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Abstract
Key message GWAS identified eight yield-related, peak starch type of waxy and wild-type starch and 21 starch 
pasting property-related traits (QTLs). Prediction ability of eight GS models resulted in low to high predictability, 
depending on trait, heritability, and genetic architecture. 
Abstract Cassava is both a food and an industrial crop in Africa, South America, and Asia, but knowledge of the genes that 
control yield and starch pasting properties remains limited. We carried out a genome-wide association study to clarify the 
molecular mechanisms underlying these traits and to explore marker-based breeding approaches. We estimated the predic-
tive ability of genomic selection (GS) using parametric, semi-parametric, and nonparametric GS models with a panel of 
276 cassava genotypes from Thai Tapioca Development Institute, International Center for Tropical Agriculture, Interna-
tional Institute of Tropical Agriculture, and other breeding programs. The cassava panel was genotyped via genotyping-by-
sequencing, and 89,934 single-nucleotide polymorphism (SNP) markers were identified. A total of 31 SNPs associated with 
yield, starch type, and starch properties traits were detected by the fixed and random model circulating probability unifica-
tion (FarmCPU), Bayesian-information and linkage-disequilibrium iteratively nested keyway and compressed mixed linear 
model, respectively. GS models were developed, and forward predictabilities using all the prediction methods resulted in 
values of − 0.001–0.71 for the four yield-related traits and 0.33–0.82 for the seven starch pasting property traits. This study 
provides additional insight into the genetic architecture of these important traits for the development of markers that could 
be used in cassava breeding programs.

Introduction

Cassava (Manihot esculenta Crantz) is an economically 
important, staple tropical root crop. It is one of the most 
important dietary energy sources in most tropical coun-
tries (Ceballos et al. 2020). Cassava is robust, resistant to 
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droughts and floods, and grows well in degraded soils. His-
torically, cassava was grown for human consumption (e.g., 
gari, fufu, sago, table consumption, etc.). However, demand 
from worldwide markets for cassava (e.g., as a starch, ani-
mal feed, or bioethanol) has strengthened over the years. 
Cassava is now the second most important source of starch 
worldwide (Stapleton 2012). The global production of fresh 
root equivalents in 2018 amounted to 277.1 million tons 
(FAO 2018). Currently, there are important breeding efforts 
in Brazil, Colombia, China, Ghana, India, Nigeria, Kenya, 
Mozambique, Tanzania, Thailand, Uganda, and Vietnam 
(Ceballos et al. 2020).

Since the cassava breeding cycle is long, with a low 
reproduction rate, it takes 7–8 years to develop a new cas-
sava variety (Rojanaridpiched et al. 2010). The first cassava 
evaluations occur in seedlings, single row trials (SRT), fol-
lowed by preliminary (PYT) and advanced (AYT) yield tri-
als, and culminating in multi-location, multi-year uniform 
yield trials (UYT; Rojanaridpiched et al. 2010; Gracen et al. 
2018; Ceballos et al. 2020). Genetic gains from cassava 
breeding efforts have been very limited in the last century 
compared to other crops (Ceballos et al. 2004). Factors lim-
iting cassava’s breeding efficiency include its heterozygous 
progenitors, long breeding cycles, clonal propagation, and 
non-recovery of recurrent genomes after single trait intro-
gressions (Ceballos et al. 2016; Kuon et al. 2019). Although 
cassava is predominantly clonally propagated, it outcrosses 
with plants still capable of sexual reproduction. The inten-
tional or unintentional inclusion of seedlings into clonally 
propagated stock continually generates new genotypes 
within a population, thus increasing haplotypic variation 
(McKey et al. 2010). Storage root yield is the key objective 
in cassava breeding programs. Farmers attach the highest 
importance to good storage root yields with high dry matter 
content (DMC) in the wild-type and waxy (amylose-free) 
cassava starch widely used in food and industrial applica-
tions (Sanchez et al. 2010; Aiemnaka et al. 2012). Cassava 
starch has many remarkable characteristics that are advanta-
geous for industrial applications, including high paste vis-
cosity and clarity and high freeze–thaw stability (Nwokocha 
et al. 2009; Sanchez et al. 2010; Toae et al. 2019).

Genome-wide association study (GWAS) is a powerful 
approach based on the linkage disequilibrium (LD) result-
ing from the association of target traits and haplotype loci. 
GWAS identifies genes, alleles, or haplotypes related to spe-
cific agronomic traits in complex environments and has been 
successfully used in many plant studies, including studies of 
wheat (Juliana et al. 2018), maize (Zhang et al. 2015), rice 
(Begum et al. 2015), and tomatoes (Sauvage et al. 2014). In 
cassava, GWAS has been successfully used to dissect the 
genetic basis of several traits (Rabbi et al. 2020), includ-
ing dry matter content, total carotenoid content (Rabbi et al. 
2017; Ikeogu et al. 2019), resistance to CMD (CMD2), 

phytoene synthase (PSY), root number, shoot weight, har-
vest index (Rabbi et al. 2017; Okeke et al. 2017; Zhang et al. 
2018; Somo et al. 2020; Yonis et al. 2020), cassava green 
mite resistance (Ezenwaka et al. 2018), cassava brown streak 
disease resistance (Kayondo et al. 2018), cassava mosaic 
disease resistance (Wolfe et al. 2016), and cyanide content 
(Ogbonna et al. 2021).

Genomic selection (GS) has been proposed as a promis-
ing tool to overcome breeding challenges (Meuwissen et al. 
2001). GS is an alternative to traditional marker-assisted 
selection (MAS) for quantitative traits (Jannink et al. 2010; 
Hickey et al. 2017). GS aims to combine genome-wide 
molecular markers and phenotypes in a training population 
to predict the genetic values of future individuals for selec-
tion purposes. Since no significance test is required, elimi-
nating biases in marker effect estimates, the breeding cycle 
is accelerated (Desta and Ortiz 2014). Contrary to MAS, GS 
is suitable for quantitative traits controlled by a large num-
ber of small-effect genes. GS has been introduced in many 
aspects of plant breeding, such as inbred performance pre-
dictions and hybrid predictions (Riedelsheimer et al. 2012; 
Crossa et al. 2014; Xu et al. 2014; Wang et al. 2017; Xu 
2017). Accurate predictions are essential for the successful 
application of GS. The predictability (i.e., the prediction 
accuracy) obtained from cross-validation in training popula-
tions has been previously evaluated in maize, wheat, barley, 
and cassava (VanRaden 2008; Crossa et al. 2017; Wolfe et al. 
2017; Andrade et al. 2019). These studies indicated that pre-
dictability is affected by various genetic factors, including 
heritability, relatedness, sample size, marker density, and 
genetic architecture. The predictabilities of low heritability 
traits, such as yield, were consistently lower than high her-
itability traits, such as kernel weight and plant height (Xu 
et al. 2018).

In addition to genetic factors, statistical factors influence 
predictability. Parametric methods widely used in GS to 
predict genetic values include genomic best linear unbiased 
prediction (GBLUP; VanRaden 2008), least absolute shrink-
age, selection operator (LASSO; Tibshirani 1996), and par-
tial least squares (PLS; Gelandi and Kowalski 1986), and 
nonparametric methods, including random forest (Svetnik 
et al. 2003), neural networks (NN; Ehret et al. 2015), support 
vector machines (SVM; Maenhout et al. 2007), and repro-
ducing kernel Hilbert spaces (RKHS) regressions (de Los 
Campos et al. 2010). Several investigators have compared 
the predictive performance of these methods using simula-
tion and empirical data (Heslot et al. 2012; VanRaden 2008; 
Riedelsheimer et al. 2012; Howard et al. 2014; Wang et al. 
2015). The key limitation that GS has in the case of cas-
sava is the use of heterozygous progenitors that distinguish 
cassava from most of the crops (Ceballos et al. 2016 and 
2020) where GS has been proven to be useful as highlighted 
and the strong nonadditive genetic effect for fresh root yield 
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as reported by articles published by Wolfe and co-workers 
(2017, 2019).

The objectives of this study were to (1) understand the 
genetic architecture of yield-related traits and starch past-
ing property traits in a cassava breeding population and 
identify novel QTLs loci associated with the above traits 
using GWAS; (2) explore the potential utility of using GS 
for future cassava breeding programs.

Materials and methods

Plant materials and field trials

We obtained 276 cassava genotypes, including both 247 
wild-type and 29 waxy cassava starch types, from the germ-
plasm collection developed at the Department of Agricul-
ture, Kasetsart University, Bangkok, Thailand, Thai Tapioca 
Development Institute (TTDI). The cassava genotypes were 
from International Center for Tropical Agriculture (CIAT), 
International Institute of Tropical Agriculture (IITA), and 
other breeding programs (Supplementary Table S1).

Each clone was represented by 10 plants in a single row 
spaced with 1 m × 1 m apart. KU50 and HB80, two commer-
cial varieties, were planted after every ten rows in incom-
plete blocks for 2 consecutive years at Tapioca Develop-
ment Institute (TDI) station (2015 and 2016; experimental 
stations: TDI (15.1577245 101.5028433; N15°9.46347, 
E101°30.170598) and Nakhon Ratchasima Province, Thai-
land). The plots were treated with the fertilizer N–P–K: 
15–7–18 at 312.5 kg   ha−1. Weed control was primarily 
manual 1 month after planting. The plants were planted in 
March or April before the rainy season, then harvested 10 
to 12 months later in the following year.

Phenotypic evaluation and statistical analysis

The total fresh root weight (FRW) of the storage roots har-
vested per row was measured in kilograms. The starch con-
tent (SC; %) was measured by Riemann balance, 5 kg of 
bulked roots for each genotype from single row plot was 
weighted in air and immersed in water (Kawano et al. 1987). 
The harvest index (HI) was computed as the total fresh root 
weight to total biomass at harvest ratio. The average number 
of root per plant (RP) was computed as total number of root 
in plot divided by number of harvested plant. The mixed 
model augmented design with un-replicated entries used in 
this study.

The model was

Yij = � + �i + �j + �ij

where β and τ are the effects of blocks and entries, respec-
tively. Broad-sense heritability (H2) was estimated using 
BLUPs and the formula:

where σ2
g is the genotype variance, σ2

e is the residual vari-
ance, and r is the number of environments. The variance 
components were calculated using the lmer function in the 
R package (lme4, v1.1–7; Bates et al. 2015). The variance 
component of combined analysis for year and locations was 
estimated using the REML method explained above for each 
genotype which were used in GWAS and GS analysis. The 
genetic correlation between traits was estimated using best 
linear unbiased predictions (BLUPs) of measured traits. The 
Pearson correlation was performed using the ggcorrplot 
package in R.

Starch pasting properties

Starch extraction

Starch extraction was prepared following Chaengsee et al. 
(2020). Washed fresh cassava roots were peeled and the 
upper and lower edges were cut off and then were chopped 
into small pieces before being crushed in water at a ratio of 
1:2 of cassava to water. The crushed paste was separated 
from the water by passing through a cloth and 90 μm screen, 
respectively. The paste was washed in water before being 
oven-dried at 50 °C for 24 h. The dried starch was milled 
and screened through a 90 μm screen before further analysis.

RVA profile parameters

Viscosity profiles of wild-type and waxy cassava starch dis-
persions were analyzed with a Rapid Visco Analyzer (model 
RVA-4 Series, Newport Scientific, Warriewood, Australia) 
according to the method of (1995). Starch samples (2.58 g, 
dry basis) were dispersed in distilled water to prepare 9.21% 
starch suspension with a total weight of 28 g. Viscosity was 
recorded under the temperature profile: The samples were 
started at 50 °C 1 min then heated from 50 to 95 °C with a 
heating rate increase of 12 °C/min and then maintained at 
95 °C for 2.5 min. The hot paste was subsequently cooled 
to 50 °C with a cooling rate of 12 °C/min and then held for 
2 min (Standard program No. 1). Suspension was constantly 
stirred at 160 rpm, and measurements for Peak viscosity 
(PV), trough viscosity (TV), breakdown viscosity (BD), 
final viscosity (FV), setback from trough (SB), pasting tem-
perature (PT), and peak temperature (PeT). The wild-type 
and waxy cassava’s phenotypic distribution and starch past-
ing properties were visualized with the R package “ggplot2” 
(Wickham, 2016).

H2 = �2g∕(�2g + �2e∕r)
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Genotyping‐by‐sequencing

Sequence alignment, SNP calling, and SNP imputation

DNA extraction and  genotyping‑by‑sequencing Genomic 
DNA was extracted using the CTAB method from Doyle 
& Doyle (1990) with some minor modifications. Briefly, 
we applied the chloroform:isoamyl alcohol (24:1) extrac-
tion step twice to improve the removal of the phenolic com-
pounds. The DNA samples were then quantified using the 
NanoDrop D-1000 per the manufacturer’s instructions. The 
DNA samples were diluted to 20 ng/μl, then subsequently 
used for GBS library preparation. The GBS library con-
struction protocol for the germplasms followed Elshire et al. 
(2011). The GBS library was performed at the Institute of 
Genomic Diversity (Cornell University, Ithaca, NY, USA) 
for 101‐cycle single‐end sequencing on one lane of a 16‐
lane flow cell Illumina HiSeq 2000 (Illumina).

The sequencing reads were processed with the GBS 
Discovery Pipeline for species with a reference genome 
implemented in TASSEL version 3.0 (Bradbury et  al. 
2007) following pipeline documentation (Glaubitz et al. 
2014). In conjunction with the barcode adapter key file, 
the pipeline identified high-quality, unique sequence reads 
(termed tags), which contained a barcode, a cut site, and 
an inserted genomic sequence. The pipeline then merged 
these tags, indexed them, and aligned them to the refer-
ence genome. The sequence tags for our GBS library were 
aligned to the version 1.0 release of the cassava V6 refer-
ence genome (Bredeson et al. 2016) by implementing the 
Burrows–Wheeler alignment (Li and Durbin 2009) com-
mand of the pipeline. The TASSEL 3.0 Discovery SNP 
Caller (Glaubitz et al. 2014) was used to align the multiple 
sequence tags from the same physical locations across the 
genome, to call SNPs at these locations across the indi-
vidual samples, and to output this data into one HapMap 
format file (.hmp.txt) per chromosome for downstream 
analysis. Missing SNP data were imputed with the FIL-
LIN algorithm (Swarts et al. 2014) in TASSEL version 5.0 
(Bradbury et al. 2007).

Genome‐wide association study GWAS was performed 
using trait BLUPs for 276 genotypes. To discover any 
associations between the genome‐wide GBS SNPs and 
trait phenotypes in our germplasm, we used the com-
pressed mixed linear model (CMLM; Zhang et al. 2010), 
the multi‐locus mixed model (MLMM) developed by Seg-
ura et al. (2012), and an enhanced version of the fixed and 
random model circulating probability unification (Farm-
CPU) method (Liu et al. 2016), Bayesian-information and 
linkage-disequilibrium iteratively nested keyway (BLINK) 
method was employed to evaluate the dichotomous traits 

of waxy and wild-type starch phenotype, implemented in 
the Genome Association and Prediction Integrated Tool 
(GAPIT) R package (Lipka et al. 2012) in R version 3.4.2 
(R Core Team 2017). The percentage of phenotypic vari-
ance explained (PVE) by significant SNPs was calculated 
using lm function in R to obtain an adjusted R2.

We determined significant associations for each trait by 
adjusting the raw p value using the conservative Bonferroni 
error rate control method. Manhattan and Q–Q plots were 
visualized using R “CMplot” (Yin et al. 2021). The pair-
wise LD between the genome‐wide markers on each chro-
mosome was calculated using TASSEL v5.2.20 (Bradbury 
et al. 2007). Marker pairs with statistically significant LD 
(p < 0.05) were considered in the LD analysis. The  r2 values 
were plotted against distance (Mb). A LOESS smoothing 
line was fitted using R software package ggplot2 (Wick-
ham, 2016). The Bonferroni‐corrected threshold (α = 1, 
− log10 (P) ≥ 6.25) was established at a probability of 
0.05/89,943 = 5.55 × 10−7 (equivalent to a − log10P score 
of 6.25), which was used as the cut‐off for the 89,943 GBS 
markers as being identification significant SNP‐trait associa-
tions (Yang et al. 2014). Narrow-sense heritability estimates 
were computed from the variance components estimated by 
the genomic mixed models fit by TASSEL v5.2.20 (Brad-
bury et al. 2007), which compute an additive genetic rela-
tionship (i.e., kinship) matrix, as explained in Endelman and 
Jannink (2012).

Identification of  candidate genes We identified candidate 
genes within the associated genomic region using the sig-
nificant GWAS results and the phytozome 12 portal link to 
biomart (https:// phyto zome. jgi. doe. gov/ bioma rt/ accessed 
15 Oct. 2019). We searched for genes located in windows 
of ± 50 kb around the most significant SNPs.

Genomic prediction methods

Evaluation of genomic prediction models using cross‐
validation

The genomic prediction was evaluated using eight statisti-
cal models. The parametric models included ridge regres-
sion BLUP (rrBLUP) from the rrBLUP package (Endelman 
2011), BayesA (Meuwissen et al. 2001), BayesB (Meuwis-
sen et al. 2001), and BayesC (Habier et al. 2011). Bayes-
ian Lasso (BL; Park and Casella 2008), and Bayesian ridge 
regression (BRR; de los Campos et al. 2013) were executed 
using the BGLR R package developed by Pérez and de los 
Campos, (2014). Semi-parametric models based on RKHS 
methods were run using the BGLR R package (de los Cam-
pos et al. 2009, 2010). A nonparametric, random forest clas-
sification (RFC; Breiman, 2001), a machine learning method 
used for regression and classification, has been successfully 

https://phytozome.jgi.doe.gov/biomart/
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used for predictions (Wolfe et al. 2017; González‐Camacho 
et al. 2018). We implemented RFC using the “randomFor-
est” package in R (Liaw 2013).

Predictability or accuracy

The predictability for cassava performance was evaluated 
using a tenfold cross-validation. The sample was randomly 
partitioned into 10 parts: nine parts used to estimate param-
eters, and 1 part was held out of the model, and subsequently 
predicted and used to estimate accuracy. Random sample 
training and validation sets were repeated 30 times, and the 
means of the Pearson’s correlation coefficients were defined 
as the genomic prediction ability. The Studentized range sta-
tistic, Tukey’s honest significance test (R Core Team 2017) 
was used to test for significant differences in the predictive 
abilities of the eight models.

Results

Phenotypic analysis

Figure 1 shows the phenotypic distributions of the yield-
related traits. Table 1 provides descriptive statistics of 
fresh root weight, percentage of starch content, number 

of average roots, and harvest index. The fresh root weight 
varied widely in the population, ranging from 0.1 to 
11.3 kg/plant. The percentage of starch content ranged 
from 3.8 to 30.1%, with an average of 16.4%. The harvest 
index ranged from 0.1 to 0.9, with an average of 0.54. 
The number of average roots ranged from 2 to 27, with an 
average of 11 roots per plant. The broad-sense heritability 
was moderate to low for harvest index, fresh root weight, 
root number per plant, and percentage of starch content 
(H2 = 0.57, 0.43, 0.40, and 0.33, respectively). pheno-
typic variations of yield-related traits were affected more 
environmental factors than genetic factors. The pasting 
properties varied significantly among the different lines. 
The narrow-sense heritability ranged from 0.58 for SB 
to 0.85 for PV (Table 1). These results indicate that the 
phenotypic variations in the starch pasting properties were 
mainly affected by genetic factors and that this panel can 
be used for further genetic analyses.

Trait correlations of BLUPs for yield-related traits FRW 
with SC, HI, and RP were low ranging from 0.09 to 0.2. 
SC was positively correlated with RP (r = 0.56, p < 0.001) 
(Fig. 2). FRW was not significantly correlated with starch 
properties traits except for starch pasting temperature 
(r = − 2.4, p < 0.001). The correlation between HI and starch 
pasting properties traits was positive ranging from 0.48 to 
0.57 (p < 0.001). There were moderately to highly significant 

Fig. 1  Frequency distribution of yield-related traits: number of root 
per plant (RP), fresh root weight (FRW), harvest index (HI), starch 
content (SC), and starch pasting property traits: peak RVU, trough 
RVU, breakdown RVU, final viscosity RVU, setback from trough 

RVU, pasting temp and peak temp. Each panel shows the distribution 
of the best linear unbiased estimates of the 276 cassava panel used for 
this study
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positive correlations among starch properties traits with val-
ues ranging from 0.39 to 1.0 (p < 0.001).

Starch pasting properties

The pasting characteristics and paste viscosity profiles 
of starch in 9.21% w/w analysis concentration are given 
in Table 2 and Fig. 3a. The pasting temperatures of the 
wild-type cassava starches were similar to the waxy cas-
sava starches (68.45–75.25 ℃ and 67.75–73.36 ℃, respec-
tively). The peak viscosity of the wild-type cassava starches 
(327–527 RVU) was significantly higher than those of the 
waxy cassava starches (200–243 RVU). The breakdown vis-
cosity of wild-type cassava starches (191–379 RVU) was 
higher than those of waxy cassava starches (102–140 RVU). 
After cooling, the final viscosities of the wild-type cassava 
starches were significantly higher than those of the waxy 
cassava starches (179–256 and 133–151 RVU, respectively). 
The final viscosities of the wild-type cassava starches 
(56–99 RVU) were slightly higher than those of the waxy 
cassava starches (36–55 RVU).

Table 1  Summary information 
for phenotypic data of the four 
yield-related traits and starch 
pasting properties

Heritability, means, and ranges of 276 genotypes across all trials
FRW Fresh root weight, SC Starch content, HI Harvest index, RP Number of roots per plant

Trait Mean Range Heritability (H2) Heritability (h2)

FRW (kg/plant) 3.3 0.1–11.3 0.43 0.10
SC (%) 16.4 3.8–30.1 0.33 0.25
HI 0.54 0.1–0.9 0.57 0.51
RP 11 2.0–27 0.40 0.30
Peak viscosity (RVU) 404.4 327–527 – 0.85
Trough viscosity (RVU) 139.8 112–175 – 0.77
Breakdown viscosity (RVU) 264.6 191–379 – 0.84
Final viscosity (RVU) 214 179–256 – 0.79
Setback viscosity (RVU) 74.3 56–99 – 0.58
Pasting temperature ( C) 71.7 68.45–75.25 – 0.62
Peak temperature ( C) 85.4 79.85–91.15 – 0.67

Fig. 2  Heatmap of genetic correlation for yield and starch properties-
related traits using BLUP values

Table 2  Pasting properties of waxy cassava starch compared to wild-type cassava starches

Starch Pasting parameter

Peak viscosity Trough viscosity Breakdown 
viscosity

Final viscosity Setback viscos-
ity

Pasting tempera-
ture

Peak temperature

RVU RVU RVU RVU RVU oC oC

Wild-type cas-
sava (9.21%)

327–527 112–175 191–379 179–256 56–99 68.45–75.25 79.85–91.15

Waxy cassava 
(9.21%)

200–243 88–109 102–140 133–151 36–55 67.75–73.36 75–86.3

Waxy cassava 
(5%)

85–107 40–50 40–60 47–56 7–10 69.35–75.15 76.55–87.95
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Population structure and linkage disequilibrium

Sequence reads were aligned to the cassava V6 reference 
genome (Bredeson et al. 2016), and the SNPs were then 
called, imputed in regions of low coverage, and filtered to 
give a total of 327,919 SNPs detected across the popula-
tion (an average of 1.62 SNP per 1 Kbp) (Fig. 4a).

A total of 327,919  SNPs were filtered with minor 
allele frequencies less than 1% (> 0.01, missing data per 
site < 90%), resulting in 88,934 SNPs. Population struc-
ture analysis of the 276 accessions genotyped across the 
88,934 SNPs using PC analysis detected subtle genetic 
differentiation in the germplasm panel, with the first 
10 PCs explaining about 25.25% of the genetic variation. 
The first two PCs accounted for 8.38% and 6.25% of the 
genetic variation, respectively (Fig. 4b). The average LD 
decay was not uniform across all chromosomes (Fig. 5). 
The lowest per-chromosome LD decay was observed on 
chromosome 11 (24 Kbp) and the largest on chromosome 
5 (180 Kbp) (r2 < 0.2).

GWAS analysis

Yield‑related traits

We analyzed genotype–phenotype associations in 276 
cassava genotypes and 12 traits related to yield, starch 
pasting properties and waxy and wild-type starch with 
89,943 SNPs using CMLM MLMM FarmCPU and BLINK 
for waxy and wild-type starch analysis in GAPIT. Three 
different models were used to compare the marker–trait 
association tests. These three models identified different 
numbers of significant markers associated with FRW, SC, 
HI, and RP traits for cassava when the same significance 
threshold was used (Table 3). Based on the Q–Q plots for 
all models, FarmCPU model was used for yield-related 
traits (Fig. 6 and Supplementary Figures S1, S2).

The GWAS analysis on starch pasting property traits 
was analyzed using only the CLMM model and dichoto-
mous trait of waxy and wild-type starch traits was analyzed 
using BLINK. A total of eight SNPs were significantly 
associated with yield-related traits (Fig. 6) with the con-
tribution of phenotypic variance explained (R2) by a single 
QLT ranging from 2.54 to 25.32% (Table 3). For FRW, 
one SNP marker (S1_32060063) on chromosome 1 did 
not reach the significant threshold but showed a − log10 
p = 5, and the variance explained 11.82%. Three SNPs 
were significantly associated with SC and were distributed 
on chromosomes 1 (S1_23945110), 6 (S1_172308681), 18 
(S1_502313244). The significant markers associated with 
the trait were mostly concentrated in a single region 

on chromosome 18. The most significant SNP marker 
(S1_502313244) had a − log10 (p value) of 7.66. The most 
significant marker explained 10.61% of the phenotypic 
variance. Five SNPs were significantly associated with 
HI and were distributed on chromosomes 1, 4, 7, 14, and 
17. The most significant SNP marker (S1_478075251) had 
a − log10 (p value) of 7.35. The marker explained 25.32% 
of the phenotypic variance. A marker on Chromosome 4 
did not reach the significant threshold for RP but had a 
(− log10 (p value) of 4.96.

Starch type and starch pasting properties

A total of 46 QTLs were associated with wild-type and 
waxy starch (Table 3 and Fig. 7). Most QTLs were associ-
ated starch type and distributed on chromosome 2. The top 
significant SNP marker (S1_36202626) had a − log10 (p 
value) of 12.03. The top significant SNP marker explained 
56.89% of the phenotypic variance between waxy and 
wild-type starch. The second most significant SNP marker 
(S1_35043061) on chromosome 2 identified three genotypes 
of cassava, waxy (wxwx), heterozygous genotype (Wxwx), 
and wild-type (WxWx) genotype, that explained 47.04% of 
the phenotypic variance (Figure 3b).

A total of 21 significant QTLs of –log10 (p value) > 6.25 
were identified for six starch properties: PV, TV, BD, FV, 
SB, and PT with the contribution of the variance explained 
(R2) ranging from 11.55 to 78.9% for each SNP (Table 3). 
Two SNPs were associated with PV on chromosomes 2 
and 3; SNP S1_35043061 had the lowest p value (− log10 
(p value) = 6.89) on chromosome 2 having the highest 
R2 of 77.69% (Figs. 7 and 8). Three SNPs with − log10 
(p values) > 6.25 in a Manhattan plot were strong signals 
of association between TV on chromosomes 2 and 4 with 
the lowest p value recorded for S1_35043061 on chro-
mosome 2 (− log10 (p value) = 6.36). The top significant 
marker explained 66.05% of the phenotypic variance. For 
BD, three SNPs were identified on chromosomes 2, 3 and 
4, with the lowest p value found for SNP S1_76323649 on 
chromosome 3 (− log10(p value) = 6.77). The top signifi-
cant marker explained 78.9% of the phenotypic variance. For 
FV, nine SNPs were identified. The one on chromosomes 
2 had the lowest p value recorded for SNP S1_35043061 
(− log10 (p value) = 7.23). The top significant marker 
explained 75.8% of the phenotypic variance. For SB, two 
SNPs were detected on chromosomes 2 with the lowest p 
value of SNP S1_35761681 (− log10 (p value) = 6.43). The 
top significant marker explained 76.58% of the phenotypic 
variance. Two significant SNPs, distributed on chromo-
somes 2 and 3, were associated with PeT, with the lowest 
p value recorded for SNP S1_35043061 on chromosome 
2 (− log10 (p value) = 6.89). The top significant marker 
explained 78.9% of the phenotypic variance. Two SNPs 
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S1_35043061 on chromosome 2 and S1_76323649 on chro-
mosomes 3 were associated with PV, TV, BD, BV, FV, SB, 
and PeT, respectively. The favorable SNP alleles exhibited 
significantly different starch pasting properties traits and are 
shown in Fig. 3b.

Genomic prediction

Genomic prediction accuracies for the yield-related traits 
and starch properties were evaluated with all eight models. 
Table 4 summarizes rrBLUP, BL, BRR, BayesA, BayesB, 
BayesC, RKHS, and RF. The prediction accuracies for RP 
using tenfold cross-validation were 0.64–0.71 using the BL 
model (Fig. 9). The prediction accuracy of HI was 0.59 using 
the rrBLUP model. All models had almost the same predic-
tion accuracy of around 0.40 to 0.55 for SC. FRW had low 
prediction accuracies (− 0.001–0.09) for all models. The 
genomic prediction accuracies for starch pasting proper-
ties were 0.7–0.8 for peak RVU, trough RVU, breakdown 
RVU, final viscosity RVU, and setback RVU for all models 
(Fig. 10). Pasting temperature and peak temperature had pre-
diction accuracies between 0.5 and 0.7 in all models. The 
RFC model had the lowest predicted accuracy values com-
pared to all model and starch property traits.

Discussion

Yield-related traits, such as FRW, SC, RP, and HI, were 
highly variable among the cassava genotypes (Table 1). 
The heritability estimates were FRW (0.43), SC (0.33), RP 
roots average per plant (0.40), and HI (0.57) narrow-sense 
heritability h2 values ranged from 0.1 to 0.51 (Table 1). 
These observations are consistent with similar studies con-
cerning yield-related traits in cassava (Wolfe et al. 2017; 
Andrade et al. 2019). In clonally propagated crops, nonad-
ditive genetic effects can be effectively exploited by identi-
fying superior genotypes as new varieties. For this reason, 
Wolfe et al. (2016) quantified the amount and nature of the 
nonadditive genetic variation in key traits in a GS breeding 
population of cassava. Previous findings in cassava plants 
were based on diallel crosses and the nonadditive genetic 
variation was significant, especially for yield traits (Cach 
et al. 2005; Calle et al. 2005; Jaramillo et al. 2005; Pérez 

et al. 2005; Tumuhimbise et al. 2014; Ceballos et al. 2015). 
Our results indicated nonadditive (mainly epistasis) variance 
for fresh root yields and mostly additive inheritance for root 
SC. These findings confirm the conclusions of numerous 
diallelic studies conducted with cassava germplasms from 
Latin America (Cach et al. 2005; Calle et al. 2005; Jara-
millo et al. 2005; Pérez et al. 2005) and Africa (Zacarias and 
Labuschagne 2010; Kulembeka et al. 2012; Tumuhimbise 
et al. 2014; Wolfe et al. 2016a). Previous studies of the gen-
eral and specific combining abilities of cassava showed that 
fresh root yield, root number, harvest index, and plant height 
traits were predominantly controlled by nonadditive effects. 
Additive effects governed dry matter content and root diame-
ter (Kawano 2003; Ceballos et al. 2016). Thus, the SC or dry 
matter content is a trait that allows greater predictive ability, 
even in earlier breeding stages. In contrast, parental selection 
for fresh root yield is more complex, requiring more refined 
strategies for analysis and selection (Kawano 2003; Ceballos 
et al. 2016). Molecular studies have also found strong non-
additive genetic effects for complex traits such as fresh root 
yield (Wolfe et al., 2016b) The heritability of each starch 
property-related trait was estimated from genetic data only. 
The SNP-based heritability (narrow-sense heritability) of the 
starch property traits had high values of 0.58–0.85. There 
was a significant contribution of additive genetic factors 
in the expression of these traits. The heritability estimates 
recorded in our study also indicated good repeatability and 
reproducibility of our experimental procedures.

The pasting temperatures of the wild-type cassava 
starches and the waxy cassava (68.45–75.25 ℃ and 
67.75–73.36 ℃, respectively) correspond to similar past-
ing temperatures reported for cassava starches in other stud-
ies: 69–73 ℃ (Toae et al. 2019; Chaengsee et al. 2020) and 
67.9–74.4 ℃ (Aldana and Quintero 2013). The peak viscos-
ity of the wild-type cassava starches (327–527 RVU) was 
significantly higher than those of the waxy cassava starches 
(200–243 RVU). Peak viscosity values in this research were 
different from those in Sánchez et al. (2010) due to the dif-
ferent unit formats. In Sánchez et al (2010), peak viscosity 
values were reported in centipoise (cP) unit in which 12 
cp equivalent to 1 rapid viscosity unit (RVU). Therefore, 
when data from Sánchez et al. (2010) were transformed into 
RVU, there were 73–81.58 RVU for normal cassava starch 
and 93.25 RVU for waxy starch in 5% suspension solu-
tion. There were 70–76 RVU for normal cassava starch and 
85–107 RVU for waxy starch in 5% suspension solution in 
this research which were relatively similar to those reported 
in Sánchez et al. (2010). At the same analysis concentra-
tions (9.21% w/w), Schirmer et al. (2013) reported that wild-
type potato starch showed higher peak viscosity than waxy 
potato starch. However, at the different analysis concentra-
tion (5% w/w), Toae et al. (2019) reported that cassava waxy 
starches (116–131 RVU) had higher peak viscosity than 

Fig. 3  a Starch paste viscosity profiles of wild-type and waxy 
starches of 276 cassava were dispersed in distilled water to prepare 
9.21% starch suspension. A genome-wide association study identi-
fied loci affecting starch pasting properties in the cassava panels. b 
Box plots show the estimated genotypic effect on the phenotypes in 
the study. The significantly associated SNPs and each trait have been 
correlated to show the impact each genotype has on the average of the 
overall traits

◂
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those of wild-type cassava starches (80–94 RVU). Wang 
et al. (2017) explained that the lower peak viscosity of rice 
waxy starch in 9.2% starch suspension compared to wild-
type starch was because when the suspension concentration 
was higher than the close packing concentration of starch, 
less particle rigidity of partially swollen starch granule of 

waxy type than wild type will result, and the reduced rigid-
ity during heating led to lower peak viscosity. Evans and 
Lips (1992) reported that the close packing concentration 
for tapioca is 2.27%. Therefore, a 9.2% suspension can be 
applied to distinguish between waxy and wild-type starch 
of cassava. Even for 5% starch suspension, Raemakers et al. 

Fig. 4  a SNP density plot on 18 
chromosomes of cassava within 
1 Mb window size. b Scatter 
plot (PC1 vs PC2) coding by 
any major genetic groups in the 
data dark colored by waxy vs. 
wild-type starch
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(2005) reported that waxy cassava that was mutated by anti-
sense inhibition of GBSSI had lower peak viscosity than that 
of wild type. For other pasting properties in our study, the 
breakdown viscosity of wild-type cassava starches (191–379 
RVU) was considerably higher than those of waxy cassava 
starches (102–140 RVU), indicating their lower resistance 
to high temperatures and increased sensitivity to shearing 
stress. After cooling, the final viscosities of the wild-type 
cassava starches were significantly higher than the waxy cas-
sava starches (179–256 and 133–151 RVU, respectively), 
indicating that the retrogradation tendency of the wild-type 
cassava starches was higher than the waxy cassava starches. 
The final viscosities of the wild-type cassava starches (56–99 
RVU) were slightly higher than those of the waxy cassava 
starches (36–55 RVU). The lower breakdown and setback 
viscosity values indicate greater starch paste stability and a 
lower retrogradation tendency of waxy cassava starches. The 
lower peak viscosity of waxy starch can be explained by the 
particle rigidity of partially swollen granules. The hypoth-
esis that a pleiotropic effect of waxy gene has a yield pen-
alty was raised and studied in Karlström et al. (2016) in 87 
waxy and 87 wild-type counterpart cassava lines from eight 
full-sib families showing that waxy lines had 0.8% lower 
dry matter content than the wild-type counterpart. However, 
there is no evidence of a pleiotropic effect of waxy gene on 
starch pasting properties. There were reports of higher fat 
and water soluble carbohydrate content in waxy compared to 
wild type in wheat (Yasui and Ashida 2011) and rice (Pérez 
et al. 2019), but starch contents in both studies were reported 
to be inconsistent and unchanged compared to wild type, 

respectively. In this study, there were no significant SNPs 
detected for SC on spontaneous mutants of GBSSI gene 
(Aiemnaka et al. 2012). However, the preliminary results 
of waxy cassava had low SC or DMC comparing with com-
mercial varieties. Therefore, it is possibly due to the link-
age between the waxy gene and a locus for SC or DMC. 
Then, the further crosses among waxy cassava (wxwx) or 
improved heterozygous genotypes (Wxwx) to select for waxy 
with higher SC or DMC could help increase the chance to 
breaking the linkage waxy starch and low desirable SC.

Linkage disequilibrium

LD in cross-pollinated species decays more rapidly than in 
self-pollinated species due to the more effective recombina-
tion that occurs in the former (Flint-Garcia et al. 2003). We 
observed rapid LD decay in the 276 genotypes with a r2 < 0.2 
at approximately 243 kb, which was higher than in Brazilian 
germplasms (~ 107 kb; r2 < 0.1; Andrade et al. 2019), Bra-
zilian cassava (~ 20 kb; r2 < 0.2; Albuquerque et al. 2018), 
East–West African (~ 50 kb;  r2 < 0.2) datasets (Wolfe et al. 
2016), HapMap (3 kb; r2 = 0.1; Ramu et al. 2017), and elite 
IITA cassava breeding genotypes (10 kb; r2 = 0.212; Rabbi 
et al. 2020), and lower compared to West African (~ 2 Mb; 
r2 < 0.1; Rabbi et al. 2017). Given the allogamous nature 
of cassava, the LD pattern may reduce prediction accuracy 
since LD is crucial for GS breeding (Jannink 2010; Yabe 
et al. 2018); however, the LD observed in this study indi-
cates the potential for improved accuracies when using this 
population for GS breeding.

Fig. 5  LD decay by chromosome. LD plots for each chromosome and the mean LD for 18 chromosomes. Inset is the distance (bp) where LD 
drops below r2 of 0.2 for each chromosome
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GWAS and candidate genes

We scanned for associations between SNPs using CMLM, 
BLINK, and FarmCPU to identify genomic regions asso-
ciated with yield-related traits, starch type of waxy, and 
wild-type starch and starch pasting property traits in cas-
sava, respectively. The MLM model controls the P value 
inflation well but leads to false negatives, which weakens 
the identification of true associations (Zhang et al. 2010). 
To deal with this problem, we used the compressed MLM 
model (CMLM), which clusters individuals into groups and 
fits the genetic values of groups as random effects in the 
model (Zhang et al. 2010). The CMLM method improves 
statistical power compared to regular MLM methods (Zhang 
et al. 2010). FarmCPU is a multi-locus model developed 
to control false positives without false negatives (Liu et al. 
2016). The FarmCPU model uses a modified MLM method, 
MLMM, and incorporates multiple markers simultaneously 
as covariates in a stepwise MLM to partially remove the 
confusion between testing markers and kinship. To eliminate 
this confusion, MLMM is divided into two parts: a fixed-
effect model (FEM) and a random effect model (REM) and 
uses them iteratively. The FEM uses single marker testing 
and multiple associated markers as covariates to control 
false positives. The associated markers are estimated in 
the REM to define kinship to avoid model overfitting in the 
FEM. We evaluated these three models for false positives 
and false negatives based on the Q–Q plots. A sharp devia-
tion from the expected P value distribution in the tail area 
would indicate that a model appropriately controlled both 
false positives and false negatives. Q–Q plots of complex 
models including CMLM, MLMM, and FarmCPU had a 
straight line with a slightly deviated tail, indicating that these 
models reduced false positives. We found that the FarmCPU 
model controlled both false positives and false negatives 
more effectively than the CMLM and MLMM models for 
yield-related traits.

Usually, many QTLs for a given trait are detected in dif-
ferent populations from different environments and the effect 
of QTLs by environment interaction is inconsistent. In pre-
vious studies, Andrade et al. (2019), Ozimati et al. (2019), 
and Yonis et al. (2020) detected root yield marker–trait 
associations. As Bonferroni correction method may cause 
more false-negative result (Kaler and Purcell, 2019), one 
QTL on chromosome 4 associated with RP and a QTL on 
chromosome 1 for FRW were mentioned in this study, as 
the − log 10 p value was quite close to the threshold value, 
for further marker validation with the caution that this SNP 
did not pass the Bonferroni threshold in the FarmCPU 
analysis. Wolfe et al. (2017) and Zhang et al. (2018) used 
a compressed MLM approach to significantly decrease the 
number of false positives for yield components (number of 
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Fig. 6  Manhattan plot of SNP markers associated with FRW, SC, HI 
and RP the quantile–quantile (Q–Q) plots in cassava using the fixed 
and random model circulating probability unification (FarmCPU; yel-

low dot), compressed mixed linear model (CMLM; navy blue), and 
the multi‐locus mixed model (MLMM; blue dot) (color figure online)
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storage roots, storage roots weight, and dry mass weight), 
and storage root quality (dry matter content and starch con-
tent), and found one SNP locus located on chromosome 2 

that was associated with fresh weight and dry mass weight. 
MLM-based GWAS for harvest index, the ratio of fresh root 
weight to total plant weight, uncovered two genomic regions 

Fig. 7  Manhattan plot of SNP markers associated with starch (waxy 
and wild-type) implemented with BLINK method, peak RVU. Trough 
RVU, breakdown RVU were implemented with CMLM method and 
quantile–quantile (Q–Q) plots in cassava found with the fixed and 

random model circulating probability unification (FarmCPU; blue 
dot). A gray line represents the significance threshold. − Log10 
(p values) = 6.25 represents the threshold from the Bonferroni correc-
tion method (color figure online)
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Fig. 8  Manhattan plot of SNP markers associated with final viscosity 
RVU, setback RVU, pasting temp RVU, peak temp RVU, and quan-
tile–quantile (Q–Q) plots in cassava found with the CMLM method. 

A gray line represents the significance threshold. − Log10 (p  val-
ues) = 6.25 represents the threshold from the Bonferroni correction 
method



164 Theoretical and Applied Genetics (2022) 135:145–171

1 3

that were significantly associated with the trait. The first 
peak is in chromosome 2, tagged by SNP S2_2809137 (p 
value = 3 × 10−8). The second locus occurred on chromo-
some 12, with SNP S12_6055806 showing the strongest 
association with the trait (p value = 5.4 × 10−24). MLM 
analysis revealed two major loci, of which only one was 
previously reported (Rabbi et al. 2017). The most significant 
locus occurred on chromosome 1 in the 24.64 Mb region, 
and the second locus was tagged on chromosome 12. This 
study used FarmCPU in GWAS for yield-related traits, 
instead of CMLM or MLMM (Fig. 6), which could exclude 
the false-positive associations. The Q–Q plots also suggested 
that the false-positive associations in this study were well 
controlled for the GWAS of the four yield-related traits.

GWAS has been applied to dissect the genetic architec-
ture of several complex traits in cassava (Zhang et al. 2018; 
Rabbi et  al. 2020). However, no previous studies have 
focused on GWAS for starch pasting properties in cassava. 
Here, we performed GWAS for seven pasting properties in 
a 276 wild-type and waxy cassava panel with 89,934 SNPs 
and identified 21 significant QTLs using CMLM model. The 
QTLs detected in this study were compared with those in 
previous studies that used  F1 mapping population (Thanya-
siriwat et al. 2014). As a result, the major genes of interest 
that encode the family of glycosyl or glucosyl transferases 
and hydrolases corresponded to the QTLs identified in pre-
vious studies. The remaining could possibly be novel QTLs 
(Table 3).

Notably, the detected loci may not be the actual causa-
tive loci due to false positives caused by LD or population 
structure. To understand the molecular basis of starch 
pasting properties, we further investigated the locations 
of associated QTLs for possible candidate genes by exam-
ining the candidate genes within 50 kb downstream and 
upstream of the identified QTLs (Table 3). According 
to functional annotations, the candidate genes involv-
ing in yield-related traits which were fresh root weight, 
starch content, and harvest index were in the group of 
DNA-binding protein such as histone H2A and WRKY 
DNA-binding domain and in the group of protein and 
ATP binding gene such as ring finger domain and F-box 
domain. Some specific protein function such as no apical 
meristem (NAM) protein, protein phosphatase 2A regula-
tory B subunit, LYCOPENE BETA/EPSILON CYCLASE, 
stress-responsive A/B barrel, plant self-incompatibility 
protein S1, ATP SYNTHASE, phosphoesterase, dia-
cylglycerol kinase, and protein kinase were linked with 
the yield-related traits suggesting the complex of plant 
interaction with environmental stress signal involving 
with cassava yield. Some of the candidate genes or their 
homologs are known to be linked to starch properties. 
Another example is the chemical reactions and pathways 
involving carbohydrates and carbohydrate metabolic Ta
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Fig. 9  Predictive yield-related traits based on the Pearson correlations 
between GEBVs and true breeding values from eight statistical mod-
els using tenfold cross-validation with 9:1 for the training set and a 

validation set with 30 replications. Different capital letters above the 
group labels indicate significant differences between groups

Fig. 10  Predictive ability of starch pasting property traits based on the Pearson correlations between GEBVs and true breeding values using 
eight statistical models and tenfold cross-validation with 9:1 for the training set and a validation set with 30 replications
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processes (Manes.04G057600.1). Manes.02G000500 
encodes for suberin monomers biosynthesis enzyme. 
Suberin is the part of cell wall polymer complex. Interest-
ingly, Manes.02G000500 located in chromosome 2 (posi-
tion 83,240) which is near Manes.02G001000 encoding 
for GBSSI at position 117,671 and this QTL of suberin 
biosynthesis enzyme encoding gene was related to vari-
ous traits of starch pasting properties including peak vis-
cosity, trough viscosity, breakdown, final viscosity, and 
peak temperature. bHLH-MYC and R2R3-MYB transcrip-
tion factors (Manes.02G002300) which involve in epi-
cuticular wax synthesis were detected to link with peak 
viscosity and final viscosity as well (Elango et al. 2020). 
Manes.02G011700 encodes pectinesterase, one of the 
most heat-resistant enzymes, leading to gelatinization and 
precipitation of pectin in puree and juice with subsequent 
loss of the juice’s cloudy appearance (Salas-Tovar et al. 
2017). Other genes related to the synthesis of fat were 
shown to link with starch pasting properties as well such 
as CDP-diacylglycerol biosynthesis (Manes.03G071000) 
and Beta-ketoacyl synthase (Manes.02G007700). The 
gene encoding DYNAMIN-RELATED PROTEIN which 
is GTP binding protein (Manes.02G009200) was associ-
ated with final viscosity. Dynamin protein was reported 
to involve the late stage of amyloplast division that deter-
mines the size of starch granule and affects starch gelati-
nization peak temperature (Yun and Kawagoe 2009).

Genomic prediction accuracies

The Pearson’s correlations (r) between the observed phe-
notypic values and the genomic estimated breeding values 
(GEBVs) were based on the tenfold cross-validation scheme 
to evaluate the efficiency of GS for yield-related traits and 
starch pasting property traits in wild-type and waxy cassava. 
Random sampling training and validation sets were repeated 
30 times, and the mean of the correlations was defined as the 
genomic predictive ability (PA; Spindel et al. 2015; Gouy 
et al. 2013; Heffner et al. 2010. Usually, a large sample of 
training and test data sets will be generated to estimate PA, 
which generally results in a normal or nearly normal PA dis-
tribution. The mean or median of the distribution represents 
the GS predictive ability of a trait (Rutkoski et al. 2012). 
In this study, the mean PA was used to represent the pre-
dictive ability under a certain training population size with 
a combination of cassava panels, GS models, and marker 
sets. The PA for the yield-related traits ranged − 0.001–0.71 
depending on trait, and 0.33–0.82 for the starch property 
traits, which was comparable to the values implemented for 
GS in cassava breeding programs (Wolfe et al. 2016, 2017; 
Okeke et al. 2017; Ozimati et al. 2018; Kayondo et al. 2018; 
Andrade et al. 2019; Somo et al. 2020; Yonis et al. 2020).

Generally, PA is related to the heritability. In this study, 
HI trait was moderately heritable (0.51; Table 1) and PA was 
0.50–0.59. Whereas the heritability of FRW was low (0.10), 
FRW had low PA (− 0.001–0.09). These results correspond 
to Wolfe (2016b, 2017) and Andrade et al. (2019). Due to 
the higher heritability (0.58–0.85) of starch property traits, 
their direct phenotypic selection could be sufficient for the 
selection in a breeding program. In contrast, PA for FRW 
a higher genomic heritability is needed for predicting yet-
to-be-observed phenotypes. As the heritability of the trait 
decreases, the ratio of environmental variance (residual) to 
genetic variance increases (Momen et al. 2018). For genomic 
evaluation programs to succeed, markers should have an 
acceptable level of LD with QTL so that the marker can 
express the QTL effects efficiently in the population. The 
successful implementation of genomic prediction in the pro-
cess of selection is determined by the ability of the model 
to predict or estimate the genetic potential of new breeding 
lines for a specific trait. Training populations have a major 
impact on model performance, especially its size, genetic 
composition, heritability, and relatedness to the selection 
population (Isidro et al. 2015). FRW is an important yield-
related trait in cassava. Low heritability traits such as FRW 
are complex traits that control by many small effects of 
gene interaction and genotype by environment interaction 
(Kawano 2003; Ceballos et al. 2016; Wolfe et al. 2016b; 
2017). The additional costs of genotyping would be coun-
terbalanced by a higher reliability for predicting FRW. How-
ever, high-density markers and analytical skills for genomic 
prediction for nonadditive gene effects and environmental 
interaction are required for low heritability traits.

GS models

In GS, the best prediction model is commonly identified by 
the cross-validation of phenotypic and genotypic data from 
a training set (Heffner et al. 2009). We tested eight mod-
els and found that the lower PA values of FRW were also 
reported by Wolfe et al. (2017) and Andrade et al. (2019), 
who reported low PA for fresh root yield (0.18–0.37, and 
0.475, respectively). Overall, previous studies of crops and 
traits reported only slight differences in performance among 
the different genomic prediction algorithms (Asoro et al. 
2011; Crossa et al. 2013; Heslot et al. 2012; Lorenz et al. 
2012). We found that FRW, a more complex and lower H2 
trait, generally had lower PA than a simpler and higher H2 
trait, such as RP. This is consistent with other studies, where 
complex traits controlled by many loci with small effects had 
lower prediction accuracy than less complex traits (Hayes 
et al. 2010: Wolfe et al. 2016a, b). Genomic predictions 
should be more accurate for traits with higher H2 (Daetwy-
ler et al. 2010; Lorenz 2013; Combs and Bernardo 2013). 
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Among the parametric and nonparametric methods, RFC 
showed the lowest PA, which was not statistically significant 
(P > 0.05) for FRW, HI, and RP. The variation in prediction 
superiority for RKHS has been observed in previous studies 
(Wolfe 2017; Andrade et al. 2019). Empirical studies in cas-
sava demonstrated lower predictive abilities for dry matter 
content of 0.24–0.68 (Wolfe et al. 2017) and 0.5655–0.5670 
(Andrade et al. 2019). They did not find any great differences 
between the GS methods for SC and dry matter content. 
Although different methods were used to evaluate the starch 
content, our predictive ability results were higher (i.e., the 
specific gravity). In this study, the PA of SC was signifi-
cantly different for the RFC and RKHS models.

Of the starch pasting-related traits, there were no signifi-
cant differences between the parametric and nonparametric 
models, except for RFC, which had the lowest performance. 
Differences in the predictive ability of the nonparametric 
models could be due to the intrinsic way in which the vari-
ous prediction models incorporate marker information. 
While models make no assumptions about gene action, 
nonlinearity is introduced using specific methods (Morota 
and Gianola 2014). In general, the performance of predic-
tive models is known to depend on the genetic architecture 
of the trait under consideration (Daetwyler et al. 2010; Su 
et al. 2014). Although nonadditive models, including RFC 
and RKHS, capture dominance and epistasis effects, GBLUP 
is more suitable for prediction when traits are determined 
by a large number of unlinked and non-epistatic loci with 
small effects.

The cross‐validation results were mostly consistent across 
the breeding programs, and the superiority of one prediction 
method over the others was trait‐dependent. RF and RKHS 
usually predicted phenotypes more accurately for yield‐
related traits, which are known to have a significant amount 
of nonadditive genetic variation (Wolfe et al. 2016). Similar 
findings have been made in wheat (Triticum aestivum L.) for 
grain yield, an additive, and epistatic trait, in which RKHS, 
radial basis function neural networks, and Bayesian regular-
ized neural network models had a better predictive ability 
than additive models like BL, Bayesian ridge‐regression, 
BayesA, and BayesB (Perez‐Rodriguez et al. 2012).

Conclusions

This study aimed to identify major QTL to facilitate MAS 
and explore the utility of GS for yield-related and starch 
pasting property-related traits in cassava panel breeding pro-
grams. In this study, GWAS identified eight yield-related, 
peak starch type of waxy and wild-type starch and 21 
starch pasting property-related traits (QTLs), respectively. 
We performed GWAS and evaluated GS for 12 yield and 

starch-related traits by utilizing data collected for 276 cas-
sava-derived lines from TTDI, CIAT and IITA, and other 
advanced breeding lines. We provided a comparison of eight 
genomic prediction models for predictive ability. The results 
showed that predictabilities for the eight models were not 
significantly different for the yield-related traits, except that 
the RKHS models were better than the RFC models for SC, 
and the RFC model had a significantly lower predictability 
for the starch pasting property-related traits. Given these 
promising results, the implementation of MAS and GS can 
enable breeders to better select those quality traits in a larger 
population at earlier stages, thus enhancing selection effi-
ciency. Opportunity exists to explore the genetics underly-
ing other traits and agronomic characteristics, which will be 
addressed in future investigations.
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