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Abstract
Key message  We combined quantitative and population genetic methods to identify loci under selection for adult 
plant resistance to stripe rust in an Austrian winter wheat breeding population from 2008 to 2018.
Abstract  Resistance to stripe rust, a foliar disease caused by the fungus P. striiformis f. sp. tritici, in wheat (Triticum aestivum 
L.) is both qualitatively and quantitatively controlled. Resistance genes confer complete, race-specific resistance but are eas-
ily overcome by evolving pathogen populations, while quantitative resistance is controlled by many small- to medium-effect 
loci that provide incomplete yet more durable protection. Data on resistance loci can be applied in marker-assisted selection 
and genomic prediction frameworks. We employed genome-wide association to detect loci associated with stripe rust and 
selection testing to identify regions of the genome that underwent selection for stripe rust resistance in an Austrian winter 
wheat breeding program from 2008 to 2018. Genome-wide association mapping identified 150 resistance loci, 62 of which 
showed significant evidence of selection over time. The breeding population also demonstrated selection for resistance at 
the genome-wide level.

Introduction

Stripe rust is an economically important foliar disease of 
wheat (Triticum aestivum L.) caused by the fungus P. strii-
formis f. sp. tritici (Pst). Breeding resistant varieties are the 
most effective strategy for mitigating yield losses due to 
stripe rust (Chen 2020). Qualitative resistance to stripe rust 
in wheat is controlled by both qualitative resistance genes 
(R-genes) and quantitative trait loci (QTL) with small to 
moderate effects. More than 100 QTL have been associated 
with seedling resistance, adult plant resistance, and high 
temperature adult plant resistance in dozens of mapping pop-
ulations and diversity panels (Rosewarne et al. 2008; Zegeye 
et al. 2014; Ye et al. 2019), and more than 80 Yr R-genes 
have been mapped or proposed to date (Waqar et al. 2018; 

Blake et al. 2019). Although Yr genes can provide complete 
or nearly complete protection against specific Pst races, they 
can easily break down with genetic changes in Pst popu-
lations (Poland et al. 2009; Chen 2020). For example, the 
emergence of the Warrior pathotype, which has overcome 
several widely deployed Yr genes, has caused devastating 
losses across Europe in the past decade (Buerstmayr et al. 
2014; Hovmøller et al. 2016; Klymiuk et al. 2020; Tehseen 
et al. 2020). In contrast, small- and moderate-effect QTL 
provide partial, race non-specific resistance that tends to be 
more durable over time (Poland et al. 2009; Chen 2020). 
Information on Yr genes and QTL associated with stripe rust 
can be used for marker-assisted selection (Chen 2020) and 
to enhance genomic selection models (Juliana et al. 2017; 
Muleta et al. 2017).

Here, we analyzed historical stripe rust and genotyping 
data from an active Austrian winter wheat breeding pro-
gram across 2008–2018. We employed genome-wide asso-
ciation (GWA) mapping to identify QTL associated with 
adult plant resistance to stripe rust within and across years 
and assessed their dynamics in allele frequencies and effects 
over the 11-year period to test for selection at the locus and 
genome-wide levels.
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Materials and methods

Phenotypic and genotypic data

Here, we analyzed a historical stripe rust dataset from the 
winter wheat breeding program of Saatzucht Donau GmbH 
& CoKG (Probstdorf, Austria). In total, 20,529 genotypes 
(12,844 recombinant inbred lines, 1638 doubled haploids, 
and 6047 advanced lines and registered varieties) were 
evaluated in 71 trials in 53 locations from 2008 to 2018 
(Table 1). Because the plant material was part of an active 
breeding program, most genotypes were only evaluated in 
one plot in one trial (Table 1). To account for within-trial 
spatial variation, a check plot design was used, in which at 
least one genotype was replicated within each trial (Kempton 
1984).

Each year, the Institute for Plant Protection in Field 
Crops and Grassland (Julius Kühn Institute, Kleinmach-
now, Germany) provided urediniospores from a mixture 
of Pst pathotypes. The inoculum was then propagated on 
seedlings of susceptible genotypes in the greenhouse at the 
Saatzucht Donau research station in Reichersberg, Austria. 
One trial per year was grown in the Reichersberg disease 
nursery (location ID = LOC01), where plots were spray-
inoculated with urediniospore suspension at the EC29 and 
EC30 growth stages (Leivermann and Brockerhoff 2015) 
(Online Resource 1). All other trials relied on natural infec-
tion. Each plot was scored for adult stripe rust resistance 
on a 1 (most resistant) to 9 (most susceptible) scale at 1–3 
timepoints after symptoms became apparent on susceptible 
lines (Online Resource 1).

Genotypes (minimum F5 stage) with good agro-
nomic performance (e.g., lodging resistance, yield, 

spike morphology), grain quality, and disease resistance 
(e.g., powdery mildew, Septoria nodorum blotch, stripe 
rust) were pre-selected for DNA sequencing. From the 
pre-selected material, a final subset of 5233 genotypes 
representing the diversity of the breeding program was 
chosen for sequencing and downstream genomic analysis 
(Table 1). Leaf samples from a minimum of ten plants per 
genotype were collected during early summer, and DNA 
was extracted as described by Saghai-Maroof et al. (1984). 
The DNA samples were genotyped with a custom 6 K Illu-
mina marker array (Illumina, Inc., San Diego, CA, the 
USA) and with DArTseq (Diversity Arrays Technology 
Pty Ltd, Canberra, Australia) genotyping-by-sequencing 
(GBS) technology (Akbari et al. 2006; Elshire et al. 2011) 
and single nucleotide polymorphisms (SNPs) were then 
called using proprietary software. SNP genotypes were 
coded in terms of alternate alleles “a” and “A”, where 
− 1 = aa (homozygous “a” allele), 0 = Aa (heterozygous), 
and 1 = AA (homozygous “A” allele). Missing SNP data 
was imputed with the “missForest” package (Stekhoven 
and Bühlmann 2012) in R (R Core Team 2020). To esti-
mate imputation accuracy, 5% of the non-missing SNP 
data was masked (set to missing) and the dataset was 
imputed again, resulting in 94.4 ± 3.0% of correctly 
imputed masked SNPs. After filtering for minor allele 
frequency > 5% and call rate > 90%, a final set of 9744 
SNPs was available for downstream genomic analyses 
(Online Resource 2). To generate a physical map, we used 
the nucleotide BLAST tool on the Wheat@URGI por-
tal (Alaux et al. 2018) to compare the marker sequences 
against the IWGSC RefSeq v2.0 assembly (Appels et al. 
2018). The physical position of each SNP was determined 
by the BLAST query with the greatest coverage value.

Table 1   Total number of plots, 
trials, and genotypes with/
without sequencing data within 
and across years from 2008 to 
2018

RIL recombinant inbred line, DH doubled haploid, Other advanced lines and registered varieties

Year Plots Trials All genotypes Sequenced genotypes

Total RIL DH Other Total RIL DH Other

2008 1103 1 962 670 12 280 47 18 0 29
2009 2065 1 1177 674 18 485 93 50 0 43
2010 2325 1 1672 1113 12 547 182 130 0 52
2011 2915 1 1789 1095 122 572 243 162 0 81
2012 3072 1 1701 1048 107 546 288 200 0 88
2013 3421 3 1468 1060 17 391 266 172 10 84
2014 12,363 24 3353 2024 733 596 1458 881 474 103
2015 11,485 17 4134 2295 243 1596 1298 933 163 202
2016 11,188 14 3848 2438 163 1247 1387 1032 54 294
2017 4037 6 1465 382 51 1032 638 348 16 274
2018 5425 2 3507 2173 516 818 1639 862 485 292
Across 59,399 71 20,529 12,844 1638 6047 5233 3481 1004 748
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Phenotypic analysis

To adjust for spatial variation in each stripe rust score 
(stripe rust was scored at 1–3 different timepoints) within 
each trial, we fit a general linear model with genotype as 
a random effect and row and column effects modeled as 
two-dimensional P-splines and then estimated heritability 
using the “SpATS” package (Rodríguez-Álvarez et al. 2018) 
in R (R Core Team 2020). For the score with the greatest 
heritability in each trial, we fit a generalized linear model 
with genotype as a fixed effect and row and column effects 
modeled as two-dimensional P-splines with the “SpATS” 
package (Rodríguez-Álvarez et al. 2018) in R (R Core Team 
2020) and then extracted the spatially adjusted stripe rust 
values (plot-level fitted values) for further analysis (Online 
Resource 1). We used the “lme4” package (Bates et al. 2015) 
in R (R Core Team 2020) to fit within-year (2013–2018) 
and across-year (2008–2018) mixed models with spatially 
adjusted stripe rust values as the response and genotype and 
trial as random effects.

We extracted the variance components from each 
model and estimated broad-sense heritability (H2) as 
H2 = �2

G
∕
(

�2
G
+ �2

�
∕ph

)

 , where σ2
G is the genotypic 

variance, σ2
ε is the error variance, and ph is defined as 

ph = n∕
∑n

i=1
(1∕pi) , where n is the number of genotypes, 

and pi is the number of plots for the ith genotype (Holland 
et al. 2003). We also extracted the genotype best linear unbi-
ased predictors (BLUPs) to estimate phenotypic correlations 
between years.

Genome‑wise association

Because of the unbalanced nature of the dataset, we used 
methods that maximize statistical power for GWA in unbal-
anced studies (George and Cavanagh 2015; Xue et al. 2017; 
Chen et al. 2021). For within-year GWA, we used the one-
stage method, in which a mixed model is fit with plot-level 
phenotypes as the response and environmental (e.g., trial, 
year, location), genotypic (e.g., line, family), genetic back-
ground (e.g., relationship/kinship matrices, population struc-
ture components), and SNP information as fixed or random 
effects (Xue et al. 2017; Chen et al. 2021). Plant breeding 
experiments can include large numbers of individuals and/
or trials, making one-stage GWA computationally inten-
sive when complex variance–covariance structures (e.g., 
relationship/kinship matrices) are included to control for 
background genetic effects (George and Cavanagh 2015; 
Xue et al. 2017). As such, the more common approach for 
GWA in plant systems has been the two-stage approach, in 
which (1) the plot phenotypes are regressed against environ-
mental and genotypic terms and (2) the predicted genotypic 
means are then used as the phenotype in the GWA model 
including SNP and genetic background effects (George 

and Cavanagh 2015; Xue et al. 2017). Two-stage analysis 
can result in biased estimates in unbalanced studies, but 
methods have been developed to improve effect estimation 
when one-stage analysis is not computationally feasible 
(Möhring and Piepho 2009; Piepho et al. 2012; George and 
Cavanagh 2015; Xue et al. 2017). For across-year GWA, we 
employed a weighted two-stage analysis, which has been 
shown to closely approximate the results of one-stage analy-
sis (Möhring and Piepho 2009; George and Cavanagh 2015; 
Xue et al. 2017).

For one-stage within-year (2013–2018) GWA, we fit 
mixed models with spatially adjusted stripe rust values 
as the response, SNP as a fixed effect, and genotype (only 
genotypes with SNP data) and trial as random effects using 
the “sommer” package (Covarrubias-Pazaran 2016) in R (R 
Core Team 2020). For within-year GWA from 2008 to 2012, 
the trial term was not included, as stripe rust was only evalu-
ated in one inoculated trial in each of these years.

For two-stage across-year GWA, we first fit a mixed 
model with spatially adjusted stripe rust values as the 
response, genotype (all genotypes) as a fixed effect, and trial 
as a random effect using the “breedR” package (Muñoz and 
Sanchez 2020) in R (R Core Team 2020). We extracted the 
genotype best linear unbiased estimates (BLUEs) and stand-
ard errors (SE) of the genotype BLUEs from the model and 
then calculated the variances (σ2) of the genotype BLUEs as 
�2 =

�

SE
√

n
�2

 , where n is the number of observations per 
genotype (Online Resource 3). In the second stage, we used 
the “sommer” package (Covarrubias-Pazaran 2016) in R (R 
Core Team 2020) to fit a GWA mixed model with genotype 
BLUEs as the response, SNP as a fixed effect, and genotype 
(only genotypes with SNP data) as a random effect.

For both within-year and across-year GWA, the variance 
of the genotype term was modeled as Kσ2

a, where K is the 
realized additive relationship matrix (Endelman and Jannink 
2012), and σ2

a is the estimated additive genetic variance (Yu 
et al. 2006). For each model, we calculated K using SNP 
data from the genotyped lines included in the model with 
the “rrBLUP” (Endelman and Jannink 2012) package in R 
(R Core Team 2020). For across-year GWA, the residual 
variance was modeled as Iwσ2

ε, where w is the vector of 
genotype BLUE variances (Möhring and Piepho 2009; 
George and Cavanagh 2015; Xue et al. 2017). The variance 
components were estimated once for each GWA model using 
the “population parameters previously determined” (P3D) 
method (Zhang et al. 2010).

Although K was included in all GWA models to account 
for population structure (Yu et al. 2006), there was little 
evidence of population structure in the breeding panel. We 
conducted a principal component analysis of the 5233 gen-
otyped lines using SNP data with the “FactoMineR” (Lê 
et al. 2008) package in R (R Core Team 2020). The first and 
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second principal components accounted for 4.0% and 3.5% 
of the variance, respectively, and demonstrated some separa-
tion among lines with respect to the first year in which they 
appeared in the population (Online Resource 4).

SNP p values and effect estimates were extracted from 
each GWA model. For multiple test correction of the SNP p 
values, we conducted a false discovery rate (α = 0.05) analy-
sis for each GWA model with the “qvalue” package (Storey 
2015) in R (R Core Team 2020). The “sommer” package 
estimates SNP effect estimates (β) as � =

(

X�V−X
)

X�V−y 
with X = ZMi , where Z is the incidence matrix of the geno-
type random effect, Mi is the ith column of the SNP matrix, 
V− is the inverse of the phenotypic variance matrix, and y 
is the response (Covarrubias-Pazaran 2016). Because SNPs 
were coded as − 1 = aa, 0 = Aa, and 1 = AA, β is always rela-
tive to the number of “A” alleles.

Tests for selection

For each SNP, we calculated the frequency of allele “A” (p) 
in each year from 2008 to 2018 and extracted β from each 
within-year GWA model. To estimate the change in allele 
frequency of each SNP from 2008 to 2018, we fit a linear 
model for each SNP with p as the response and year as a 
continuous fixed effect and extracted the year coefficient 
from the model (Δp). Likewise, we estimated the change 
in allele effect of each SNP from 2008 to 2018 by fitting a 
linear model for each SNP with β as the response and year 
as a continuous fixed effect and extracted the year coeffi-
cient from the model (Δβ). In GWA, the power to detect a 
SNP-trait association and the absolute effect size of a SNP 
decrease with decreasing minor allele frequency (Bush and 
Moore 2012; Xiao et al. 2017). As such, effect sizes (1) 
become less negative (increase) as the major resistance 
allele increases in frequency and (2) become less positive 
(decrease) as the major susceptibility allele increases in fre-
quency. To determine whether the frequency of the resistant 
allele or the susceptible allele of each SNP increased over 
time, we used the following criteria: (1) if Δp > 0 and Δβ < 0, 
there was selection for the “A” allele conferring susceptibil-
ity; (2) if Δp > 0 and Δβ > 0, there was selection for the “A” 
allele conferring resistance; (3) if Δp < 0 and Δβ < 0, there 
was selection for the alternate “a” allele conferring resist-
ance; (4) if Δp < 0 and Δβ > 0, there was selection for the “a” 
allele conferring susceptibility.

We sought to test whether changes in allele frequencies 
were driven by selection rather than drift. For each SNP, 
we calculated the observed variance in allele frequency 
from 2008 to 2018 (Vp) and estimated the expected vari-
ance in allele frequency due to random genetic drift (Vt) 
as Vt = p(1 − p)

(

1 − exp
(

−t∕2Ne

))

 , where p is the initial 
“A” allele frequency in 2008, t is the number of genera-
tions (t = 11 generations from 2008 to 2018), and Ne is the 

effective population size (Ridley 2003; Juliana et al. 2019). 
We estimated Ne (Ne = 149) by regressing identity-by-
descent (IBD) coefficients against time (2008–2018), with 
Ne = 1∕2ΔIBD (Falconer and Mackay 1995). For each year 
(2008–2018), we calculated IBD between all pairs of lines 
using the SNPRelate package (Zheng et al. 2012) in R (R 
Core Team 2020). For each SNP, we then calculated the 
difference between the observed and expected variances, 
Vp – Vt. We compared Vp – Vt of each SNP to the genome-
wide null distribution of Vp – Vt. The null distribution was 
generated by subsampling Vp – Vt from 150 random SNPs in 
1000 replications. The subsample size of 150 was selected 
because there were 150 significantly associated SNPs from 
GWA.

To test for genome-wide selection of stripe rust resistance 
or susceptibility, we estimated Ĝ , a composite statistic of the 
relationship between additive effect estimates and allele fre-
quency changes over time of genome-wide markers, as 
described by Beissinger et  al. (2018). We fit a random 
regression best linear unbiased prediction (rrBLUP) model 
with genotype BLUEs as the response (as described in the 
two-stage across-year GWA) and SNPs as fixed effects using 
the “rrBLUP” package (Endelman 2011) in R (R Core Team 
2020). For each SNP, we extracted its estimated effect from 
the rrBLUP model and Δp (change in allele frequency from 
2008 to 2018) from the selection analysis. We then estimated 
the value and significance of Ĝ with 1000 permutations 
using the “Ghat” package (Beissinger et al. 2018) in R (R 
Core Team 2020). As described by Beissinger et al. (2018), 
Ĝ =

∑m

j=1
Δj𝛼j , where Δj is the change in allele frequency 

from 2008 to 2018 for SNP j, αj is the allele effect of SNP j, 
and m is the total number of SNPs. To test whether the 
observed Ĝ was the result of selection rather than drift, Ĝ 
was compared to the null distribution of Ĝperm (Beissinger 
et al. 2018). SNP allele effects were permuted 1000 times, 
and Ĝperm was estimated for each permutation as 
Ĝperm =

∑m

j=1
Δj𝛼pj , where Δj is the change in allele fre-

quency from 2008 to 2018 for SNP j, �pj is the allele effect 
of permuted SNP j, and m is the total number of SNPs 
(Beissinger et al. 2018). In this study, a negative Ĝ indicates 
selection for resistance to stripe rust and a positive Ĝ indi-
cates selection for susceptibility.

Results

Genotypic and trial effects on and heritability 
for stripe rust

From 2008 to 2012, stripe rust was evaluated on 962–1789 
genotypes in one trial per year (Table 1). Stripe rust was 
evaluated on a larger panel of genotypes (1465–4134) in a 
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greater number of trials (2–24) per year from 2013 to 2018 
(Table 1). Broad-sense heritability (H2) for resistance to 
stripe rust was generally high within years (H2 = 0.50–0.90) 
and was moderate across years (H2 = 0.54) (Table 2). In most 
years, genotype explained a larger amount of the variance in 
stripe rust than trial and/or error (Table 2).

Between years, genotype BLUPs for stripe rust were 
positively correlated (Table 3). The number of genotypes 
in common was larger and phenotypic correlations tended 
to be stronger in adjacent years than in more distant years 
(Table 3). The highest correlations were observed between 
pairs of years from 2008 to 2012 (Table 3), where stripe 
rust was evaluated under artificial inoculation in the disease 
nursery in Reichersberg, Austria. From 2013 to 2018, trials 
were both artificially inoculated and naturally infected and 
were conducted in several locations.

Genome‑wide association of stripe rust resistance

GWA across years and within 2009–2011, 2014–2015, and 
2018 revealed 186 significant SNP-stripe rust associations 
(150 unique SNPs) after multiple test correction (Fig. 1, 
Online Resource 5–6). Of the significantly associated SNPs, 
112 had a positive effect (“A” allele confers susceptibility) 
and 38 had a negative effect (“A” allele confers resistance) 
on stripe rust (Online Resource 6). The significant GWA 
SNPs explained a small proportion of the variance in stripe 
rust (R2 = 0.08 ± 0.12) and had small to medium-effect sizes 
(|β|= 1.09 ± 1.23) (Online Resource 6).

QTL colocalized between models at 12 locations (Fig. 1, 
Online Resource 6). The within-2010 and across-year 
GWA shared a SNP on chromosome 1A at 499.7  Mbp 
(Fig. 1, Online Resource 6). One SNP on chromosome 1D 

Table 2   Number (N) of plots, 
genotypes, and trials, variance 
components, and broad-
sense heritability (H2) from 
phenotypic analysis of stripe 
rust resistance within and across 
years from 2008 to 2018

a The trial term was not included in within-year models for 2008–2012 because there was only one trial per 
year

Year Plots Genotype Triala Error H2

N σ2
g N σ2

t N σ2
ε

2008 1103 1.424 962 0.332 0.86
2009 2065 1.836 1177 0.606 0.84
2010 2325 1.699 1672 0.469 0.83
2011 2915 0.322 1789 0.387 0.56
2012 3072 1.067 1701 0.308 0.85
2013 3421 0.397 1468 0.376 3 0.062 0.90
2014 12,363 2.106 3353 0.784 24 1.020 0.78
2015 11,485 1.701 4134 0.446 17 0.717 0.76
2016 11,188 1.227 3848 2.377 14 1.830 0.50
2017 4037 1.041 1465 1.124 6 0.812 0.68
2018 5425 0.375 3507 0.001 2 0.049 0.90
Across 59,399 1.010 20,529 0.845 71 1.165 0.54

Table 3   Correlations between genotype best linear unbiased predictors for stripe rust from 2008 to 2018

Correlation coefficients (r) and p values are in the upper diagonal. Number of genotypes (n) present in each pair of years is in the lower diagonal. 
Number of genotypes within each year is on the diagonal. p values are denoted as *0.05 < p ≤ 0.01; **0.01 < p ≤ 0.0001; p < 0.0001

n\r 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

2008 962 0.77*** 0.81*** 0.65*** 0.68** 0.36 0.52** 0.25 0.61* 0.62* 0.85**
2009 188 1177 0.76*** 0.53*** 0.59*** 0.40* 0.21 0.49** 0.58** 0.51* 0.46
2010 76 421 1672 0.47*** 0.68*** 0.29* 0.26 0.26 0.34 − 0.02 0.50*
2011 61 98 225 1789 0.38*** 0.42*** 0.02 − 0.05 0.25 0.04 0.47**
2012 43 56 84 496 1701 0.45*** 0.17 0.27* 0.15 0.31* 0.24
2013 24 38 49 149 260 1468 0.27** 0.49*** 0.19 0.47** 0.16
2014 34 41 48 81 111 171 3353 0.54*** 0.13 0.20* 0.24
2015 28 33 40 62 72 80 690 4134 0.13** 0.25*** 0.30**
2016 14 22 30 41 55 58 219 734 3848 0.20*** 0.36***
2017 14 19 27 36 46 44 152 261 925 1465 0.53***
2018 12 18 23 34 38 40 64 110 190 217 3507
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Fig. 1   Manhattan plots of GWA for stripe rust within (2009–2018) 
and across (2008–2018) years, with SNP physical positions on the 
x-axis, SNP − log10(p values) on the y-axis, and dashed horizontal 

lines denoting the FDR threshold for SNP significance. SNPs high-
lighted in blue and red denote SNPs under selection for the resistant 
and susceptible allele, respectively
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at 234.1 Mbp was significant in GWA within 2010 and 2015 
(Fig. 1, Online Resource 6). The 2014 and 2015 analysis 
shared a SNP on chromosome 2A at 1.8 Mbp (Fig. 1, Online 
Resource 6). SNPs from GWA across years and within 
2010, 2014, and 2015 colocalized on chromosome 2A at 
3.4–16.5 Mbp (Fig. 1, Online Resource 6). GWA across 
years and within 2014 and 2015 shared SNPs on chromo-
some 2A at 18.8–21 Mbp (Fig. 1, Online Resource 6). The 
across-year and within-2014 analysis shared a SNP chromo-
some 2A at 31.4 Mbp (Fig. 1, Online Resource 6). A SNP on 
chromosome 2A at 739.3 Mbp was found in GWA in 2009 
and 2010 (Fig. 1, Online Resource 6). GWA across years and 
in 2014 and 2015 had colocalized SNPs on chromosome 2B 
at 23.1 and 24.8 Mbp and on chromosome 2D at 4.3 Mbp 
(Fig. 1, Online Resource 6). Across-year and within-2010 
GWA shared a SNP on chromosome 5A at 522.5  Mbp 
(Fig. 1, Online Resource 6). A SNP on chromosome 5D at 
528.7 Mbp was significantly associated in 2010 and 2014 
(Fig. 1, Online Resource 6). A SNP on chromosome 7A at 
176.8 Mbp was significantly associated in both the 2018 and 
across-year GWA (Fig. 1, Online Resource 6).

No SNPs were significantly associated with stripe rust in 
2008, 2012–2013, and 2016–2017 (Fig. 1, Online Resource 
5). Quantile–quantile plots of the expected versus the 
observed p values from each GWA demonstrated that the 
analysis was underpowered in years in which no SNPs were 

identified (Online Resource 7). Few genotypes (N = 47) had 
SNP data in 2008 and the trial and residual terms explained 
a larger proportion of the variance in stripe rust in years with 
no significantly associated GWA SNPs, which may partially 
explain the lack of statistical power to detect SNP-trait asso-
ciations (Online Resource 5).

Evidence of selection for stripe rust resistance

We assessed changes in allele frequencies and allele effects 
on stripe rust for each SNP from 2008 to 2018 and tested 
whether these changes were driven by selection or ran-
dom genetic drift (Online Resource 8). By comparing the 
variance in observed allele frequencies to the expected 
variance due to drift (|Vp – Vt|) of each SNP against the null 
distribution of |Vp – Vt| (bootstrapped 1000 times, 95% quan-
tile = 0.0008), we found significant evidence of selection of 
the resistant allele at 38/150 significant GWA SNPs (“A” 
allele at 23 SNPs; “a” allele at 15 SNPs) and for selection of 
the susceptible allele at 24/150 significant GWA SNPs (“A” 
allele at 8 SNPs; “a” allele at 16 SNPs) (Figs. 1, 2, Online 
Resource 8).

SNPs significantly associated in GWA and in selection 
tests demonstrated sharp changes in allele frequencies from 
2012 to 2013, suggesting increased selection pressure dur-
ing the generation between 2012 and 2013; the resistant or 

Fig. 2   Allele effects and allele 
frequencies of SNPs signifi-
cantly associated in GWA for 
stripe rust from 2008 to 2018. 
For SNPs with significant 
evidence of selection, the effect 
(A) and frequency (B) of the 
allele under selection (regard-
less of “A” or “a” allele state) 
are plotted against time, with 
SNPs with selection for the 
resistant allele in blue and for 
the susceptible allele in red. 
For SNPs not under selection, 
the effect (C) and frequency 
(D) of the major allele (allele 
at higher frequency, regardless 
of “A” or “a” allele state) are 
plotted against time, with blue 
and red denoting resistance and 
susceptibility conferred by the 
major allele, respectively
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susceptible allele of these SNPs was nearly fixed in the pop-
ulation by 2018 (Fig. 2, Online Resource 8). In contrast, the 
allele frequencies and effects of the significant GWA SNPs 
that were not under selection were relatively unchanged 
from 2008 to 2018. Of the 88 significant GWA SNPs not 
under selection, the major allele (allele at higher frequency, 
regardless of “A” or “a” allele state) conferred resistance 
at 71 SNPs and susceptibility at 17 SNPs (Fig. 2, Online 
Resource 8). Allele effect estimates may have been inflated 
in 2008–2012, as stripe rust was only evaluated in one trial 
per year and fewer genotypes had SNP data in these years 
than in 2013–2018 (Fig. 2).

To test whether genome-wide resistance or susceptibility 
to stripe rust was under selection in the breeding program 
between 2008 and 2018, we used the Ĝ method (Beissinger 
et al. 2018). There was significant evidence of genome-
wide selection for stripe rust resistance over the 11 years 
in the population, as demonstrated by a negative Ĝ value 
( ̂G = − 0.26) and a highly significant (p = 2 × 10–16) differ-
ence between the observed Ĝ and the null distribution of 
1000 permuted Ĝperm values (Fig. 3A).

SNPs with larger effect sizes on stripe rust in across-year 
GWA had greater changes in allele frequencies from 2008 
to 2018 (Fig. 3B). Furthermore, 2483 SNPs were not signifi-
cantly associated with stripe rust in GWA within or across 
years, yet they had significant evidence of selection for the 
resistant (1233 SNPs) or the susceptible (1250 SNPs) allele 
over time (Online Resource 8). For SNPs under selection, 
absolute allele effect sizes from GWA within and across 
years (|β|) and Vp – Vt were greater at significant GWA SNPs 
(|β|= 0.42 ± 0.36; Vp – Vt = 0.07 ± 0.06) than at nonsignificant 
GWA SNPs (|β|= 0.12 ± 0.15; Vp – Vt = 0.005 ± 0.006). These 
results suggest that both moderate and small effect QTL 
were under selection, although to a lesser extent for QTL 
with small effects that were not detectable GWA.

Discussion

Selection pressure for stripe rust resistance can be influenced 
by both breeder’s decisions and changes in pathotype com-
position of Pst populations. Here, we combined quantitative 
genetic and population genetic methods to identify genomic 
regions that were under selection for resistance or suscep-
tibility to stripe rust in an Austrian winter wheat breeding 
program from 2008 to 2018. GWA revealed 150 SNPs sig-
nificantly associated with stripe rust within 2009–2011, 
2014–2015, and 2018 and across 2008–2018, many of which 
overlapped with regions previously associated with stripe 
rust resistance in other populations (Rosewarne et al. 2013) 
and with putative Yr R-genes (Waqar et al. 2018; Blake et al. 
2019). Because the ability to detect SNP-trait associations 
is largely dependent on minor allele frequency (Bush and 
Moore 2012; Xiao et al. 2017) and selection within a breed-
ing program can generate rapid changes in allele frequencies 
(Ridley 2003), the majority of these SNPs were detected 
by GWA in only 1 year or in adjacent years. Investigating 
the dynamics in allele frequencies and effects over time can 
identify regions of the genome which have undergone selec-
tion for specific traits (Juliana et al. 2019). By combining 
GWA and selection testing, we found that both small- and 
moderate-effect loci had evidence of selection in the popu-
lation. We also employed the Ĝ method to assess selection 
at the genome-wide level (Beissinger et al. 2018) and found 
that the breeding population demonstrated genome-wide 
selection for resistance from 2008 to 2018.

The highly significant QTL on the short arm of chromo-
some 2A were under selection for resistance and although it 
was physically near the Yr17 gene (Rosewarne et al. 2013), 
it is unlikely that Yr17 underlies this QTL because virulent 
Pst races overcame Yr17 across European wheat cultivars by 
2000 (Bayles et al. 2000). Two significant GWA SNPs on the 
short arm of chromosome 2B also demonstrated selection 
for the resistant allele and may be linked to Yr27, an R-gene 
which has recently broken down against new Warrior-type 
races of Pst in the Middle East (Tehseen et al. 2020). A SNP 
in the pericentromeric region of chromosome 1A was under 

Fig. 3   (A) Histogram of the null 
distribution of 1000 permuted 
Ghat values ( ̂Gperm ) and the 
observed Ghat value ( ̂G) plotted 
as a dashed vertical line and (B) 
plot of allele effects on stripe 
rust from across-year GWA 
versus allele frequency changes 
from 2008 to 2018
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selection for the resistant allele and was near QTL for adult 
plant resistance to stripe rust from four mapping populations 
(Rosewarne et al. 2008; Dedryver et al. 2009; Bariana et al. 
2010; Ren et al. 2012) and in a panel of elite spring wheat 
lines from CIMMYT (Crossa et al. 2007), but no Yr genes 
have been mapped to this region (Waqar et al. 2018; Blake 
et al. 2019). Four SNPs on the long arm of chromosome 5B 
were under selection for susceptibility and colocalized with 
QTL associated with non-race-specific adult plant resistance 
to stripe rust in a Sichuan wheat diversity panel (Ye et al. 
2019) and with QTL for race-specific seedling resistance 
to stripe rust found in two biparental mapping populations 
(Feng et al. 2011; Zegeye et al. 2014) and for adult plant 
resistance in an Austrian biparental mapping population 
(Buerstmayr et al. 2014). However, no Yr genes have been 
mapped to the long arm of chromosome 5B to date (Waqar 
et al. 2018; Blake et al. 2019). Two SNPs on the long arm of 
chromosome 7A were also under selection for susceptibility, 
but we found no evidence of previously reported stripe rust 
QTL or mapped Yr genes in this region (Waqar et al. 2018; 
Blake et al. 2019).

By combining SNP-specific and genome-wide 
approaches, we demonstrated that the breeding population 
harbors both moderate-effect QTL and quantitative forms 
of incomplete, race non-specific adult plant resistance and 
that both were under selection across the 11-year period. 
The resistance QTL identified in this study will be further 
evaluated for their use in marker-assisted selection and as 
covariates in genomic prediction models for stripe rust 
resistance in the breeding program. The breeding popula-
tion demonstrated highly heritable, quantitative resistance 
to stripe rust and low population structure, indicating that 
genomic prediction of stripe rust resistance can be success-
fully applied in this population (Crossa et al. 2017; Juliana 
et al. 2017; Muleta et al. 2017; Tehseen et al. 2021).

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00122-​021-​03882-3.

Author Contribution statement  LM, SM, HB contributed to concep-
tualization; LM, SM, CA were involved in data curation; LM, SM, 
HGD, SZ contributed to formal analysis; HB was involved in  funding 
acquisition; FL, AN contributed to investigation; LM was involved in 
methodology, validation, visualization, writing—original draft; LM, 
SM, FL, AN, HB contributed to project administration; FL, AN, CA, 
HB were involved in resources; LM, SM, HGD, SZ, CA contributed 
to  software; SM, FL, HB were involved in supervision;  LM, SM, HB 
contributed to writing—review and editing.

Funding  Open access funding provided by University of Natural 
Resources and Life Sciences Vienna (BOKU). This work was par-
tially funded by the Austrian Federal Ministry of Agriculture, Regions 
and Tourism (Grant Number DaFNE-101402) within the ERA-NET 
Cofund on Sustainable Crop Production.

Availability of data and materials  All phenotypic and genotypic data 
and results from the analyses presented here are included in the manu-
script materials.

Code availability  The scripts used to conduct the analyses presented 
here are available upon request.

Conflict of interest  FL, AN, and CA were employed by the company 
Saatzucht Donau GmbH & CoKG. The remaining authors declare that 
the research was conducted in the absence of any commercial or fi-
nancial relationships that could be construed as a potential conflict of 
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Akbari M, Wenzl P, Caig V et al (2006) Diversity arrays technology 
(DArT) for high-throughput profiling of the hexaploid wheat 
genome. Theor Appl Genet 113:1409–1420. https://​doi.​org/​10.​
1007/​s00122-​006-​0365-4

Alaux M, Rogers J, Letellier T et al (2018) Linking the International 
Wheat Genome Sequencing Consortium bread wheat reference 
genome sequence to wheat genetic and phenomic data. Genome 
Biol 19:11. https://​doi.​org/​10.​1186/​s13059-​018-​1491-4

Appels R, Eversole K, Feuillet C et al (2018) Shifting the limits in 
wheat research and breeding using a fully annotated reference 
genome. Science 361:661. https://​doi.​org/​10.​1126/​scien​ce.​aar71​
91

Bariana HS, Bansal UK, Schmidt A et al (2010) Molecular mapping 
of adult plant stripe rust resistance in wheat and identification of 
pyramided QTL genotypes. Euphytica 176:251–260. https://​doi.​
org/​10.​1007/​s10681-​010-​0240-x

Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-
effects models using lme4. J Stat Softw 67:1–48

Bayles RA, Flath K, Hovmøller MS, de Vallavieille-Pope C (2000) 
Breakdown of the Yr17 resistance to yellow rust of wheat in north-
ern Europe. Agronomie 20:805–811. https://​doi.​org/​10.​1051/​agro:​
20001​76

Beissinger T, Kruppa J, Cavero D et al (2018) A simple test identifies 
selection on complex traits. G3 209:321–333. https://​doi.​org/​10.​
1534/​genet​ics.​118.​300857

Blake VC, Woodhouse MR, Lazo GR et al (2019) GrainGenes: cen-
tralized small grain resources and digital platform for geneticists 
and breeders. Database 2019:1–7. https://​doi.​org/​10.​1093/​datab​
ase/​baz065

Buerstmayr M, Matiasch L, Mascher F et al (2014) Mapping of quan-
titative adult plant field resistance to leaf rust and stripe rust 
in two European winter wheat populations reveals co-location 
of three QTL conferring resistance to both rust pathogens. 

https://doi.org/10.1007/s00122-021-03882-3
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00122-006-0365-4
https://doi.org/10.1007/s00122-006-0365-4
https://doi.org/10.1186/s13059-018-1491-4
https://doi.org/10.1126/science.aar7191
https://doi.org/10.1126/science.aar7191
https://doi.org/10.1007/s10681-010-0240-x
https://doi.org/10.1007/s10681-010-0240-x
https://doi.org/10.1051/agro:2000176
https://doi.org/10.1051/agro:2000176
https://doi.org/10.1534/genetics.118.300857
https://doi.org/10.1534/genetics.118.300857
https://doi.org/10.1093/database/baz065
https://doi.org/10.1093/database/baz065


3120	 Theoretical and Applied Genetics (2021) 134:3111–3121

1 3

Theor Appl Genet 127:2011–2028. https://​doi.​org/​10.​1007/​
s00122-​014-​2357-0

Bush WS, Moore JH (2012) Chapter 11: genome-wide association stud-
ies. PLoS Comput Biol 8(12):1002822. https://​doi.​org/​10.​1371/​
journ​al.​pcbi.​10028​22

Chen X (2020) Pathogens which threaten food security: Puccinia strii-
formis, the wheat stripe rust pathogen. Food Secur 12:239–251. 
https://​doi.​org/​10.​1007/​s12571-​020-​01016-z

Chen Y, Wu H, Yang W et al (2021) Multivariate linear mixed model 
enhanced the power of identifying genome-wide association to 
poplar tree heights in a randomized complete block design. G3 
11(2):53. https://​doi.​org/​10.​1093/​g3jou​rnal/​jkaa0​53

Covarrubias-Pazaran G (2016) Genome-assisted prediction of quan-
titative traits using the R package sommer. PLoS ONE 11:1–15. 
https://​doi.​org/​10.​1371/​journ​al.​pone.​01567​44

Crossa J, Burgueño J, Dreisigacker S et al (2007) Association analysis 
of historical bread wheat germplasm using additive genetic covari-
ance of relatives and population structure. Genetics 177:1889–
1913. https://​doi.​org/​10.​1534/​genet​ics.​107.​078659

Crossa J, Pérez-Rodríguez P, Cuevas J et al (2017) Genomic selection 
in plant breeding: methods, models, and perspectives. Trends Plant 
Sci 22(11):961–975. https://​doi.​org/​10.​1016/j.​tplan​ts.​2017.​08.​011

Dedryver F, Paillard S, Mallard S et al (2009) Characterization of genetic 
components involved in durable resistance to stripe rust in the bread 
wheat “Renan.” Phytopathology 99:968–973. https://​doi.​org/​10.​
1094/​PHYTO-​99-8-​0968

Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-
by-sequencing (GBS) approach for high diversity species. PLoS 
ONE 6:e19379. https://​doi.​org/​10.​1371/​journ​al.​pone.​00193​79

Endelman JB, Jannink J-L (2012) Shrinkage estimation of the realized 
relationship matrix. G3 2:1405–1413. https://​doi.​org/​10.​1534/​g3.​
112.​004259

Falconer D, Mackay T (1995) Introduction to quantitative genetics, 4th 
edn. Longman, White Plains

Feng J, Zuo LL, Zhang ZY et al (2011) Quantitative trait loci for tem-
perature-sensitive resistance to Puccinia striiformis f. sp. tritici in 
wheat cultivar Flinor. Euphytica 178:321–329. https://​doi.​org/​10.​
1007/​s10681-​010-​0291-z

George AW, Cavanagh C (2015) Genome-wide association mapping in 
plants. Theor Appl Genet 128:1163–1174. https://​doi.​org/​10.​1007/​
s00122-​015-​2497-x

Holland JB, Nyquist WE, Cervantes-Martinez CT (2003) Estimating 
and interpreting heritability for plant breeding. Plant Breed Rev 
22:9–112

Hovmøller MS, Walter S, Bayles RA et al (2016) Replacement of the 
European wheat yellow rust population by new races from the centre 
of diversity in the near-Himalayan region. Plant Pathol 65:402–411. 
https://​doi.​org/​10.​1111/​ppa.​12433

Juliana P, Singh RP, Singh PK et al (2017) Genomic and pedigree-
based prediction for leaf, stem, and stripe rust resistance in wheat. 
Theor Appl Genet 130:1415–1430. https://​doi.​org/​10.​1007/​
s00122-​017-​2897-1

Juliana P, Poland J, Huerta-Espino J et al (2019) Improving grain yield, 
stress resilience and quality of bread wheat using large-scale 
genomics. Nat Genet 51:1530–1539. https://​doi.​org/​10.​1038/​
s41588-​019-​0496-6

Kempton RA (1984) The design and analysis of unreplicated field trials. 
Vor Fur Pflanzenzuchtung 7:219–242

Klymiuk V, Fatiukha A, Raats D et al (2020) Three previously character-
ized resistances to yellow rust are encoded by a single locus Wtk1. J 
Exp Bot 71:2561–2572. https://​doi.​org/​10.​1093/​jxb/​eraa0​20

Leivermann S, Brockerhoff H (2015) Entwicklungsstadien im Getreide. 
In: Landwirtschaftskammer Nord. https://​www.​landw​irtsc​hafts​kam-
mer.​de/​landw​irtsc​haft/​acker​bau/​getre​ide/​getre​ide-​ec-​pdf.​pdf

Möhring J, Piepho HP (2009) Comparison of weighting in two-stage 
analysis of plant breeding trials. Crop Sci 49:1977–1988. https://​
doi.​org/​10.​2135/​crops​ci2009.​02.​0083

Muleta KT, Bulli P, Zhang Z et al (2017) Unlocking diversity in germ-
plasm collections via genomic selection: a case study based on quan-
titative adult plant resistance to stripe rust in spring wheat. Plant 
Genome. https://​doi.​org/​10.​3835/​plant​genom​e2016.​12.​0124

Muñoz F, Sanchez L (2020) breedR: statistical methods for forest genetic 
resources analysts. https://​github.​com/​famuv​ie/​breedR

Piepho HP, Möhring J, Schulz-Streeck T, Ogutu JO (2012) A stage-
wise approach for the analysis of multi-environment trials. Biom J 
54:844–860. https://​doi.​org/​10.​1002/​bimj.​20110​0219

Poland JA, Balint-Kurti PJ, Wisser RJ et al (2009) Shades of gray: the 
world of quantitative disease resistance. Trends Plant Sci 14:21–29. 
https://​doi.​org/​10.​1016/j.​tplan​ts.​2008.​10.​006

R Core Team (2020) R: a language and environment for statistical com-
puting. www.R-​proje​ct.​org

Ren Y, He Z, Li J et al (2012) QTL mapping of adult-plant resistance to 
stripe rust in a population derived from common wheat cultivars 
Naxos and Shanghai 3/Catbird. Theor Appl Genet 125:1211–1221. 
https://​doi.​org/​10.​1007/​s00122-​012-​1907-6

Ridley M (2003) Evolution, 3rd edn. Wiley, Hoboken
Rodríguez-Álvarez MX, Boer MP, van Eeuwijk FA, Eilers PHC (2018) 

Correcting for spatial heterogeneity in plant breeding experiments 
with P-splines. Spat Stat 23:52–71. https://​doi.​org/​10.​1016/j.​spasta.​
2017.​10.​003

Rosewarne GM, Singh RP, Huerta-Espino J, Rebetzke GJ (2008) Quan-
titative trait loci for slow-rusting resistance in wheat to leaf rust and 
stripe rust identified with multi-environment analysis. Theor Appl 
Genet 116:1027–1034. https://​doi.​org/​10.​1007/​s00122-​008-​0736-0

Rosewarne GM, Herrera-Foessel SA, Singh RP et al (2013) Quantita-
tive trait loci of stripe rust resistance in wheat. Theor Appl Genet 
126:2427–2449. https://​doi.​org/​10.​1007/​s00122-​013-​2159-9

Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) 
Ribosomal DNA spacer-length polymorphisms in barley: mende-
lian inheritance, chromosomal location, and population dynamics. 
Proc Natl Acad Sci USA 81:8014–8018. https://​doi.​org/​10.​1073/​
pnas.​81.​24.​8014

Stekhoven DJ, Bühlmann P (2012) Missforest-non-parametric missing 
value imputation for mixed-type data. Bioinformatics 28:112–118. 
https://​doi.​org/​10.​1093/​bioin​forma​tics/​btr597

Storey JD (2015) qvalue: Q-value estimation for false discovery rate con-
trol. http://​github.​com/​jdsto​rey/​qvalue

Tehseen MM, Tonk FA, Tosun M et al (2020) Genome-wide associa-
tion study of resistance to PstS2 and Warrior races of Puccinia 
striiformis f. sp. tritici (stripe rust) in bread wheat landraces. Plant 
Genome. https://​doi.​org/​10.​1002/​tpg2.​20066

Tehseen MM, Kehel Z, Sansaloni CP et al (2021) Comparison of genomic 
prediction methods for yellow, stem, and leaf rust resistance in wheat 
landraces from Afghanistan. Plants 10(3):558. https://​doi.​org/​10.​
3390/​plant​s1003​0558

Waqar A, Khattak SH, Begum S et al (2018) Stripe rust: a review of 
the disease, Yr genes and its molecular markers. Sarhad J Agric 
34:188–201. https://​doi.​org/​10.​17582/​journ​al.​sja/​2018/​34.1.​188.​201

Xiao Y, Liu H, Wu L et al (2017) Genome-wide association studies in 
maize: praise and stargaze. Mol Plant 10(3):359–374. https://​doi.​
org/​10.​1016/j.​molp.​2016.​12.​008

Xue S, Ogut F, Miller Z et al (2017) Comparison of one-stage and two-
stage genome-wide association studies. bioRxiv. https://​doi.​org/​10.​
1101/​099291

Ye X, Li J, Cheng Y et al (2019) Genome-wide association study of 
resistance to stripe rust (Puccinia striiformis f. sp. tritici) in 
Sichuan wheat. BMC Plant Biol 19:147. https://​doi.​org/​10.​1186/​
s12870-​019-​1764-4

https://doi.org/10.1007/s00122-014-2357-0
https://doi.org/10.1007/s00122-014-2357-0
https://doi.org/10.1371/journal.pcbi.1002822
https://doi.org/10.1371/journal.pcbi.1002822
https://doi.org/10.1007/s12571-020-01016-z
https://doi.org/10.1093/g3journal/jkaa053
https://doi.org/10.1371/journal.pone.0156744
https://doi.org/10.1534/genetics.107.078659
https://doi.org/10.1016/j.tplants.2017.08.011
https://doi.org/10.1094/PHYTO-99-8-0968
https://doi.org/10.1094/PHYTO-99-8-0968
https://doi.org/10.1371/journal.pone.0019379
https://doi.org/10.1534/g3.112.004259
https://doi.org/10.1534/g3.112.004259
https://doi.org/10.1007/s10681-010-0291-z
https://doi.org/10.1007/s10681-010-0291-z
https://doi.org/10.1007/s00122-015-2497-x
https://doi.org/10.1007/s00122-015-2497-x
https://doi.org/10.1111/ppa.12433
https://doi.org/10.1007/s00122-017-2897-1
https://doi.org/10.1007/s00122-017-2897-1
https://doi.org/10.1038/s41588-019-0496-6
https://doi.org/10.1038/s41588-019-0496-6
https://doi.org/10.1093/jxb/eraa020
https://www.landwirtschaftskammer.de/landwirtschaft/ackerbau/getreide/getreide-ec-pdf.pdf
https://www.landwirtschaftskammer.de/landwirtschaft/ackerbau/getreide/getreide-ec-pdf.pdf
https://doi.org/10.2135/cropsci2009.02.0083
https://doi.org/10.2135/cropsci2009.02.0083
https://doi.org/10.3835/plantgenome2016.12.0124
https://github.com/famuvie/breedR
https://doi.org/10.1002/bimj.201100219
https://doi.org/10.1016/j.tplants.2008.10.006
http://www.R-project.org
https://doi.org/10.1007/s00122-012-1907-6
https://doi.org/10.1016/j.spasta.2017.10.003
https://doi.org/10.1016/j.spasta.2017.10.003
https://doi.org/10.1007/s00122-008-0736-0
https://doi.org/10.1007/s00122-013-2159-9
https://doi.org/10.1073/pnas.81.24.8014
https://doi.org/10.1073/pnas.81.24.8014
https://doi.org/10.1093/bioinformatics/btr597
http://github.com/jdstorey/qvalue
https://doi.org/10.1002/tpg2.20066
https://doi.org/10.3390/plants10030558
https://doi.org/10.3390/plants10030558
https://doi.org/10.17582/journal.sja/2018/34.1.188.201
https://doi.org/10.1016/j.molp.2016.12.008
https://doi.org/10.1016/j.molp.2016.12.008
https://doi.org/10.1101/099291
https://doi.org/10.1101/099291
https://doi.org/10.1186/s12870-019-1764-4
https://doi.org/10.1186/s12870-019-1764-4


3121Theoretical and Applied Genetics (2021) 134:3111–3121	

1 3

Yu J, Pressoir G, Briggs WH et al (2006) A unified mixed-model method 
for association mapping that accounts for multiple levels of related-
ness. Nat Genet 38:203–208. https://​doi.​org/​10.​1038/​ng1702

Zegeye H, Rasheed A, Makdis F et al (2014) Genome-wide association 
mapping for seedling and adult plant resistance to stripe rust in syn-
thetic hexaploid wheat. PLoS ONE 9(8):e105593. https://​doi.​org/​
10.​1371/​journ​al.​pone.​01055​93

Zhang Z, Ersoz E, Lai C-Q et al (2010) Mixed linear model approach 
adapted for genome-wide association studies. Nat Genet 42:355–
360. https://​doi.​org/​10.​1038/​ng.​546

Zheng X, Levine D, Shen J et al (2012) A high-performance computing 
toolset for relatedness and principal component analysis of SNP 
data. Bioinformatics 28:3326–3328. https://​doi.​org/​10.​1093/​bioin​
forma​tics/​bts606

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/ng1702
https://doi.org/10.1371/journal.pone.0105593
https://doi.org/10.1371/journal.pone.0105593
https://doi.org/10.1038/ng.546
https://doi.org/10.1093/bioinformatics/bts606
https://doi.org/10.1093/bioinformatics/bts606

	Genomic signatures of selection for resistance to stripe rust in Austrian winter wheat
	Abstract
	Key message 
	Abstract 

	Introduction
	Materials and methods
	Phenotypic and genotypic data
	Phenotypic analysis
	Genome-wise association
	Tests for selection

	Results
	Genotypic and trial effects on and heritability for stripe rust
	Genome-wide association of stripe rust resistance
	Evidence of selection for stripe rust resistance

	Discussion
	References




