 2018),
but their distribution has not been systematically monitored
anywhere. Rust can be controlled with fungicides (Emeran
et al. 2011). Alternative methods such as intercropping, cul-
tivar mixtures, biological control or activation of systemic
induced resistance (Gaunt 1983; Sillero et al. 2012; Shtaya
et al. 2021) can contribute to reduce rust infection but are not
yet available at the commercial level. So far, only incomplete
levels of resistance against U. viciae-fabae are available,
mostly described as “slow rusting” (Table 1 and associated
references). More detailed observations allowed to discern
two types of incomplete resistance. The most common was
non-hypersensitive resistance (Sillero et al. 2000; Herath
et al. 2001) reducing hyphal growth and hampering hausto-
ria formation (Rubiales and Sillero 2003; Rojas-Molina et al.
2007) resulting in reduced epidemic progress despite a com-
patible interaction (high infection type, this is pustules well
formed with no associated macroscopically visible necrosis).
Attempts to identify alleles/QTLs (quantitative trait loci) for
resistance and the development of DNA markers for non-
hypersensitive resistance have been initiated, but no results
are reported so far. A second type of incomplete resistance
was the “late acting” hypersensitive rust resistance (Sillero
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Table 1 (continued)

&

References*

Genetic basis

Phenotype description of resistances

identified

Screening conditions

Accessions

Springer

Ijaz et al. (2021)

Monogenic

Moderate: reduced IT

Biparental populations involving Doza and Greenhouse screening with artificial

inoculation

V-300
Doza, Nura, Kareema, Marne, Nanu,

Pulse Australia (2021)

Not studied

Incomplete: reduced severity

Field screening

Nasma, Warda

*This table details only reports since 2000. For older citations see Bond et al. (1994) and Sillero et al. (2010). IT, infection type. DS, disease severity

et al. 2000; Adhikari et al. 2016) with some haustoria failing
to form due to hypersensitive cell death, but others forming
successfully, allowing some colony development, although
with reduced disease severity, with an intermediate infec-
tion type (moderate pustules surrounded by some macro-
scopically visible necrosis). Such hypersensitive resistance
is controlled by single genes (Sillero et al. 2000), some of
which are mapped, like Uvf-1 (Avila et al. 2003), Uvf-2, and
Uvf-3 (Ijaz et al. 2021). Reported KASP (kompetitive allele
specific PCR) markers should allow pyramiding of these
genes to increase the level of resistance and its durability.
Ascochyta blight is a foliar disease incited by Didy-
mella fabae (anamorph Ascochyta fabae). Infection can be
started by conidiospores carried and distributed by infected
seeds and crop debris or by wind-dispersed ascospores.
Then, rain and wind disperse the conidiospores. The use of
fungicides reduces ascochyta blight damage, but the inte-
gration of management practices is crucial to successful
control (Ahmed et al. 2016). Physiological specialization
has been suggested, although there is no consensus in the
definition of races (Ali and Bernier 1985; Rashid et al.
1991a; Kohpina et al. 1999; Avila et al. 2004). Still, the
existence of at least two virulence groups has been sug-
gested in Australia, being more aggressive on resistant cul-
tivars, reinforcing the need to monitor pathogen variability
(Kimber et al. 2016). Some levels of incomplete resistance
have been reported (Table 2) using a range of screening
methods under different environmental conditions, which
complicates proper comparisons of results (Tivoli et al.
2006). Earlier reports pointed towards major gene inherit-
ance (Rashid et al. 1991b; Kopina et al. 2000). However,
later linkage mapping studies suggested a number of QTLs
with minor effects. More recently, an association map-
ping study on a winter faba bean germplasm identified
12 DNA markers associated with ascochyta blight resist-
ance, each one explaining around 6 to 22% of the pheno-
typic variance (Faridi et al. 2021). Availability of such
markers would facilitate pyramidation of multiple QTLs
to enhance the level of resistance. Such QTL studies were
performed with biparental populations. DeepSuperSAGE
transcriptome profiling identified 10 tags associated with
responses to the jasmonic acid pathway, pectin esterase
activity or gene silencing in the resistant 29H (Madrid
et al. 2013). A subsequent transcriptome of faba bean
responses to ascochyta blight infection in the resistant
29H and V{136 allowed the identification of 39,060 SNPs
and 3,669 InDels for genotyping applications (Ocaiia et al.
2015). Transcripts differentially expressed in the resistant
genotype included leucine-rich proteins and plant growth
regulators. Differential expression between the resistant
and susceptible genotypes included transcripts encoding
NBS-LRR proteins, enzymes involved in jasmonate and
etilene pathways, heat shock proteins, MLO, MY B-related
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Table 3 (continued)

References*

Genetic basis

Phenotype description of resistances

identified

Screening conditions

Accessions

Abdalla et al. (2021)

Both dominance and epistasis

Not studied

Reduction in disease severity

Field screening

Nubaria 1, Giza 843, Sakha 4

Amberley

Pulse Australia (2021)

Reduced infection

Field screening

*This table details only reports since 2000. For older citations see Bond et al. (1994), Tivoli et al. (2006) and Sillero et al. (2010). AUDPC area under disease progress curve. DS disease severity

transcription factor, several pathogenesis-related proteins,
and regulators of the plant immune response such as calm-
odulin and aldehyde dehydrogenase 7a.

Chocolate spot, incited Botrytis fabae (teleomorph: Bot-
ryotinia fabae), can be particularly severe in humid envi-
ronments (Tivoli et al. 2006). B. cinerea infections have
also been reported, but not so virulently. Management is
possible with fungicides and agronomic practices such as
intercropping (Fernandez-Aparicio et al. 2011). Another
species (B. fabiopsis) has also been reported infecting faba
bean in China (Zhang et al. 2010). The three species can be
distinguished by a PCR (polymerase chain reaction)-based
assay using the species-specific primer sets (Fan et al. 2015).
The B. fabae specialization of faba bean has been ascribed
to its production of the phytotoxins botrytone and regiolone
(Cimmino et al. 2011). Regiolone is an enantiomer of iso-
sclerone produced by B. cinerea (Evidente et al. 2011). Vari-
ation in virulence has been suggested among B. fabae iso-
lates (Hutson and Mansfield 1980), but no races have been
described so far. Some sources of incomplete resistance have
been described in germplasm (Table 3 and associated refer-
ences) and introduced into breeding programs resulting in
the release of several cultivars with moderate levels of resist-
ance (Temesgen et al. 2015). Although several advanced
recombinant inbred line populations and association map-
ping panels have been developed (i.e. CSIC-Spain, Univer-
sity of Helsinki-Finland and Aarhus University-Denmark) to
study genetics of chocolate spot resistance, the fact is that no
QTLs or genes have been reported so far. Some biochemical
markers such as wyerone acid, phytoalexin synthesis, and
peroxidase activity have been proposed as markers for resist-
ance (Nawar and Kuti 2003). As is typical in the response
to infection by necrotrophic pathogens, the levels of H,0,
and lipid peroxidation have been reported to increase both in
susceptible and resistant genotypes; the increase, however, is
higher in susceptible genotypes. In the resistant genotypes,
there is earlier and higher expression of pathogenesis-related
protein gene transcripts and a more efficient antioxidative
system in the removal of the excess of ROS (reactive oxygen
species) generated during the infectious process, limiting the
cellular damage (El-Komy 2014; Villegas-Fernandez et al.
2014). Resistance has recently been associated with a more
efficient photosystem II repair cycle in the resistant acces-
sion (Castillejo et al. 2021).

Cercospora leaf spot, incited by Cercospora zonata,
was reported as emerging disease in Australia in the late
2000s (Kimber et al. 2007). It develops early in the season
affecting leaves, stems, and pods, causing premature defo-
liation (Egan et al. 2006). The disease can be managed by
repeated fungicide treatments (Kimber et al. 2007). Resist-
ance germplasm has been identified and postulated to be
monogenic (Kimber and Paull 2011). However, cultivars
available so far are susceptible (Pulse Australia 2021).

@ Springer
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Table 6 Sources of resistance to virus in faba bean, and details on screening conditions and types of resistance identified

Ascot

BPL 758, BPL 1311,

experiments with three
isolates

Field and controlled condi-

Reduced infection

Not studied

Virus Accessions Screening conditions Phenotype description of Genetic basis References™
resistances identified
BLRV  BPL 5271 to BPL 5285 Field screening with artifi-  Incomplete: reduced Not studied ~ Makkouk et al. (2002)
cial inoculation symptoms, reduced virus
concentration in plant
tissues
BPL 5276, BPL 5277, Greenhouse screening Reduced replication and Not studied  Kumari and Makkouk (2003)
BPL 5278, BPL 5279, systemic movement of
BPL 5272, BPL 5274, the virus
BPL 5280
ATC 65255, ATC 65259, No details provided Incomplete (<4 in a 0-9 Not studied  Redden et al. (2008)
ATC 65271 scale)
15 accessions (not listed) Repeated inoculation and Incomplete: reduced Not studied  Kumari et al. (2018)
continued re-selection symptoms, reduced virus
concentration in plant
tissues
Nanu, Nasma, Ayla No details provided No details provided Not studied  Pulse Australia (2021)
FBNYV 27 accessions (not listed) Repeated inoculation and Incomplete: reduced Not studied ~ Kumari et al. (2018)
continued re-selection symptoms, reduced virus
concentration in plant
tissues
BYMV  Fiord, Barkool, Icarus, Field and greenhouse Reduced infection Not studied ~ McKirdy et al. (2000)

Makkouk et al. (2002);

BPL 1314, Giza 3,
BPL 1351, BPL 1363,
BPL 1366, BPL 1371

tions
BPL 710 Greenhouse screening

PSbMV Rana, Marne No details provided

No symptoms

No details provided

Kumari and Makkouk
(2003); Redden et al.
(2008); Kumari et al.
(2018)

El-Bramawy and El-Beshehy
(2012)

Pulse Australia (2021)

Monogenic

Not studied

*This table details only reports since 2000. For older citations see Bond et al. (1994), Sillero et al. (2010) and Makkouk et al. (2014)

Stemphylium blight of faba bean is mainly caused by
Stemphylium botryosum (Aghajani 2009) although also S.
solani, S. botryosum, and S. vesicarium have been men-
tioned. Some resistance has been reported, with insufficient
information available on genetic basis or underlying mecha-
nisms operative (Sheikh et al. 2015).

Alternaria blight has been reported as being of impor-
tance in areas of India and Egypt (Tiwari et al. 2021), occur-
ring generally occurs late in the season. There are reports
of occurrence of A. alternata and of A. tenuissima (Gupta
et al. 1992; Honda et al. 2001) with no clear study on their
distribution and relative prevalence. Some sources of resist-
ance have been reported based on field screenings under
natural infection in India (Tiwari et al. 2021) or in green-
house in Iran (Tajik Ghanbari et al. 2020). Downy mildew of
faba bean is caused by Peronospora viciae f.sp. fabae. It is
widespread, but problematic only in cooler areas particularly
when infection starts early. There is no information on vari-
ation of pathogen populations. Some sources of incomplete

@ Springer

resistance have been reported, but there is no information on
their genetic control (Thomas and Kenyon 2004).

New gall disease is emerging as a major disease in
Ethiopia, causing typical galling of leaves and stems, and
browning of the affected tissues over time (Hailu et al.
2014). The disease was first ascribed to Olpidium viciae
based on similarity of symptoms with “faba bean blister
disease” earlier reported in China (Zhesheng et al. 1984).
However, recent studies show that the gall disease emerg-
ing in Ethiopia is not caused by the soilborne Olpidium
but by the rain-splashed Physoderma (You et al. 2021),
which has major implications in epidemiology and man-
agement. Moderate levels of resistance have been identi-
fied (Table 4), but no genetic studies are so far available.
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proven difficult, with few sources of incomplete resist-
ance identified, showing complex inheritance. Faba bean
breeding for resistance against O. crenata mainly relied on
the use of resistance from the Egyptian line F402, widely
deployed by ICARDA in their multilocation resistance
screenings. This resulted in the development of several
cultivars with moderate resistance (Table 5). Interestingly,
reported resistances were found to be effective against both
O. foetida and O. crenata or even against P. aegyptiaca
(Abbes et al. 2007; Maalouf et al. 2011, 2019; Rubiales
et al. 2014; Amri et al. 2019). Such a broad sense resist-
ance is promising in terms of durability, but we cannot
conclude on the durability of their resistance until these
resistant cultivars are widely deployed (Rubiales 2018).
Several mechanisms of resistance against broomrape
have been described in faba bean, including reduced induc-
tion of broomrape seed germination (Fernandez-Aparicio
et al. 2012, 2014), hampered establishment (Rubiales et al.
2016) by reinforcement of cell walls by callose deposi-
tion, complemented by lignification of endodermal cells
(Pérez-de-Luque et al. 2007). Interestingly, some of these
mechanisms were operative against several broomrape spe-
cies. Preliminary observations suggest that the inheritance
of this non-germination trait in faba bean may be simple,
which would facilitate resistance breeding and its pyra-
miding with other resistance mechanisms (Rubiales 2018).
Genetic mapping studies suggested a polygenic control
of resistance against O. crenata or O. foetida (e.g. Roman
et al. 2002; Gutiérrez et al. 2013; Gutiérrez and Torres
2021). Several QTLs with minor effects were identified
which some of them overlap genomic regions controlling
resistance to both species. Although promising, results are
still far from being usable in MAS. Further saturation of
QTLs is needed, not only genotyping should be improved,
but also phenotyping. Field phenotyping should be com-
plemented by mini-rhizotron screenings to enable identi-
fication of QTLs/alleles governing specific mechanisms
of resistance, from seed germination, radicle elongation
and attachment and penetration and tubercle development
(Fernandez-Aparicio et al. 2012; Rubiales et al. 2016).

Current knowledge on resistance to viruses

A number of viruses can damage faba bean, including
broad bean mottle virus (BBMYV), broad bean stain virus
(BBSV), bean leaf roll virus (BLRV), bean yellow mosaic
virus (BYMV), faba bean necrotic yellow virus (FBNYYV),
pea enation mosaic virus (PEMV), and true broad bean
mosaic virus (TBBMYV) (Kumari and Makkouk 2007; Mak-
kouk et al. 2012; Kumari et al. 2018). These viruses have
a rather large host range, affecting several food and pasture
legumes and weeds, which facilitates a 'green bridge' for

transmission. Because of the lack of virus control options,
genetic resistance is most needed. Resistance to some of
these viruses has been reported in either field or controlled
conditions screening (see Table 6 and associated citations).
However, in most instances, there is no information on the
genetics basis of the resistance. The only genetic analysis
available so far points towards dominant monogenic resist-
ance to the BYMYV in accession BPL 710 (El-Bramawy and
El-Beshehy 2012), in agreement with earlier reports sug-
gesting two recessive complementary genes (Rohloff and
Stiilpnagel 1984; Schmidt et al. 1989). Resistance to BLRV
has been associated with reduced replication and systemic
movement of the virus (Kumari and Makkouk 2003).

Current knowledge on resistance
to nematodes

Several nematodes can be damaging to faba bean, including
cyst nematode (Heterodera goettingiana), reniform nema-
tode (Rotylenchulus reniformis), root-knot nematode (Meloi-
dogyne spp.), root lesion nematode (Pratylenchus thornei, P.
penetrans and P. pinguicaudatus), stem nematode (Ditylen-
chus dipsaci and D. giga), and stunt nematode (Tylencho-
rhynchus latus). Resistance has been reported against some
of these nematodes (Table 7), but little information is avail-
able on the nature and genetics of resistance. Some sources
of resistance against different populations of the root lesion
nematode (Pratylenchus spp.) have been reported, being
effective against one species but not against others (Di Vito
et al. 2002). Also, reported resistance against D. dipsaci was
not confirmed when testing with the “giant race” (Abbad-
Andaloussi 2001). D. dipsaci has a broad host range and is
today acknowledged as a complex species, with the earlier
called giant race being more damaging to faba bean, is today
accepted as a different species D. gigas, having in fact a
limited host range (Vovlas et al. 2011).

Current knowledge on resistance to insect
pests

A number of weevils (Coleoptera) can constrain faba bean,
affecting different organs. Storage seeds can be damaged
mainly by larvae of faba bean weevil (Bruchus rufimanus),
but also Callosobruchus chinensis has been reported
(Keneni et al. 2011). Another damaging species is Sitona
lineatus whose adults feed on leaves and foliage, but even
more damaging can be the larvae that feed on Rhizobium
nodules, limiting nitrogen fixation (Carcamo et al. 2015).
They can be controlled with insecticides (Keneni et al. 2011;
Cércamo et al. 2012). Levels of non-preference and antibio-
sis (larvae and pupae mortality) against B. rufimanus have
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been reported (Seidenglanz and Hunlady 2016). Resistance
against C. chinensis has also been identified in free choice
laboratory tests, being associated with quality traits (Duan
et al. 2014). Like this, accessions with brown and black
seed colours are less damaged than light-seed-coloured
ones. Recently, new sources of resistance to seed weevils
(Bruchus spp.) have been identified (Carrillo-Perdomo et al.
2019) based on either reduced seed penetration and/or lar-
vae development, but no information is available on genetic
basis of any reported resistance.

The faba bean stem borer (Lixus algirus) (Coleoptera:
Curculionidae) damage is caused by the larvae which grow
and feed within the stems, affecting crop growth and yield.
Reduced levels of infestation have been reported in faba
bean genotypes in the field and under cages, which could be
based either on reduced egg-laying preference and/or anti-
biosis with mortality of instars, with no adult exit holes (Ait
Taadaouit et al. 2021).

Faba bean can be damaged by black bean aphid (Aphis
fabae) and the cowpea aphid (A. craccivora). A. fabae is one
being predominant in cooler regions and A. craccivora in
warmer climates. Levels of resistance have been identified in
faba bean germplasm against both species (Table 8). These
resistances combine antibiosis and antixenosis (Holt and
Wratten 1986; Laamari et al. 2008; Soffan and Aldawood
2012). There is no report on their genetic basis or associated
DNA markers so far.

Leaf miner—Some differences among faba bean acces-
sions in level of infestation by leaf miner (Liriomyza con-
gesta) have been reported in field screenings (Awaad et al.
2005; El-Bramawy and Osman 2012) with the high influence
of environmental conditions suggesting additive gene action.

Breeding opportunities offered
by development of genomic resources

Faba bean is a partially allogamous diploid crop (2n=12)
with a large genome that is currently being assembled
(Fabagenome consortium 2021). Meanwhile, this genome
is released, transcriptome data have provided efficient
resources for disease resistance studies (e.g. Kaur et al.
2014; Ocaiia et al. 2015). Several genetic maps have been
generated so far, majority suffering from low to medium
saturation (reviewed by Khazaei et al. 2021). These maps
were based on restriction fragment length polymorphism
(RFLPs), RAPD, expressed sequence tags (ESTs), single
sequence repeats (SSRs), EST-SSRs, and SNP markers. The
first saturated SNP-based map was just reported a few years
ago, consisting of 750 SNP markers (Webb et al. 2016).
Recently, a high saturated consensus genetic map of faba
bean was constructed using three RIL populations that
enclosed over 1,700 SNP markers (Carrillo-Perdomo et al.
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2020). The recent genomic sequence and transcriptome data
are being allowed the development of a greater collection of
DNA markers. This will lead to an increase in faba bean map
coverage and marker density (Khazaei et al. 2021). A 60 K
high-density genotyping array was developed and soon will
be available for faba bean researchers (Donald O'Sullivan,
personal communication). Furthermore, a high-through-
put faba_bean_130K targeted TNGS genotyping platform
has been developed (Wang et al. 2021). The development
of high-density genetic maps derived from multiple map-
ping populations along with transcriptome data has paved
the road to MAS and gene discovery. This also means that
genetic resolution is improving in tandem in this species.
Ascochyta blight has been widely subjected to QTL stud-
ies reflecting its importance as the major fungal diseases of
faba bean globally (Table 9). For example, the QTLs asso-
ciated with ascochyta blight resistance have been validated
in multi-environments (Gutiérrez et al. 2013; Atienza et al.
2016) and genetic resolution recently improved replacing
previous pedigree-specific RAPD markers with SNP mark-
ers that allowed identification of candidate genes conferring
resistance against this pathogen (Gutiérrez and Torres 2021).
Some attentions were also given to DNA maker development
for broomrape and rust resistance in this species (Table 9).

Chocolate spot is the major biotic threat to faba bean
production globally; however, no publication on QTLs or
genes governing this disease is out in the literature. The
Mélodie/2 x ILB 938/2 mapping population (Khazaei
et al. 2018a; Khazaei et al. 2014) has offered a few stable
genomic regions governing chocolate spot resistance for the
first time in this crop (Gela et al. 2021). No information on
genomic regions associated with pest’s resistance is avail-
able in this species.

Most of genetic mapping studies in faba bean consisted
of biparental populations. This limits the number of QTLs
captured as their mapping precision is not very high due
to the low total amount of genetic recombination shared
by only two founders. Multi-parent advanced generation
inter-cross (MAGIC) and genome-wide association study
(GWAS) are advocated to maximize the allele frequency
and genetic diversity lacking in biparental populations. For
instance, the first MAGIC population based on 11 winter
faba bean founders was developed and used to study frost
tolerance (Sallam and Martsch 2015). Another multi-paren-
tal population based on four founders (Khazaei et al. 2018b)
was mapped using a 60 K Axiom SNP genotyping array
(O’Sullivan et al. 2019). Other MAGIC populations are
underway involving parents with reported resistance, e.g.
Maalouf et al. (2019) and NORDFAB (2021), which may
help to unravel their genetics basis in a near future. Simi-
larly, only a few GWAS panels have been reported in faba
bean (e.g. Puspitasari 2017; Warsame 2021) despite the fact
they investigate diverse genetic material with the potential
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Table 9 Summary of reported QTL/loci in faba bean for fungal diseases and parasitic weeds

Disease/Parasitic weed

No. of QTL/loci Chromosome Main output

References

Rust (U. viciae-fabae) 1 Unknown
2 3,5
Ascochyta blight (D. fabae) 2 2,3
6 3
4 1,2,6
3 2,3,6
2 1,6
12 markers 3,6
3 2,3,6
Crenate broomrape (O. crenata) 3 1,2,6
4 1,2,6
7 6
2 _
6
Fetida broomrape (O. foetida) 2 1,3
3 5

Identifying the first DNA markers linked
to Uvf-1 conferring hypersensitive resist-
ance against rust

KASP markers for rust resistance genes
Uvf-2 and Uvf-3

QTLs associated with ascochyta blight
resistance, Afl and Af2 explained ~50%
of phenotypic variation. The QTLs
were later confirmed by Diaz-Ruiz et al.
(2009a)

Isolate and organ-specific QTLs for
ascochyta blight resistance. Af3 to Af8
were identified

Detecting genes associated with ascochyta
blight resistance using SNP markers

Transcriptome analysis under ascochyta
blight Infection. 21,243 transcripts,
39,060 SNPs and 3,669 InDels were
identified

Validation of Af1 and Af2 under different
environments and suggestion an addi-
tional source of resistance, Af3

Two QTL identified, AB_N1 and AB_N2.
They are comparable to QTL-1 and
QTL-4 reported in Kaur et al. (2014),
respectively

Association mapping approach to identify
DNA markers for ascochyta resistance.
Af1 was validated from Roman et al.
(2003)

Fine mapping of Af2 and Af3 using a high-
density SNPbased map. QTLs F_DSP1,
F_DSP2 and DSL_L098 were detected
in chromosome 6 that were in agreement
with results of Ocafla-Moral et al. (2017).

QTLs Ocl, Oc2 and Oc3 explained more
than 70% of phenotypic variation

QTLs Oc2, Oc3, Oc4, Oc5 in multi-site-
year environments detected

Two more QTLs added, Oc7 and Oc8

QTLs NB/p and HPS were identified

Fine mapping of Oc7 and Oc8 using a
high-density SNP-based map

Mapping Of1 and Of2

Co-localization of Oc8 and Of3 in chromo-
some 5 confirms a common resistance
against O. crenata and O. foetida

Avila et al. (2003)

Tjaz et al. (2021)

Roman et al. (2003)

Avila et al. (2004)

Kaur et al. (2014)

Ocaiia et al. (2015)

Atienza et al. (2016)

Sudheesh et al. (2019)

Faridi et al. (2021)

Gutiérrez and Torres (2021)

Roman et al. (2002)
Diaz-Ruiz et al. (2010)

Gutiérrez et al. (2013)
Abd El-Fatah and Nassef (2020)
Gutiérrez and Torres (2021)

Diaz-Ruiz et al. (2009b)
Gutiérrez et al. (2013)

to identify multiple alleles underlying traits of interests. Out
of these, a single report is available so far on the use of
GWAS to decipher resistance to a faba bean disease resist-
ance (Faridi et al. 2021), but this is underway for a number
of resistances (e.g. DiVicia 2021).

Genomic selection may become accessible for orphan
crop species such as faba bean with the availability of

low-cost high-throughput genotyping platform. The status
of genomic selection in faba bean has been reviewed by
Adhikari et al. (2021). No empirical genomic selection stud-
ies reported for faba bean yet. Integrating genomic selec-
tion together with speed breeding and genomics have come
together to accelerate faba bean improvement.
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Faba bean breeding may benefit from gene editing. The
power of gene editing entirely depends on having a stable
transformation system. Hairy root transformation of faba
bean can be achieved with high efficiency (Marcin Nadzieja,
personal communication). In the absence of a faba bean ref-
erence genome, the application of CRISPR/Cas gene edit-
ing remains challenging. Bottinger et al. (2001) and Hanafy
et al. (2005) were the early attempt on transgenic approaches
in faba bean. Later, Hanafy et al. (2013) showed faba bean
transgenic lines overexpressing potato PR10a. With the
recent advances in faba bean genome sequencing activities,
rapidly maturing genome-editing technologies could poten-
tially be applied to improve traits of interest in this crop
(Bhowmik et al. 2021).

Speed breeding is a must-have tool to shorten breeding
cycles in plant breeding programs (Watson et al. 2018).
It has the great potential to reduce the reproductive cycle
or cultivar development phase in several crops including
grain legumes (Wanga et al. 2021). For faba bean, Mobini
et al. (2020) developed an in vivo rapid generation system
by application of cytokinin and/or cold shock that could
decrease the length of the breeding cycle by about three
weeks. More efforts are needed to reduce breeding cycles in
this species until speed breeding becomes a powerful tool for
developing improved varieties with disease or pest resistance
in a shorter time span. Speed breeding could be combined
with biotic screening platforms to speed up selection and
screening time. Speed breeding can accelerate the develop-
ment of faba bean cultivars with improved disease and pest
resistance and may be integrated with fast-forward breeding
tools such as high-throughput phenotyping and genotyping
platforms and genomic selection (Varshney et al. 2021).

Concluding remarks

Success in resistance breeding largely depends on the avail-
ability of good sources of resistance, their inheritance, and
the availability of fast and reliable screening techniques.
Faba bean breeders have succeeded in developing resistant
cultivars, but progress has been slow as most resistances
identified so far in faba bean are of incomplete expression
and in most cases their genetics basis is largely unknown.
This is further complicated by the insufficient knowledge on
the biology of the causal agents, with host ranges at times
not clearly delineated, and seldom with sufficient info on
pathogenic variation, with no consensus on the existence of
races nor even of formae speciales in some of the key pests
and diseases. Attention is urgently needed to clarify these
aspects, as the genotype of the pathogens is also crucial to
understand plant pathogen interactions. Most importantly,
understanding the biology of the pathogen is relevant to
design breeding strategies and to predict risks not only of

@ Springer

emergence of new virulences in response to deployed resist-
ance but also on their dispersal (McDonald and Linde 2002).
Diversity is key for the development of durable resistance.
This involves diversity at the spatial and temporal gene
deployment, and diversity in the genetic basis of resistance,
by pyramiding more than one genes/QTLs (Mundt 2014).
This requires information not only on the genetics of resist-
ance in the plant, but also on deciphering existence of races
in the pathogen and monitoring their distribution, which
presently is clearly insufficient for most faba bean pathogens.

Faba bean resistance breeding will be facilitated by adop-
tion of novel phenotyping and genotyping tools that although
started slowly, have developed fast in the last decade. The
genome sequences of both the hosts (Fabagenome con-
sortium 2021) and some of the faba bean pests and patho-
gens are being drafted (Link et al. 2014; Lee et al. 2020;
Voronova et al. 2020) or are available for closely related
pathogen species (e.g. Lee et al. 2021), which will help in
understanding both host resistance and parasite virulence
and their interactions. Reducing genotyping costs is allowing
genomic selection on faba bean that integrated with speed
breeding methods already in place, and the adoption of low-
cost affordable phenotyping tools will accelerate faba bean
improvement.
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