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Abstract
Key message Based on the large-scale integration of meta-QTL and Genome-Wide  Association Study, 76 high-
confidence MQTL regions and 237 candidate genes that affected wheat yield and yield-related traits were discovered.
Abstract Improving yield and yield-related traits are key goals in wheat breeding program. The integration of accumulated 
wheat genetic resources provides an opportunity to uncover important genomic regions and candidate genes that affect 
wheat yield. Here, a comprehensive meta-QTL analysis was conducted on 2230 QTL of yield-related traits obtained from 
119 QTL studies. These QTL were refined into 145 meta-QTL (MQTL), and 89 MQTL were verified by GWAS with dif-
ferent natural populations. The average confidence interval (CI) of these MQTL was 2.92 times less than that of the initial 
QTL. Furthermore, 76 core MQTL regions with a physical distance less than 25 Mb were detected. Based on the homology 
analysis and expression patterns, 237 candidate genes in the MQTL involved in photoperiod response, grain development, 
multiple plant growth regulator pathways, carbon and nitrogen metabolism and spike and flower organ development were 
determined. A novel candidate gene TaKAO-4A was confirmed to be significantly associated with grain size, and a CAPS 
marker was developed based on its dominant haplotype. In summary, this study clarified a method based on the integration 
of meta-QTL, GWAS and homology comparison to reveal the genomic regions and candidate genes that affect important 
yield-related traits in wheat. This work will help to lay a foundation for the identification, transfer and aggregation of these 
important QTL or candidate genes in wheat high-yield breeding.
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Introduction

Wheat is the most important food crops in the world 
besides to rice and maize and is the largest crop in global 
trade volume (Borrill et al. 2015). It provides rich pro-
tein, dietary fiber and energy for human beings (Ling 
et al. 2013). Therefore, maintaining high and stable yield 
of wheat is essential to ensure global food security (Boyer 
and Westgate 2004). Global wheat production increased 
from 69.9 million tonnes in 2012 to 76.13 million tonnes 
with a growth rate of about 1% per year, which is far for 
achieving the goal of doubling the yield in 2050 (Ray 
et al. 2013; FAO 2020). Wheat yield is a complex quanti-
tative trait, which is controlled by many low effect genes. 
Although wheat breeders have developed a large number 
of genetic and gene resources in the past few decades, 
due to the lack of integration of existing genetic resources 
related to yield-related traits, it is difficult to effectively 
transfer these genetic information into wheat breeding 
programs to improve wheat yield (Quraishi et al. 2017).

Wheat yield is affected by many factors, such as grain 
weight, tiller number, grain number per spike, harvest 
index, etc. Additionally, growth stages including heading 
stage, flowering stage and maturity stage are also closely 
related to the yield and environmental adaptability of 
wheat (Chen et al. 2012). Early mapping analysis of quan-
titative trait loci (QTL) based on bi-parental populations 
has accelerated the breeding process of improving wheat 
yield and other quantitative traits by marker-assisted selec-
tion (MAS) (Gupta et al. 2020). However, QTL results 
based on bi-parental populations are heavily dependent on 
the genetic background of the population and environment, 
which greatly limits the wide adaptability and stability of 
these QTL in wheat breeding programs (Khahani et al. 
2020; Daware et al. 2017).

Meta-QTL analysis is an effective method to integrate 
QTL data and narrow QTL interval by integrating differ-
ent QTL in different trials to obtain reliable consistent and 
stable meta-QTL (MQTL) (Welcker et al. 2011). The inte-
grated MQTL are not affected by the genetic background, 
population type and planting environment in the previ-
ous independent experiments and can be directly used for 
quantitative trait improvement (Arcade et al. 2004; Sos-
nowski et al. 2012). This method has been widely used 
in plant genetic breeding and has achieved good results 
in the QTL-integration of different quantitative traits in 
multiple crops, such as yield-related traits and combined 
insect resistance in maize (Wang et al. 2013, 2020b; Badji 
et al. 2018), drought tolerance and yield-related traits in 
rice (Khowaja et al. 2009; Raza et al. 2019; Khahani et al. 
2020), agronomic and quality traits in cotton (Said et al. 

2015). Similarly, meta-QTL studies of various traits in 
barley and wheat have also been reported, such as abiotic 
stress tolerance in barley (Zhang et al. 2017), root-related 
traits (Soriano and Alvaro 2019), drought resistance 
(Kumar et al. 2020), tan spot resistance (Liu et al. 2020a, 
b), stem rust resistance (Yu et al. 2014), leaf rust resistance 
(Soriano and Royo 2015), pre-harvest sprouting resistance 
and Fusarium head blight resistance in wheat (Tai et al. 
2021; Venske et al. 2019; Cai et al. 2019; Zheng et al. 
2020), etc. In these wheat meta-QTL studies, the meta-
QTL analysis of root-related traits, leaf rust resistance and 
stem rust resistance included the initial QTL from both 
durum wheat and bread wheat. There were at least three 
meta-QTL studies for yield and related traits in wheat, and 
multiple consistent MQTL and candidate genes were found 
(Zhang et al. 2010; Quraishi et al. 2017; Liu et al. 2020a, 
b). However, due to the relatively small number of QTL 
mapping studies (59, 27 and 24) and initial QTL (541, 376 
and 381), the results have certain limitations.

With the advent of DNA sequencing technology, high-
throughput genotyping based on SNP array or next-genera-
tion sequencing (NGS) provides convenience for genome-
wide association studies (GWAS) of complex quantitative 
traits. This association analysis method based on natural 
population has been applied to QTL and gene mapping of 
rice, barley, wheat and other crops (Wang et al. 2015; Fan 
et al. 2016; Yang et al. 2020) and has also achieved very 
good results in QTL mapping for wheat yield and yield-
related traits (Edae et al. 2014; Sun et al. 2017; Sukumaran 
et al. 2015). In addition, several important QTL identified 
by GWAS have been further confirmed by linkage mapping 
studies (Chen et al. 2019; Wu et al. 2021). All of these 
indicate that the combination of meta-QTL and GWAS 
can effectively integrate the original QTL results from 
different studies, so as to mine the key genomic regions 
and candidate genes that affect important quantitative 
traits. At the same time, the release of hexaploid wheat 
Chinese spring high-quality reference genome (Interna-
tional Wheat Genome Sequencing Consortium, 2018) pro-
vides an unprecedented opportunity to use these public 
resources to reveal the molecular mechanisms affecting 
important agronomic traits of wheat at the physical map 
level (Quraishi et al. 2017).

The objective of this study was to conduct a meta-QTL 
analysis of wheat yield-related QTL published in recent 
years, and to further integrate the GWAS and transcrip-
tome evidences to discover the genomic regions and 
important candidate genes that affect wheat yield. This 
work will help to better understand the genetic determi-
nants of wheat yield and lay a foundation for the identifica-
tion, transfer and aggregation of these important QTL or 
candidate genes in wheat breeding.
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Materials and methods

Scan of initial QTL for meta‑QTL analysis

A detailed screening was carried out on recent published 
papers about yield QTL mapping studies in wheat (includ-
ing bread wheat and durum wheat) from 1999 to 2020, and 
a total of 119 studies were found that could provide the ini-
tial QTL information required for meta-QTL analysis. The 
basic information of these studies is listed in Table S1, and 
some of them were also used in previous meta-QTL analysis 
(Zhang et al. 2010; Quraishi et al. 2017; Liu et al. 2020a, b). 
The initial QTL were mainly associated with yield-related 
traits and growth stages. Of which, yield and yield-related 
traits mainly included the number of spikelets (sterile/fertile/
total), the number of florets, the number of grain per spike, 
the weight of grain per spike, spike length, spike compact-
ness, tiller number (single plant/unit area), yield (single 
plant/unit area), thousand grain weight, grain number (single 
plant/unit area), grain filling duration, grain filling rate, bio-
mass and harvest coefficient, etc. The growth stages included 
heading date, flowering date and maturity date.

For each initial QTL, the necessary information was 
collected as: (1) associated trait; (2) type of QTL mapping 
population  (F2, DH, RIL and Backcross); (3) size of popu-
lation; (4) LOD value; (5)  R2 or PVE (phenotypic variance 
explained) value; (6) flanking or closely linked marker. To 
find more available initial QTL, in most cases, the LOD 
threshold in the original study was followed, though some 
cases, it was less than 3. The QTL that were significantly 
associated with traits but with  R2 values less than 10% in 
individual studies were also retained. For a very few QTL 
that the LOD and  R2 values were missing in the previous 
studies, which was assumed as 3 and 10%, respectively, fol-
lowing the common practice (Venske et al. 2019; Khahani 
et al. 2020). Additionally, the confidence intervals (CI, 95%) 
of each initial QTL were recalculated according to its popu-
lation type and size, using the standard formula as follow-
ing: (1)  F2 and backcross population, CI = 530/(Number of 
lines ×  R2); (2) Recombinant Inbred Line (RIL) population, 
CI = 163/(Number of lines ×  R2); (3) Double-haploid popu-
lation, CI = 287/(Number of lines ×  R2). Where Number of 
lines was the size of the mapping population used for QTL 
analysis, and  R2 was the phenotype interpretation rate of 
QTL (Darvasi and Soller 1997; Guo et al. 2006). The details 
of these initial QTL are listed in Table S2.

Construction of consensus genetic map

Seven genetic maps containing multiple markers, which 
widely used in multiple QTL mapping studies, were used 

to construct a reference genetic map, including "Wheat, 
Consensus SSR, 2004," "Wheat, Composite, 2004" and 
"Wheat, Synthetic × Opata, BARC" downloaded from the 
GrainGenes website (https:// wheat. pw. usda. gov/ GG3/), 
"Wheat consensus map version 4.0" downloaded from 
its website (https:// www. diver sitya rrays. com), and three 
SNP genetic maps derived from the 9 K iSelect Beadchip 
Assay and iSelect 90 K SNP Assay based on the Illumina 
platform, and genotyping by sequencing (GBS) (Venske 
et al. 2019; Cavanagh et al. 2013; Wang et al. 2014; Sain-
tenac et al. 2013). R package LRmerge was used to con-
struct the reference map for this meta-QTL study with the 
optimized "synthetic" method, as it could produce genetic 
maps across multiple populations as described by Ven-
ske et al. (2019). The basic principle of this method is to 
collapse co-segregating markers into "bins" to ensure the 
ordering of most markers in the linkage maps is preserved. 
By deleting the smallest groups "bins" in the maps, it can 
effectively solve the position conflicts caused by the incon-
sistent order of markers in different maps.

96 independent genetic maps were extracted from the 
119 independent QTL studies investigated, which derived 
from 93 mapping populations including 8 durum and 85 
bread wheat populations. Brief information of these genetic 
maps is listed in Table S3. BioMercator v4.2.3 delivers a 
graphical interface that allows the projection of single maps 
from different QTL studies onto a reference map (Sosnow-
ski et al. 2012). All individual genetic maps (marker name, 
location) and related QTL statistics (LOD,  R2, CI) and the 
reference map synthesized from 7 genetic maps were used 
as input files, through the iterative map compilation tool 
implemented in BioMercator v4.2.3, all single maps were 
integrated into the reference map and the consensus map 
was constructed.

QTL projection and meta‑QTL analysis

BioMercator first integrates independent genetic maps into 
a comprehensive map and secondly recalculates the marker 
position as well as those of the initial QTL, based on a most 
likely consensus QTL distribution through meta-analysis 
algorithms. In this study, different methods were used to 
project the initial QTL onto the consensus map, according to 
the sources of the initial QTL. QTL with individual genetic 
map information were projected based on the original map 
position as the input QTL file, while QTL without genetic 
map information were projected based on their positions in 
the consensus map. As for the initial QTL where genetic 
map information was missing or difficult to extract, QTL 
were projected onto the consensus map according to the 
shared common markers. The following criteria were used 
to project the initial QTL onto the consensus map: (1) If the 
peak marker of initial QTL was in the consensus map, the 

https://wheat.pw.usda.gov/GG3/
https://www.diversityarrays.com
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peak marker position was directly used; (2) If there were two 
flanking markers available, their middle position was used 
as the QTL peak position; (3) If there was only one flank-
ing marker available, priority was given to a nearby marker 
instead, if no such marker found, only the flanking marker 
was used for QTL projection. The necessary information of 
these initial QTL from different sources was input into the 
BioMercator software in different ways. QTL with genetic 
map information were input in pairs with corresponding 
genetic maps, while QTL without genetic map information 
were input in pairs with consensus map.

Secondly, meta-QTL analysis was conducted following 
the standard process by BioMercator V4.2.3, as detailedly 
described by Arcade et al. (2004), Veyrieras et al. (2007) 
and Sosnowski et al. (2012). The best Meta-analysis model 
was screened by the multiple statistical methods added 
in the new version of BioMercator, such as AIC (Akaike 
information content), AICc (AIC correction), AIC3 (AIC 
3 candidate models), BIC (Bayesian information criterion) 
and AWE (average weight of evidence); thus, more than 4 
meta-QTL can be supported in a single linkage map. The 
input files for meta-QTL analysis with BioMercator V4.2.3 
including the consensus genetic map and QTL information 
were placed as Table S2 and Table S3.

Mapping of meta‑QTL on the genome 
and verification by GWAS

All obtained meta-QTL (MQTL) were then mapped to the 
wheat reference genome. The markers on both sides of the 
MQTL confidence interval were manually searched, and 
their flanking or primer sequences were obtained from URGI 
Wheat (http:// wheat- urgi. versa illes. inra. fr), GrainGenes 
(https:// wheat. pw. usda. gov/ GG3/), DArT (https:// www. 
diver sitya rrays. com) and Illumina company website (https:// 
www. illum ina. com). The obtained flanking sequences and 
primer sequences were blast aligned to the wheat Chinese 
Spring reference genome sequence to obtain the physical 
location information of these markers, based on the local 
BLASTN program. In addition, the physical locations of 
some SSR, SNP and DArT markers provided in the previous 
researches were also used as reference (Cabral et al. 2018; 
Wang et al. 2014). For the markers, their physical locations 
were not found, the physical locations of the MQTL were 
anchored by manual screening.

The data on yield-related traits of 10 genome-wide asso-
ciation studies published from 2014 to 2020 were collected 
and used to verify the accuracy of these MQTL regions. 
The detailed information of these GWAS studies is listed 
in Table 1. The phenotypic data of these studies were col-
lected from 7 different countries, with population sizes rang-
ing from 123 to 688, including 3 spring wheat populations, 
6 winter wheat populations and one mixed population of 

spring and winter wheat. Similar to anchoring the physi-
cal position of MQTL, the physical position of the MTA 
(Maker-Trait-Association) in these studies was obtained by 
BLASTN of the flanking sequence.

Homology‑based candidate gene mining 
and expression pattern analysis

Considering the leading position of rice in gene function 
study, the strategy of wheat-rice orthologous comparison 
was used to mine the key candidate genes in the MQTL 
region. The basic information of all functionally verified 
yield-related genes published in rice was downloaded from 
the China Rice Data Center (https:// www. riced ata. cn/), 
and their protein sequences were extracted using TBtools 
(Chen et al. 2020). Using the protein sequence of rice gene 
as the seed sequence, a BLASTP was conducted to all pro-
tein sequences of the wheat reference genome to find their 
orthologous genes in wheat. The genes located in the MQTL 
region were considered to be important candidate genes 
affecting wheat yield and yield-related traits.

Analyzing the expression patterns of orthologous genes 
between different species was an important way to determine 
their functional conservation (Tian et al. 2020). The tran-
scriptomic data of multiple tissues in wheat deposited in the 
expression Visualization and Integration Platform (expVIP, 
http:// www. wheat- expre ssion. com) was downloaded to 
explore the tissue expression characteristics of candidate 
genes (Borrill et al. 2016), which including the expression 
data of 18 tissues during the whole growth period of wheat 
(Ramírez-González et al. 2018). The recently reported com-
plete transcriptome data including endosperm, embryo and 
seed coat were used to analyze the expression patterns of 
candidate genes during grain development (Xiang et al. 
2019). Expression levels of candidate genes were evalu-
ated by transcripts per million (TPM) values and displayed 
using the heat map of  log2 (TPM + 1). Additionally, STRING 
database (search tool for the retrival of interacting genes/
proteins, https:// string- db. org) were used to predict the pro-
tein–protein interaction (PPI).

Plant materials

To verify the contribution of candidate genes to yield and 
yield-related traits, 94 wheat accessions containing 3 foreign 
materials and 91 accessions from 3 major winter production 
regions in China were planted in field during three winter 
cropping seasons (October to early June of 2016–2017, 
2017–2018 and 2018–2019)(Table S7), on the experimen-
tal farm of the Institute of Water Saving Agriculture in Arid 
Areas of China, Northwest A&F University, Yangling, 
Shaanxi, China (34°7’N, 108°4’E). The detailed field trials 
were as described in Yang et al. (2020).

http://wheat-urgi.versailles.inra.fr
https://wheat.pw.usda.gov/GG3/
https://www.diversityarrays.com
https://www.diversityarrays.com
https://www.illumina.com
https://www.illumina.com
https://www.ricedata.cn/
http://www.wheat-expression.com
https://string-db.org
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Yield‑related traits measurement

After harvest, the sun-dried grains were used for measuring 
thousand grain weight, grain yield per square meter, and the 
grain size traits including grain length and grain width were 
measured by image analysis provided with SC-E software 
(Hangzhou WanShen Detection Technology Co., Ltd., Hang-
zhou, China). All trait measurements were repeated at least 
3 times.

Dominant haplotype analysis and molecular marker 
development

Based on the variations revealed by genotyping with the 
Affymetrix wheat 660 K SNP array, the polymorphism SNP 
loci on the candidate genes were searched (Sun et al. 2020). 
The CAPS marker of TraesCS4A02G460100 was designed 
with the SNP primer design service on Triticeae Multi-
omics Center (http:// 202. 194. 139. 32) as Hha I-F/R (Hha I-F: 

Table 1  The GWAS (Genome-Wide Association Study) studies on yield and yield-related traits used in this study

a The size of population used for GWAS
b The number of marker-trait association (MTA) detected in previous GWAS researches

No Source of genotype Popa Marker type/number Model Number 
of  MTAb

Trait Environment References

1 CIMMYT, ESWYT, 
SAWYT, HTWYT, 
Spring wheat

287 DArT/1863 MLM 565 26 agronomic and 
yield traits

Greeley, CO, USA; 
Melkassa, ethiopia

Edae et al. (2014)

2 Chinese winter 
wheat cultivars 
collected from 
Yellow and Huai 
Valley

163 SNP/20689 MLM 1769 13 yield-related 
traits

Zhengzhou, Anyang 
and Zhumadian, 
China

Sun et al. (2017)

3 WAMI spring wheat 
population from 
CIMMYT

287 SNP/18704 MLM 31 16 yield-related 
traits

Ciudad Obregón 
and Sonora State, 
Northwest Mexico

Sukumaran et al. 
(2015)

4 Pakistani histori-
cal spring wheat 
cultivars

123 SNP/14960 MLM 44 9 yield-related traits Islamabad, Pakistan Ain et al. (2015)

5 German hexaploid 
winter wheat 
cultivars

210 SNP/7928 MLM 218 16 floret fertility 
traits and 38 traits 
for assimilate par-
titioning and spike 
morphology

Gatersleben, Ger-
many

Guo et al. (2017)

6 Chinese winter 
wheat founder par-
ents, derivatives, 
and cultivars

215 SNP/4138 MLM 76 6 yield-related traits Taian, Yangling and 
Yangzhou, China

Guo et al. (2018)

7 Synthetic hexaploid 
winter wheat lines, 
landraces, and 
cultivars

192 SNP/13154 CMLM 147 4 yield-related traits Shuangliu and Shi-
fang, China

Liu et al. (2018)

8 Chinese winter 
wheat

205 SNP/24355 MLM 271 yield-related traits Taian and Dezhou, 
China

Chen et al. (2016)

9 European winter 
wheat, spring 
wheat varieties

372 SNP/7761, SSR/635 MLM 1537 Thousand grain 
weight

Andelu, Janville and 
Saultain, France; 
Seligenstadt and 
Wohlde, Germany

Zanke et al. (2015)

10 Chinese winter 
wheat

688 SNP/20065 MLM 337 Thousand grain 
weight

Xianyang, Shi-
jiazhuang and 
Linfen, China

Wang et al. (2020a)

http://202.194.139.32
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TCT GAA TGC AGG CTG ACA AG; Hha I-R: AAA CAA GGA 
ACG ATG GCA AC). Genotyping of these wheat accessions 
was performed by one round of PCR and direct enzyme 
digestion of the PCR product. The PCR cycling conditions 
were as an initial denaturation of 2 min at 94 °C, followed 
by 37 cycles of denaturation at 94 °C for 30 s, annealing at 
60 °C for 30 s, extension at 72 °C for 10 s, and a final exten-
sion at 72 °C for 25 min. After three hours of digestion with 
Hha I enzyme, the products were separated on 2% agarose 
gels, and DM2000 DNA marker (CoWin Biosciences Co., 
Ltd., Taizhou, China) was used to determine the fragment 
size.

Results

Characteristics of yield‑related QTL studies in wheat

The characteristics of these 119 previous QTL studies were 
systematically analyzed (Table S1). These QTL studies 
based on bi-parental populations were mainly published 
on 2006 to 2015, while relatively few before 2005 and 
after 2015, which is closely related to the development of 
genotyping technology (Fig. 1a). Among the 130 mapping 
populations used in the 119 studies, 119 (91.54%) were per-
manent populations, including 85 recombinant inbred line 
(RIL) populations and 34 DH (doubled haploid) populations, 
respectively (Fig. 1b, Table S1), as these lines of the perma-
nent mapping populations were genetically stable and could 
be used for phenotyping the yield and yield-related traits for 
years under different environment conditions.

Fig. 1  The information of QTL for wheat yield and yield-related 
traits in previous QTL mapping studies used for meta-QTL analysis. 
a The time distribution of previous QTL mapping studies. b The pop-
ulation type of pervious QTL mapping studies. c The proportion of 

QTL for different yield and yield-related traits. d The distribution of 
QTL on chromosomes. The QTL of yield-related traits and develop-
ment stage were marked in (c) and (d)
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A total of 2230 QTL for yield and yield-related traits 
in wheat were found from the 130 populations of these 
independent studies, including 2027 QTL (more than 80%) 
directly related to yield-related traits, and 203 QTL for 
growth period-related traits, which contribute to yield indi-
rectly (Table S2). Many traits represent the same or similar 
trait but in different methods, such as 1000 grain weight, 50 
grain weight and 200 grain weight for grain weight, while 
yield per plant, yield per square meter and yield per tiller 
for yield. After manual screening, these traits were mainly 
divided into 12 traits, including 9 yield-related traits (Grain 
weight, GW; Grain number, GN; Grain yield, GY; Tiller 
number, TN; Spike length, SL; Spikelet number, SLN; Grain 
filling rate, GFR; Biomass, BY; Harvest index, HI) and 3 
traits of growth period (Days to maturity, DTM; Days to 
heading, DTH; Flowering date, FD) and some other traits 
(including spike compactness, threshing, etc.). The QTL of 
GW, GN, TN and GY accounted for 63% of all the initial 
QTL, which was closely related to their roles as important 
components of grain yield (Fig. 1c). Then, the QTL of SL, 
SLN and GFR also accounted for a large proportion, as they 
were important factors in determining wheat grain yield. 
The distribution of QTL on chromosomes was not even, 
with about 78.03% (1740/2230) on A and B sub-genomes. 
Chromosome 5A, 2D and 7A contained 187, 165 and 136 
QTL, respectively, accounting for 21.88% (488 / 2230) of the 
total, while chromosome 1D only found 38 QTL (Fig. 1d, 
Table S2).

Construction of a high‑density consensus genetic 
map

After combining the seven widely used genetic maps with R 
package LRmerge, a reference genetic map including SSR, 
DArT, SNP and a few genes was obtained for downstream 
meta-QTL analysis. Then, 96 individual genetic maps were 

projected onto the reference map, and finally a high-quality 
consensus map was constructed, which contained 572, 862 
markers with a total length of 4567.2 cM, and average length 
of each chromosome of 217.49 cM, which was consistent 
with that by Venske et al. (2019) (Fig. 2). These markers 
were unevenly distributed on chromosomes, and chromo-
some 2B contained the most 47,062 markers and constituted 
the longest linkage group of 316.13 cM. The marker den-
sity at the fore-end of chromosome was significantly higher 
than that at the end. This was mainly due to the independent 
genetic map used to construct the consensus map was com-
posed of different numbers and types of markers, but overall, 
this was the best consensus map that could be built with a 
lot of marker information.

Identification of meta‑QTL of yield and yield‑related 
traits

Here, 2230 initial QTL from 119 independent QTL studies 
were mapped to the consensus map (Fig. 1d). After meta-
QTL analysis, these initial QTL were constituted into 145 
MQTL (6.5%, 145/2230), and each MQTL contained at least 
two initial QTL (Table S4). Of which, 96.55% (140/145) 
of MQTL were composed of three or more QTL, and 
44.83% (65/145) of MQTL were composed of 11 to 50 QTL 
(Fig. 3a). Six MQTL contained more than 50 QTL, includ-
ing MQTL-5A-2 (52), MQTL-5A-3 (57), MQTL-2A-4 (60), 
MQTL-1B-3 (60), MQTL-4B-2 (69) and MQTL-2D-2 (82) 
(Table S4). These MQTL composed of QTL identified from 
different bi-parental populations were more reliable and 
stable for wheat yield improvement. All 145 MQTL were 
distributed unevenly on different chromosomes. Chromo-
some 5B, 7B and 7D contained 9 MQTL each, while only 
4 MQTL on chromosome 3D (Fig. 3b). The distribution of 
MQTL on chromosome was not consistent with that of ini-
tial QTL (Fig. 1d). To evaluate the reliability of MQTL on 

Fig. 2  Marker distribution on 
the consensus genetic map used 
for meta-QTL analysis. From 
red to green, the marker density 
in chromosome, the genetic 
length of chromosome, and the 
number of markers in chromo-
some decreases from high to 
low (color figure online)
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different chromosomes, the average number of initial QTL 
contained in MQTL on each chromosome was calculated 
(Fig. 3b). Although the number of MQTL on chromosomes 
2B, 2D and 5A was not high, they contained more QTL 
from different populations, indicating that they may have 
more extensive adaptability in wheat yield improvement. 
The average confidence interval (CI, 95%) of MQTL was 
2.92-fold less than that of initial QTL, and there were signifi-
cant differences among different chromosomes (Fig. 3c). The 
average CI of MQTL on chromosomes 4B and 5A decreased 
by 6.46 and 6.47 times, respectively, followed by 5.35 and 
4.66 times on chromosomes 2D and 2A.

All MQTL were associated with at least two different 
yield-related traits due to the multi-gene and multi-trait 
effects on yield formation (Table S4, Table S5). Among 
the 145 MQTL, 130 MQTL contained QTL of GW, and 90 
MQTL contained three or more QTL of GW. Similarly, 106 
and 87 MQTL contained QTL of GN and TN, respectively. 
A total of 93 MQTL were directly related to GY, with 84 
MQTL contained both QTL of GY and GW, 74 MQTL con-
tained both QTL of GY and GN, 63 MQTL contained both 
QTL of GY and TN, 69 MQTL contained QTL of GY, GN 
and GW, and 53 MQTL contained QTL of all four traits. In 
addition, 49, 50, 28 and 25 MQTL of GY contained QTL of 
SL, SLN, DTH and GFR, respectively.

Verifying the MQTL by previous GWAS studies

To determine the reliability of meta-QTL analysis, GWAS 
results on yield and yield-related traits published in recent 
years were used to verify the MQTL (Table 1). Of the 145 
MQTL, 142 were mapped to the physical map of wheat ref-
erence genome, and 112 MQTL were mapped into physical 
region less than 20 Mb, accounting for 77.24% of the total 
MQTL (Table S4). Considering the relatively long linkage 
disequilibrium decay distance of wheat (about 5 Mb), the 
MTAs obtained from GWAS near MQTL in 5 Mb physi-
cal region were considered to be co-located with MQTL. 
Eighty-nine of 142 MQTL were verified in at least one 
GWAS research (Fig. 4). Among them, 75, 47 and 15 MQTL 
were verified in GWAS with winter wheat, spring wheat 
populations and the mixed populations of spring wheat and 
winter wheat. In addition, 29 MQTL were verified in both 
GWAS researches with spring wheat and winter wheat. 
Eleven MQTL were detected at least 4 times in 10 GWAS 
researches, of them MQTL-1A-1 was detected 6 times, fol-
lowed by MQTL-7A-1 with 5 times. It’s worth noting that 
some MQTL contained 30 or more initial QTL were detected 
many times in the GWAS researches, such as MQTL-2B-1, 
MQTL-2D-2 and MQTL-5A-3. Furthermore, multiple 
MQTL clusters or nested MQTL were observed, such as 

Fig. 3  Basic information of MQTL obtained in meta-QTL analysis. a 
Number of MQTL harboring different number of QTL. b The number 
of MQTL and average number of initial QTL projected on a single 
MQTL in different chromosomes. From red to green, the number of 
QTL contained in MQTL decreases from high to low. c The reduction 

degree of QTL confidence interval (CI, 95%) after meta-QTL analy-
sis. The orange and gray bars represent the average CI length (cM) of 
MQTL and initial QTL on chromosome, respectively, and the broken 
line represents the reduction folds of the QTL CI length (color figure 
online)
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MQTL-2D-1 (2D: 2.69–8.98 Mb) & MQTL-2D-2 (2D: 
5.44–10.32 Mb) and MQTL-2D-3 (2D: 24.98–28.76 Mb) & 
MQTL-2D-4 (2D: 28.88–36.42 Mb). Finally, 76 core MQTL 
verified in GWAS were screened out by excluding MQTL 
with few QTL (less than 3) and physical interval longer than 
25 Mb (Fig. 5, Table 2). These core MQTL had good col-
linearity between physical map and genetic map, and they 
were all clustered at both ends of the chromosomes, which 
were the gene intensive regions.

Some chromosome regions were identified in multiple 
studies to be associated with specific traits. As the key 
determinants of yield formation and their complex interre-
lationships, many MQTL show influence on the three yield 
component traits of grain number, grain weight and tiller 
number, such as MQTL-1B-2, MQTL-1B-3, MQTL-3A-4, 
MQTL-3A-5, MQTL-5A-2, MQLT-5A-3 and MQTL-5A-7. 
In general, the MQTL affecting the three traits of yield com-
ponent were mainly concentrated in the terminal regions of 
chromosomes 1B, 3A and 5A. While the MQTL affecting 
spike length and spikelet number were mainly concentrated 
in the terminal regions of chromosomes 1B, 2D, 4A and 
5A, and the MQTL affecting days to heading and flowering 
date were distributed on chromosomes 2B, 3B, 5A, 6B and 
7A (Fig. 6).

Homology‑based candidate gene mining 
within MQTL regions

Many cloned important genes related to wheat yield were 
found in MQTL regions, including two copies of TaPpd in 
MQTL-2A-5 and MQTL-2D-4 (Beales et al. 2007), TaVrn1 
in MQTL-5A-3 (Yan et al. 2003), TaVrn2 in MQTL-5A-5 
(Yan et al. 2004), TaVrn3 in MQTL-7B-2 (Yan et al. 2006), 
TaRht-B1(Rht1) in MQTL-4B-4 (Peng et al. 1999). All the 
MQTL where these well-known genes located significantly 
affected the grain weight and grain number (Table 2). In 
addition to affecting grain weight and grain number, the 
three MQTL including TaVrn1, TaVrn2 and TaVrn3 were 
also related to spikelet number, heading date and flowering 
date. TaRht1 was co-located with QTL of grain weight, grain 
number and tiller number, finally contributed to wheat yield. 
In addition, multiple genes related to grain weight were 
found in the MQTL regions, such as TaGS-D1 in MQTL-
7D-1 (Zhang et al. 2014), TaCKX2 in MQTL-3A-3 (Zhang 
et al. 2011), TaTGW6 in MQTL-3B-7 (Hanif et al. 2016), 
TaCWI in MQTL-4A-2 (Jiang et al. 2015), TaGS in MQTL-
4A-8 (Bernard et al. 2008), TaCWI in MQTL-5B-7 (Jiang 
et al. 2015) and TaGS1a in MQTL-6A-4 (Guo et al. 2013). 
Furthermore, some homologues of cloned yield-related 

Fig. 4  Validation of MQTL by 
MTAs on wheat yield and yield-
related traits from GWAS with 
10 different natural populations. 
The innermost ring represents 
the clustering of QTL numbers 
that make up different MQTL. 
From red to blue, the number 
of initial QTL contained in the 
MQTL decreases from high 
to low. The color squares in 
the outer rings represent the 
co-location of MQTL with 
marker-trait association (MTA) 
obtained from GWAS with dif-
ferent natural populations (color 
figure online)
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genes were also found in the MQTL, such as the A sub-
genome copy of TaGS and TaNAM-B1 in MQTL-7A-1 and 
MQTL-6A-3, respectively.

To further explore the candidate genes affecting wheat 
yield and yield-related traits, a detailed search on the cloned 
genes in rice was conducted, and 398 functional genes 
affecting yield-related traits in rice were obtained. Base on 
BLASTP, the orthologous wheat genes of these rice genes 
affecting yield were obtained. Among them, 237 genes 
were found in 115 MQTL regions, with an average of 2 per 
MQTL (Table S6). The candidate genes in 97 MQTL regions 
had similar effects on the yield and yield-related traits of 
both wheat and rice. For example, TraesCS1A02G045300 
(MQTL-1A-3) and OsMKP1 affected GW, SLN and GN; 
TraesCS4A02G388400 (MQTL-4A-6) and OsFIE1 affected 
GW and GN, and TraesCS1A02G031200 (MQTL-1A-2) and 
its homologous gene affected TN (Table S6). It suggested 
that the functions of these candidate genes were relatively 
conserved in rice and wheat.

These genes have been reported to affect yield and 
yield-related traits in rice through a variety of pathways, 
such as regulating the content and sensitivity of multiple 
plant regulators, regulating photoperiod response, affect-
ing photosynthesis, nitrogen use efficiency and flower 

organ formation. For example, OsGA20ox1, the orthol-
ogous of TraesCS4A02G319100 (MQTL-4A-2) and 
TraesCS5B02G560300 (MQTL-5B-7), affected GN and 
GW in rice by regulating gibberellin (GA) content (Wu et al. 
2016). A MADS-box transcription factor gene OsMADS50, 
the orthologous of TraesCS4D02G341700 (MQTL-4D-5) 
and TraesCS5A02G515500 (MQTL-5A-7), regulated rice 
yield by affecting flowering time and tiller number (Ryu 
et al. 2010). A nitrate reductase gene OsNR2, the ortholo-
gous of TraesCS6A02G326200 (MQTL-6A-5) affected rice 
yield by regulating nitrate uptake and nitrogen use efficiency 
(Gao et al. 2019). In general, these candidate genes found 
were with high confidence, as the functions of their ortholo-
gous on affecting yield traits in rice have been investigated 
intensively.

The expression characteristics of these candidate genes 
in several tissues during the critical stage of yield for-
mation were further analyzed, and their expression pat-
terns could be divided into two classes (Fig. 7, Fig. S1). 
Genes in Class I were mostly expressed in the stem and 
root tissues at the tillering stage, while genes in Class 
II were mainly expressed in the spike and spike organs. 
Genes in Class I mostly affected TN, such as TraesC-
S1A02G091300 (MQTL-1A-4), TraesCS5A02G516000 

Fig. 5  The chromosome distri-
bution of the core MQTL for 
yield and yield-related traits by 
integration of meta-QTL and 
GWAS. The circles from inside 
to outside represent the genetic 
map,  R2 values of initial QTL, 
the distribution of high-confi-
dence genes and the physical 
map, respectively
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Table 2  The 76 core meta-QTL for yield and yield-related traits in wheat

MQTL ID Chr.a Position (cM)b CI (cM)c Genetic interval 
(cM)

No. Of QTL Traitsd Physical interval 
(Mb)

Flanking markers

MQTL-1A-1 1A 15.95 2.57 14.67–17.24 14 TN(3), GW(3), 
GFR(2), 
TN(2), SL(2)

3.01–6.15 RAC875_rep_
c105697_366–
BS00058867_51

MQTL-1A-2 1A 36.96 1.56 36.18–37.74 44 GW(11), 
GN(10), 
SLN(6), 
TN(5), SL(4)

12.10–12.51 RAC875_c33470_345–
wsnp_Ex_
c1137_2183772

MQTL-1A-3 1A 47.41 3.91 45.46–49.37 9 GW(4), GN(2), 
SLN(2), 
TN(1)

20.98–26.96 BS00107852_51–Kukri_
c7436_2259

MQTL-1B-1 1B 12.75 6.87 9.32–16.19 3 FD(2), SL(1) 4.35–13.63 BS00022505_51–
2321290

MQTL-1B-2 1B 27.25 3.22 25.64–28.86 19 GW(4), GY(4), 
SLN(3), 
TN(3), 
GFR(2)

22.26–37.85 1122078–1118988

MQTL-1B-3 1B 38.37 2.85 36.95–39.80 60 GW(12), 
TN(12), 
GN(8), 
GFR(7), 
GY(5)

43.50–69.26 1242179–1127010

MQTL-1B-4 1B 48.37 3.01 46.87–49.88 11 GN(4), GW(3), 
TN(1), GY(1), 
SLN(1), 
BY(1)

542.93–563.07 BS00038643_51–989671

MQTL-1B-5 1B 55.46 4.09 53.42–57.51 7 GW(3), GY(3), 
SL(1)

587.05–606.49 4989515–wPt-9409

MQTL-1B-6 1B 76.65 0.31 76.50–76.81 19 GN(4), GW(4), 
SLN(3), 
TN(3), 
GFR(2), 
GY(2)

652.45–659.54 Excalibur_c49496_705–
1071326

MQTL-1D-1 1D 24.46 4.14 22.39–26.53 8 GW(4), TN(2), 
GN(2)

2.51–10.66 Xwmc336–1126512

MQTL-1D-2 1D 46.53 7.84 42.61–50.45 4 GW(2), TN(2), 10.76–18.07 Excalibur_c101903_734–
Excalibur_c48750_124

MQTL-1D-4 1D 74.92 6.53 71.66–78.19 3 GY(2), TN(1) 420.54–433.37 Kukri_c12183_262–
994639

MQTL-2A-1 2A 13.29 1.85 12.37–14.22 17 GW(9), GFR(5), 
GN(1), GY(1), 
DTM(1)

59.38–71.58 986207–1084359

MQTL-2A-2 2A 30.92 1.84 30.00–31.84 21 GY(7), GN(3), 
GW(3), 
GFR(2), 
BY(2), Oth-
ers(2)

3.95–10.01 1088217–1162905

MQTL-2A-5 2A 56.42 2.14 55.35–57.49 7 GW(3), GN(2), 
GY(1), Oth-
ers(1)

36.05–38.32 wsnp_Ex_
c19556_28530243–Tdu-
rum_contig30725_220

MQTL-2B-1 2B 50.7 11.44 44.98–56.42 40 GN(9), GW(6), 
SLN(4), 
DHT(4), 
GY(4)

6.21–17.57 RAC875_c65386_72–
BS00022298_51

MQTL-2B-2 2B 71.64 9.15 67.07–76.22 40 GW(15), GN(8), 
SLN(4), 
GY(2), Oth-
ers(2)

26.58–30.50 BS00065040_51–Tdu-
rum_contig54634_846
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Table 2  (continued)

MQTL ID Chr.a Position (cM)b CI (cM)c Genetic interval 
(cM)

No. Of QTL Traitsd Physical interval 
(Mb)

Flanking markers

MQTL-2B-5 2B 142.27 7.34 138.60–145.94 8 GN(3), SL(2), 
Others(2), 
GW(1)

795.21–801.25 2292261–1211409

MQTL-2D-1 2D 1.81 1.59 1.02–2.61 14 GW(5), SL(3), 
Others(2), 
SLN(2), 
GY(1), HI(1)

2.69–8.98 2243439–D_GDEEG-
VY02I0IOX_61

MQTL-2D-2 2D 5.31 1.03 4.80–5.83 82 GW(26), 
SL(15), 
GN(8), TN(7), 
GY(6)

5.44–10.32 D_con-
tig74612_253–2243548

MQTL-2D-3 2D 16.1 2.37 14.92–17.29 22 GW(8), SL(4) 24.98–28.76 3222417–D_GA8KES-
401CIV9Z_240

MQTL-2D-4 2D 25.82 3.47 24.09–27.56 10 GW(3), TN(3), 
SLN(2), 
GN(1), SL(1)

28.88–36.42 1282771–983316

MQTL-3A-1 3A 19.4 2.01 18.40–20.41 21 GW(7), GY(5), 
GN(5), TN(3), 
DTH(1)

12.83–20.34 1370787–1113547

MQTL-3A-2 3A 36.55 3.52 34.79–38.31 9 GY(3), GN(3), 
GW(2), TN(1)

26.19–32.17 Excalibur_c55624_86–
1117391

MQTL-3A-4 3A 62.06 1.48 61.32–62.80 44 GN(10), TN(9), 
GW(7), 
GY(7), HI(3)

628.70–645.40 Kukri_rep_c116421_403–
wPt-5084

MQTL-3A-5 3A 66.76 1.94 65.79–67.73 23 GN(8), GW(7), 
TN(3), GY(2), 
HI(1), FD(1), 
Others(1)

647.47–657.95 Excalibur_c39002_242–
wsnp_BQ167580A_
Ta_1_1

MQTL-3A-6 3A 81.36 2.63 80.05–82.68 18 TN(6), GW(5), 
GY(2), 
DTH(2), 
HI(1), BY(1), 
FD(1)

688.68–707.99 RFL_Contig4282_1420–
wPt-3697

MQTL-3B-1 3B 6.84 1.83 5.93–7.76 15 GW(7), GN(4), 
GFR(3)

2.51–4.43 BS00094406_51–Kukri_
c32803_150

MQTL-3B-2 3B 19.56 2.49 18.32–20.81 18 GW(5), GN(4), 
GY(4), 
TN(1), SL(1), 
SLN(1), 
BY(1), Oth-
ers(1)

3.30–7.07 1140438–993177

MQTL-3B-3 3B 32.93 5.06 30.40–35.46 8 GW(4), GY(2), 
SL(1), GFR(1)

12.32–26.81 wPt-742648–wPt-0267

MQTL-3B-4 3B 59.07 1.74 58.20–59.94 48 GW(13), 
GY(10), 
GN(9), SL(5), 
HI(3)

63.40–82.45 1052877–wPt-1159

MQTL-3B-5 3B 69.47 2.26 68.34–70.60 26 TN(9), GW(4), 
BY(3), FD(3), 
GY(2), 
DTH(2)

531.23–555.09 1081121–wsnp_Ex_
c14162_22093694

MQTL-3B-7 3B 124.6 0.36 124.42–124.78 16 GN(6), GY(4), 
GW(3), Oth-
ers(2), HI(1)

789.50–795.85 wPt-8752–1202216

MQTL-3D-4 3D 120.28 3.15 118.71–121.86 5 GW(4), SL(1) 604.89–613.62 BS00062684_51–
1140647
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Table 2  (continued)

MQTL ID Chr.a Position (cM)b CI (cM)c Genetic interval 
(cM)

No. Of QTL Traitsd Physical interval 
(Mb)

Flanking markers

MQTL-4A-1 4A 16.35 2.37 15.17–17.54 10 GW(5), SL(2), 
GN(1), GY(1), 
SLN(1)

7.15–26.63 981760–Ex_c864_653

MQTL-4A-2 4A 22.57 3.37 20.89–24.26 19 GN(5), SLN(3), 
GW(3), 
GY(3), SL(2)

606.66–611.07 WMC650–1116187

MQTL-4A-5 4A 48.59 8.47 44.36–52.83 4 GN(3), GW(1) 616.59–626.75 1095229–1102703
MQTL-4A-6 4A 57.56 3.07 56.03–59.10 44 GW(13), 

GN(9), SL(6), 
SLN(6), 
GY(5)

654.45–668.75 Excalibur_s101731_92–
1134812

MQTL-4A-8 4A 93.54 0.6 93.24–93.84 9 TN(2), SL(2), 
others(2), 
GN(1), GY(1), 
SLN(1)

726.09–737.53 Xbarc327–Xbarc52

MQTL-4B-1 4B 10.5 2.78 9.11–11.89 7 GW(4), GN(2), 
DTM(1)

2.14–5.47 tPt-513529–
BS00039935_51

MQTL-4B-2 4B 28.21 1.96 27.23–29.19 69 GW(23), 
GN(17), 
TN(8), SL(7), 
GY(4)

14.02–30.86 Rht-B1–1110817

MQTL-4B-4 4B 47.68 0.76 47.30–48.06 3 GW(1), TN(1), 
GN(1)

34.58–52.99 Tdurum_con-
tig10693_528–1210331

MQTL-4B-6 4B 82.83 0.64 82.51–83.15 4 SL(2), GW(1), 
GN(1)

660.69–667.89 1132850–1101163

MQTL-4D-1 4D 10.16 3.68 8.32–12.00 7 GW(3), GFR(2), 
GN(1), GY(1)

6.02–7.65 Kukri_rep_c106474_293–
Excalibur_c91022_193

MQTL-4D-2 4D 30.24 1.29 29.60–30.89 26 GW(8), GY(3), 
SLN(3), 
TN(3), GN(2), 
SL(2), HI(2), 
Others(2)

9.25–12.41 1076436–1672793

MQTL-5A-1 5A 0 2.24 0.00–1.12 4 TN(2), GW(2) 0.00–2.85 NA–4537943
MQTL-5A-2 5A 42.04 1.31 41.39–42.70 52 GW(22), 

GY(6), FD(6), 
GN(3), TN(3), 
GFR(3)

488.26–502.61 CAP8_c1066_309–
1000150

MQTL-5A-3 5A 51.31 1.29 50.67–51.96 57 GW(18), 
GY(13), 
GN(8), 
SLN(5), 
TN(4), SL(4)

578.06–592.64 BS00074299_51–Excali-
bur_c31769_793

MQTL-5A-5 5A 77.15 2.68 75.81–78.49 13 GW(3), GN(3), 
others(3), 
GY(1), 
DHT(1)

684.94–708.44 Tdurum_con-
tig54689_646–wsnp_
Ex_c2171_4073472

MQTL-5A-7 5A 120.42 0.09 120.38–120.47 31 GW(8), GN(5), 
GY(4), 
SLN(4), 
TN(3)

667.93–682.71 Xwmc577–Xwmc524

MQTL-5B-3 5B 39.66 3.17 38.08–41.25 11 GW(3), GY(2), 
GN(2), 
GFR(1), 
Others(1), 
DTM(1), 
FD(1)

590.40–604.06 1083434–Tdurum_con-
tig70123_354
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Table 2  (continued)

MQTL ID Chr.a Position (cM)b CI (cM)c Genetic interval 
(cM)

No. Of QTL Traitsd Physical interval 
(Mb)

Flanking markers

MQTL-5B-7 5B 77.66 6.03 74.65–80.68 4 GW(2), TN(1), 
GN(1)

704.95–712.41 1114164–1048115

MQTL-5D-1 5D 0.32 1.72 0.00–1.18 4 GW(2), TN(1), 
DTH(1)

3.59 Ha

MQTL-5D-4 5D 46.72 3.53 44.96–48.49 15 SL(5), GW(4), 
others(2), 
GN(1), 
GFR(1), 
SLN(1), 
BY(1)

398.77–420.92 BobWhite_c10764_251–
wsnp_JD_
c3690_4731341

MQTL-6A-1 6A 6.15 4.74 3.78–8.52 5 GW(1), GY(1), 
GN(1), 
SLN(1), oth-
ers(1)

0.29–6.73 wsnp_Ex_rep_
c68915_67808523–
Excalibur_c20597_509

MQTL-6A-5 6A 56.62 5.71 53.77–59.48 28 GW(15), GY(4), 
TN(2), GN(2), 
SL(2)

559.43–569.12 1087752–Kukri_rep_
c69713_250

MQTL-6A-6 6A 68.43 4.47 66.20–70.67 9 GW(4), TN(2), 
SLN(2), 
GN(1)

581.74–590.10 BobWhite_c14304_687–
1046343

MQTL-6A-7 6A 80.4 3.48 78.66–82.14 7 GW(5), GN(1), 
SL(1)

595.00–602.91 1065154–1004240

MQTL-6A-8 6A 107.44 1.36 106.76–108.12 8 GW(3), GN(2), 
TN(1), GY(1), 
SL(1)

606.59–615.06 1011228–Xwmc580

MQTL-6B-1 6B 5.05 5.3 2.40–7.70 8 GY(2), GN(2), 
GW(1), SL(1), 
DTH(1), Oth-
ers(1)

10.06–24.89 wPt-5234–1035961

MQTL-6B-2 6B 30.9 4.34 28.73–33.07 5 GW(3), SL(1), 
SLN(1)

28.12–42.39 BS00027942_51–wsnp_
Ex_c40044_47184747

MQTL-6B-4 6B 51.44 2.14 50.37–52.51 28 GW(9), GY(4), 
GN(4), 
FD(4), SL(2), 
DTH(2)

661.34–674.16 wsnp_CAP12_
c475_258416–1131676

MQTL-6B-5 6B 66.49 8.61 62.19–70.80 6 GW(6) 693.82–712.17 1233630–wPt-9660
MQTL-6B-6 6B 76.79 0.24 76.67–76.91 11 GW(4), GN(4), 

SL(2), Oth-
ers(1)

704.56–708.03 1205602–
tplb0046e21_221

MQTL-6D-1 6D 14.86 2.28 13.72–16.00 3 GW(1), GY(1), 
GN(1)

2.41–7.10 wsnp_Ex_
c14439_22426200–
BobWhite_c11808_975

MQTL-6D-4 6D 70.17 4.87 67.74–72.61 4 GN(1), GW(1), 
TN(1), 
SLN(1)

455.46–463.71 1239335–wPt-734218

MQTL-6D-6 6D 105.92 4.24 103.80–108.04 6 SLN(2), GW(1), 
TN(1), GY(1), 
BY(1)

465.21–472.40 BS00087334_51–
1256004

MQTL-7A-1 7A 17.69 2.83 16.28–19.11 8 BY(2), GN(1), 
GY(1), SL(1), 
SLN(1), 
HI(1), Oth-
ers(1)

5.20–21.80 Kukri_c11770_148–
Xwmc479
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(MQTL-5A-7) and TraesCS5A02G000200 (MQTL-
5A-1); while some of them were also highly expressed in 
flower organs and developing grains, and affected grain 
number and grain weight, such as TraesCS1B02G059100 
(MQTL-1B-3), TraesCS5A02G000200 (MQTL-5A-1), 
etc. Most of the genes in Class II had effects on the spike 
traits of GN and SLN, such as TraesCS3A02G377600 
(MQTL-3A-4), TraesCS5A02G511300 (MQTL-5A-7) and 
TraesCS1B02G069000 (MQTL-1B-3), and some of them 
were highly expressed in developing grains, which directly 
affect grain weight, such as TraesCS6A02G287300 
(MQTL-6A-4) and TraesCS4A02G388400 (MQTL-4A-6) 
(Table S6, Fig. S1). Although most of these genes have 
multiple effects on yield-related traits, some representative 

candidate genes that have a greater impact on a few impor-
tant yield-related traits are listed in Table 3.

A novel candidate gene affecting grain weight 
by regulating grain size

The association analysis found that SNPs of a novel 
candidate gene encoding Cytochrome P450 (TraesC-
S4A02G460100) in MQTL-4A-8 contributed to yield and 
yield-related traits (Unpublished data). Therefore, a CAPS 
marker was designed on this A/G locus on its 3’UTR region. 
The 257 bp PCR product with the G allele could be cut into 
two fragments of 169 and 88 bp by Hha I, while the PCR 
product containing the A allele couldn’t. Results showed 

Table 2  (continued)

MQTL ID Chr.a Position (cM)b CI (cM)c Genetic interval 
(cM)

No. Of QTL Traitsd Physical interval 
(Mb)

Flanking markers

MQTL-7A-2 7A 37.87 2.37 36.69–39.06 16 SLN(4), FD(3), 
DTH(2), 
TN(2), 
GW(1), 
GY(1), SL(1), 
DTM(1), Oth-
ers(1)

18.88–24.59 wsnp_Ku_
c3969_7256560–wsnp_
Ex_c30239_39179460

MQTL-7A-6 7A 100.14 1.63 99.33–100.96 29 GW(15), 
GN(7), GY(2), 
TN(2), GY(1), 
SLN(1), 
BY(1)

675.27–688.69 1115464–5581759

MQTL-7B-1 7B 6.45 4.58 4.16–8.74 3 SL(2), GY(1) 1.03–6.23 Excalibur_c3489_182–
1280023

MQTL-7B-5 7B 69.28 2.38 68.09–70.47 16 GN(6), GW(5), 
DTH(2), 
SL(1), 
SLN(1), Oth-
ers(1)

665.52–672.55 2255911–2279429

MQTL-7B-6 7B 89.33 4.34 87.16–91.50 5 GW(3), GFR(1), 
DTM(1)

697.54–707.72 1051812–1112823

MQTL-7B-8 7B 112.84 7.02 109.33–116.35 6 SL(2), SLN(2), 
GN(1), GW(1)

743.45–749.30 1122207–1300047

MQTL-7D-1 7D 25.56 4.88 23.12–28.00 15 GY(4), GN(2), 
GW(2), 
DTH(2), 
TN(2), 
SLN(2)

6.48–14.19 Kukri_c45368_300–
995933

MQTL-7D-8 7D 125.89 1.45 125.17–126.62 5 GN(2), GW(1), 
TN(1), 
SLN(1)

589.06–611.52 Xwmc671–Xwmc824

a Chromosomes
b The most likely position on consensus map
c The confidence interval (95%) of MQTL on consensus map
d GW, Grain weight; GN, Grain number; GY, Grain yield; TN, Tiller number; SL, Spike length; SLN, Spikelet number; GFR, Grain filling rate; 
BY, Biomass; HI, Harvest index
Each MQTL only lists the trait types of the top five QTL
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that this CAPS marker could accurately distinguish this 
SNP alleles (A/G), and the PCR product and digested frag-
ments were consistent with expectations (Fig. 8c). There-
fore, two haplotypes, named Hap 1-A and Hap 2-G of 
TraesCS4A02G460100 among the wheat accessions could 
be revealed. The accessions with Hap 2-G had significantly 
higher grain width, grain length and thousand grain weight 
than these with Hap 1-A, especially for the grain width, 
which was extremely significant in all three environments 
(Fig. 8a, b).

Based on STRING service, the PPI (protein–protein 
interaction) analysis showed that TraesCS4A02G460100 
interacted directly with 10 genes involved in GA synthe-
sis including KOs, KO-likes and GA20oxs (Fig. 8d). These 

genes including KO-like-2B.1, KO-7D, KO-7A, GA20ox2-
3B and TraesCS4A02G460100 were specifically and highly 
expressed in developing grain and were grouped into one 
category (Fig. 8e). Further sequence alignment confirmed 
that TraesCS4A02G460100 (TaKAO-4A) was a copy of 
wheat KAO genes on chromosome 4A, which encoded an 
ent-kaurenoic acid oxidase that catalyzed ent-Kaurene to 
produce GA precursors  GA12 on the upstream of the GA 
synthesis pathway (Pearce et al. 2015). To verify the role 
of TaKAO-4A in wheat grain development, the expression 
patterns of these genes involved in GA biosynthesis and 
signal transduction during grain development were further 
analyzed using a set of systematic transcriptome data during 
grain development (Xiang et al. 2019). The GA biosynthetic 

Fig. 6  Distribution of 76 core MQTL on chromosomes affecting multiple traits. Different yield-related traits are marked with different colored 
squares. The axis on the left represents the physical distance (MB) (color figure online)
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genes, such as TaKAO-4A, TaKO-7A and GA20ox2-3B, 
were highly expressed in endosperm, while TaSYP-6A and 
TaGID2-3D, which involved in GA perception and signaling, 
were expressed in seed coat at higher levels (Fig. 8e). All 
of these suggested that TraesCS4A02G460100 (TaKAO-4A) 
played an important role in the GA biosynthesis to regulate 
grain size and thus affected grain weight. Interestingly, the 
TaGA20ox1-4A was also found in our MQTL (MQTL-4A-2) 
and was regarded as one of the core candidate genes, which 
verified the reliability of our meta-QTL, GWAS and homol-
ogy alignment integration strategy in screening important 
candidate genes.

Discussion

Characteristics of QTL and MQTL associated 
with wheat yield

In recent 20 years, a large number of QTL mapping data for 
wheat yield and yield-related traits provided convenience for 
revealing the genetic basis of wheat yield formation (Qurai-
shi et al. 2017). In this study, a total of 2027 QTL related to 
yield and yield-related traits and 203 QTL related to growth 
period from 119 independent studies were used for meta-
QTL analysis. Much more initial QTL than previous studies 
were used for meta-QTL analysis to ensure more compre-
hensive and accurate anchoring of genetic loci (Zhang et al. 
2010; Quraishi et al. 2017; Liu et al. 2020a, b). These initial 

QTL were unevenly distributed on chromosomes, and more 
QTL were found in A and B sub-genomes, which was con-
sistent with previous studies (Zhang et al. 2010).

Meta-QTL analysis can eliminate the influence of genetic 
background, population type and planting environment on 
QTL, and effectively integrate QTL data in different back-
grounds (Welcker et al. 2011). The number of initial QTL 
used for meta-QTL analysis was significantly and positively 
correlated with the accuracy of the statistical results. The 
more initial QTL were used, the better the results of meta-
analysis were (Quraishi et al. 2017). In this study, 44.83% of 
MQTL were composed of more than 11 initial QTL, and 6 of 
them were composed of more than 50 QTL, which was much 
higher than the previous studies (Zhang et al. 2010; Quraishi 
et al. 2017; Liu et al. 2020a, b). The distribution of MQTL 
and initial QTL on different chromosomes was obviously 
inconsistent, which was mainly due to the different number 
of initial QTL contained in MQTL. MQTL containing initial 
QTL identified from different bi-parental populations were 
more reliable and stable for wheat yield improvement. In 
addition, based on the physical location, the consistency of 
the previous meta-QTL analysis with this study were com-
pared in detail and showed that 17 of 18 MQTL of grain 
yield previously discovered were identified in this study, and 
15 of them were classified as core MQTL, which all con-
firmed the reliability of this meta-QTL analysis (Quraishi 
et al. 2017). All these core MQTL could lay the foundation 
for further cloning and functional studies of those wheat 
genes and their utilization in wheat yield improvement.

Fig. 7  Expression characteristics of 237 candidate genes in 18 tis-
sues. All transcriptome data was downloaded from expVIP (http:// 
www. wheat- expre ssion. com), and Log2 (TPM + 1) value was used to 

characterize the expression level. From sky blue to pink, the expres-
sion level increases from low to high. The detailed IDs of the candi-
date genes are shown in Fig. S1 (color figure online)

http://www.wheat-expression.com
http://www.wheat-expression.com
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Table 3  Representative candidate genes with significant contribution to yield-related traits of wheat

MQTL Main Traits affected by MQTL Candidate gene within 
MQTL (IWGSC v 1.1)

Orthologue in rice The function of Orthologue in  ricea

MQTL-1A-2 GN(10) TraesCS1A02G026000 Target gene of Osa-miR1873 Grain number (−), Grain size (−), 
Plant height (−)

TN(5) TraesCS1A02G031200 OsRLCK57 Tiller number (+), Number of 
secondary branch per panicle (+), 
Leaf angle (−)

MQTL-1A-3 GW(4), GN(2), SLN(2) TraesCS1A02G045300 OsMKP1 Grain length (−), Grain width 
(−), Grain weight (−), Spikelet 
number (+), Grain number (+), 
Number of first and secondary 
branches per panicle (+)

MQTL-1A-4 GN(5), GW(3), GY(2) TraesCS1A02G083100 MYB61 Cellulose content (+), Nitrogen use 
efficiency (+), Grain number (+), 
Grain weight (+), Grain yield 
(+)

MQTL-1A-5 GW(5), GY(4) TraesCS1A02G407700 qTGW3 Grain length (−), Grain weight (−)
MQTL-1B-3 GW(12), GN(8), GY(5) TraesCS1B02G058600 OsMKP1 Grain length (−), Grain width 

(−), Grain weight (−), Spikelet 
number (+), Grain number (+), 
Number of first and secondary 
branches per panicle (+)

MQTL-1B-4 GN(4), GW(3) TraesCS1B02G320100 OsVQ4 Grain weight (+), Grain number 
(−), Date to heading (−)

MQTL-1D-1 GN(2) TraesCS1D02G004000 PTB1 Grain number (+)
MQTL-2A-6 GW(3) TraesCS2A02G464000 GSD1 Grain number (+), Grain weight 

(+), Grain width (+), Soluble 
sugar content in xylem permeate 
(+), Starch content in leaves (−)

MQTL-2A-7 TN(2), SL(2), GN(2) TraesCS2A02G491900 MOC3 Tiller number (+), Grain number 
(+), Floral organ development (+), 
Spike length (−)

MQTL-2B-1 GN(9), GW(6) TraesCS2B02G023800 OsETR2 Flowering date (−), Grain weight 
(−), Tiller number (−), Grain 
number (−)

MQTL-2D-6 GW(9), GN(1) TraesCS2D02G464900 GSD1 Grain number (+), Grain weight 
(+), Grain width (+), Soluble 
sugar content in xylem permeate 
(+), Starch content in leaves (−)

MQTL-3A-4 GN(10), TN(9) TraesCS3A02G377600 MOC2 Tiller number (+), Plant height (+), 
Chlorophyll content (+), Spike 
length (+), Grain number (+)

MQTL-3B-5 TN(9) TraesCS3B02G348200 ALT1 Tiller number (+)
MQTL-3D-3 GW(9), TN(7), GN(5) TraesCS3D02G106100 D2 Plant height (+), Leaf angle (+), 

Grain size (+), Brassinolide 
content (+), Grain weight (+), 
Cell size (+), Tiller number (−), 
Grain number (−)

MQTL-4A-1 GW(5) TraesCS4A02G005600 OsLG3 Grain length (+), Grain length/
width (+), Grain yield (+), Grain 
weight (+)

MQTL-4A-2 GN(5), GY(3) TraesCS4A02G319100 OsGA20ox1 Gibberellin content (+), Grain 
number (+), Number of second-
ary branch per panicle (+), Grain 
yield (+)
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Table 3  (continued)

MQTL Main Traits affected by MQTL Candidate gene within 
MQTL (IWGSC v 1.1)

Orthologue in rice The function of Orthologue in  ricea

MQTL-4A-3 GW(7), GN(1) TraesCS4A02G286700 OsFdC2 Plant height (+), Tiller number (+), 
Date to heading (+), Grain num-
ber (+), Grain weight (+), Grain 
number (+), Chlorophyll content 
(+), Carotenoid content (+)

MQTL-4A-6 GW(13), GN(9) TraesCS4A02G388400 OsFIE1 Grain size (+), Grain number (+), 
Grain weight (+), Pollen fertility 
(+), Photosynthesis (+)

MQTL-4A-8 TN(2), SL(2), SLN(1), GN(1), 
GY(1)

TraesCS4A02G460100 OsKAO Grain yield (+), Grain weight (+), 
Grains per panicle (+), Gibberellin 
content (+), Number of secondary 
branches (+)

MQTL-4B-2 TN(8) TraesCS4B02G019300 OsIRT1 Tiller number (−), Plant height (−), 
Iron and zinc ion sensitivity (−)

MQTL-4B-3 GW(9), TN(7), GN(5), GY(6) TraesCS4B02G028100 OsFdC2 Plant height (+), Tiller number 
(+), Date to heading (+), Grain 
number (+), Grain weight (+), 
Grain number (+), Chlorophyll 
content (+), Carotenoid content 
(+) + H120

MQTL-4B-5 GW(11), TN(2), GN(1), SL(1) TraesCS4B02G214000 pls2 Photosynthesis (+), Plant height (+), 
Spike length (+), Tiller number 
(+), Grain number (+), Grain 
weight (+), Grain filling (+), 
Chloroplast development (+)

MQTL-4D-2 GW(8), TN(3), GN(2) TraesCS4D02G025700 OsFdC2 Plant height (+), Tiller number (+), 
Date to heading (+), Grain num-
ber (+), Grain weight (+), Grain 
number (+), Chlorophyll content 
(+), Carotenoid content (+)

MQTL-5A-2 GW(22) TraesCS5A02G286700 qGW8 Grain size (−), Grain weight (−), 
Cooking quality (−)

MQTL-5A-3 GW(18) TraesCS5A02G394500 GSA1 Grain size (+), Grain weight (+)
GW(18) TraesCS5A02G394800 GSA1 Grain size (+), Grain weight (+)
GW(18) TraesCS5A02G395200 OsPho1 Grain size (+), Grain yield (+), 

Starch structure and content (+), 
Grain weight (+)

MQTL-5A-7 GW(8) TraesCS5A02G500500 ONAC022 Plant height (−), Spike length (−), 
Grain number (−), Grain weight 
(−), Abscisic acid sensitivity (+), 
Drought resistance (+), Salt toler-
ance (+)

GN(5) TraesCS5A02G508500 POT Grain number (+)
GN(5), GY(4), TN(3) TraesCS5A02G511300 PROG1 Plant height (+), Grain number 

(+), Grain yield (+), Tiller num-
ber (+), Tiller angle (+)

GN(5), GY(4), TN(3) TraesCS5A02G511400 PROG1 Plant height (+), Grain number 
(+), Grain yield (+), Tiller num-
ber (+), Tiller angle (+)

MQTL-6A-4 GW(7), DTH(2) TraesCS6A02G287300 OsNF-YB9 Date to heading (−), Leaf angle 
(−), Pollen vitality (−), Grain 
size (−), Grain weight (−), Cell 
number (+)
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Another advantage of meta-QTL analysis is that it can 
effectively reduce the confidence interval (CI) of QTL by 
aggregating QTL information from different genetic back-
grounds, thus reducing the difficulty of transferring and 
aggregating important QTL regions in wheat breeding, and 
improving the accuracy of candidate gene prediction (Liu 
et al. 2020a, b). The CI of MQTL was 2.92 times narrower 
than that of initial QTL, better than 2.44 (12.7 cM / 5.2 cM) 
of Liu et al. (2020a, b). Interestingly, the larger the number 
of initial QTL contained in a MQTL, the greater the reduc-
tion of CI, which indicated that large-scale meta-QTL analy-
sis could effectively reduce the CI of QTL, especially when 
multiple QTL from different studies were located at similar 
positions. There were 69 MQTL for GY, GW and GN, and 
52 MQTL for GY, GW, GN and TN, which confirmed the 
significant effects of GW, GN and TN on GY, and indicated 

that there might be important candidate genes that could 
comprehensively improve yield by adjusting the three yield 
factors in these regions.

Validation of MQTL in GWAS of different natural 
populations

Compared with QTL mapping, genome-wide associa-
tion study (GWAS) based on high-throughput sequencing 
or array technology is another high-precision method for 
identifying genomic regions of quantitative traits (Yang 
et al. 2020). Here, the GWAS results were used to verify 
the meta-QTL results for the first time. More than 60% of 
MQTL (62.68%, 89/142) were co-located with MTAs from 
GWAS, which indicated that the impact of these genomic 
regions on yield may be less limited by genetic background. 

Table 3  (continued)

MQTL Main Traits affected by MQTL Candidate gene within 
MQTL (IWGSC v 1.1)

Orthologue in rice The function of Orthologue in  ricea

MQTL-6B-3 GW(10), TN(1), GN(2) TraesCS6B02G152900 LRK1 Tiller number (+), Number of 
secondary branch per panicle 
(+), Grain number (+), Grain 
yield (+), Plant height (−), Grain 
weight (−)

GW(10), TN(1), GN(2) TraesCS6B02G153100 LRK1 Tiller number (+), Number of 
secondary branch per panicle 
(+), Grain number (+), Grain 
yield (+), Plant height (−), Grain 
weight (−)

MQTL-6B-5 GW(6) TraesCS6B02G430100 inflow of source and then 
affectOsNDUFA9

Endosperm development (+), Grain 
weight (+), Starch granule forma-
tion (+), Germination rate (+)

MQTL-6D-5 GN(5), GW(2) TraesCS6D02G361900 TH1 Grain length (+), Grain thickness 
(+), Grain weight (+), Starch 
granule morphology (+), Grain 
number (+), Morphological and 
anatomical traits of palea and 
glume (+)

MQTL-7A-4 GW(6) TraesCS7A02G120000 HGW Grain weight (+), Date to heading 
(+)

MQTL-7A-7 GN(5), GW(4) TraesCS7A02G154900 OsMKK4 Grain number (−), Grain length 
(+), Grain width (+), Plant height 
(+), Grain weight (+), Cytokinin 
content (+)

MQTL-7B-2 GW(6), DTH(1) TraesCS7B02G018300 HGW Grain weight (+), Date to heading 
(+)

MQTL-7B-4 GW(9), GN(1) TraesCS7B02G381500 GL6 Grain length (+), Grain weight (+), 
Grain number (−)

MQTL-7D-2 SLN(2) TraesCS7D02G468700 OsAPO1 Spike length (+), Number of first 
branch per panicle (+), Spikelet 
number (+), Stem thickness (+)

MQTL-7D-6 GW(11), GN(3) TraesCS7D02G466400 GL6 Grain length (+), Grain weight (+), 
Grain number (−)

a  ‘ + ’ and   ‘−’ in brackets represent the positive and negative regulation of yield-related traits in rice, respectively. The core traits were shown in 
bold
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Furthermore, the contribution of wheat genomic regions to 
yield varied greatly with the environment. Therefore, breed-
ing strategies vary according to the environment. There were 
47 and 75 MQTL verified by GWAS studies of spring wheat 
and winter wheat populations, respectively. These different 
MQTL regions may be more effective in improving yield 
for corresponding wheat regions and can be used as an 
important target of wheat breeding in these different wheat 
planting areas. MQTL were mainly distributed in the gene 
rich regions of chromosomes, which was consistent with the 
study in Rice (Khahani et al. 2020). In addition, the com-
parison of the core MQTL identified in this study with that 
in the two recent important GWAS studies based on wheat 
materials collected from China and other regions of the 
world (including ICARDA in Syria, CIMMYT in Mexico 
and AWCC in Australia), revealed a large number of MQTL 
were co-located with those GWAS results (Li et al. 2019; 
Ogbonnaya et al. 2017). More than 40% (31/76) of MQTL 

were verified in these two studies, which confirmed that the 
selected 10 GWAS researches were widely representative 
and diverse. The identification of these MQTL provided a 
basis for accurately mining candidate genes affecting yield 
(Veyrieras et al. 2007).

Candidate genes in MQTL and their roles in yield 
formation

Several well-known important genes, including TaPpd 
(Beales et al. 2007), Tavrn1 to Tavrn 3 (Yan et al. 2003, 
2004, 2006), TaRht1 (Peng et al. 1999), TaGS (Bernard 
et al. 2008), etc., have been identified accurately in MQTL. 
In addition to affecting grain weight and grain number, the 
three MQTL including TaVrn1, TaVrn2 and TaVrn3 were 
also related to spikelet number, heading date and flowering 
date. This confirmed that these genes regulated the devel-
opment of young spikes and grain filling by affecting the 

Fig. 8  Functional verification of a novel candidate gene (TraesC-
S4A02G460100) in MQTL-4A-8 affecting grain size and grain 
weight. a Grain morphology of wheat accessions with different hap-
lotypes. From left to right are ‘Lassit’ (Hap 1-A) and ‘Luomai 21’ 
(Hap 2-G), respectively. b The differences in grain width and thou-
sand grain weight between the two haplotypes of 94 wheat acces-
sions. E1, E2 and E3 represent the three environments of 2016–2017, 
2017–2018 and 2018–2019, respectively. *, ** and *** represent the 
significant levels of P < 0.05, P < 0.01 and P < 0.001, respectively. 
c The genotyping results of wheat accessions ‘Lassit’ and ‘Luomai 
21’ using a CAPS marker for TraesCS4A02G460100. d The protein–
protein interaction of TraesCS4A02G460100 predicted by STRING. 

e The tissue expression patterns of TraesCS4A02G460100 and its 
interacting genes. Wheat tissue expression data were downloaded 
from the wheat-expression database (http:// www. wheat- expre ssion. 
com), and the heat map was displayed using log2 (TPM + 1). SA: 
shoot apical meristem, RA: root apical meristem, SP: spike, LF: leaf, 
AN: anther, SO: stigma & ovary, GR: grain, EN: endosperm, EM: 
embryo proper. The expression data of separate tissues in developing 
grains were obtained from Xiang et al. (2019). TEN: transition stage 
endosperm (7 day after flowering), LESC: leaf early stage seed coat 
(10  day after flowering), LLEN: leaf late stage endosperm (20  day 
after flowering)

http://www.wheat-expression.com
http://www.wheat-expression.com
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process of wheat heading and flowering, and finally affected 
the grain yield. Earlier study confirmed that materials con-
taining TaRht1 showed an increase in grain number per 
spike and a decrease in thousand grain weight (Flintham 
et al. 1997). In this study, TaRht1 was found to be co-located 
with QTL of grain weight, grain number and tiller num-
ber. Another dwarf gene, TaRht12, showed an increase in 
grain number per spike and effective tiller number, and a 
decrease in thousand grain weight (Chen et al. 2013). These 
two Rht genes affect the GA signal transduction and bio-
synthesis, respectively. Both the GA biosynthesis defective 
and GA signaling defective mutants show the phenotype 
of increased tillers, and the proper use of GA biosynthesis 
inhibitor Paclobutrazol (PAC) in wheat can increase tiller 
number (Lo et al. 2008; Silverstone et al. 1997; Assuero 
et al. 2012). All these confirmed that TaRht1 affects wheat 
yield components by regulating GA biosynthesis, thereby 
affecting wheat yield.

Considering the close evolutionary relationship between 
the genomes of Gramineae species (Gaut 2002), the analysis 
of homology relationship between wheat and model crop 
rice could broaden our understanding of genes in wheat. 
Meanwhile, the functional studies of a large number of genes 
in rice provided great convenience for the study of related 
crops including wheat (Yang et al. 2020). In addition, several 
important genes affecting rice yield have been confirmed to 
have similar functions in wheat, such as TaGS-D1, TaCKX2, 
TaTGW6, TaCWI, etc., which indicate that it is feasible to 
screen important candidate genes based on interspecific 
homology analysis (Zhang et al. 2011, 2014; Hanif et al. 
2016; Jiang et al. 2015). Here, 237 candidate genes homolo-
gous to yield-related genes in rice were found within the 
MQTL intervals, most of them affected the same traits in 
wheat and rice (Table S6). The functions of these genes were 
relatively conservative in rice and wheat and could be used 
as primary gene resources for gene manipulation and direc-
tional improvement of wheat yield-related traits.

Some genes in rice have been proved to affect yield-
related traits such as TN, GN and branch number per spike 
by regulating the sensitivity or content of plant growth regu-
lators such as GA, IAA, brassinolide (BR) and cytokinin, 
thus affecting the final yield. Thirty-five orthologous candi-
date genes of these genes in wheat were found in the MQTL 
regions determining the corresponding traits. For example, 
TraesCS4A02G319100 of MQTL-4A-2 (OsGA20ox1) (Wu 
et al. 2016) and TraesCS3D02G106100 of MQTL-3D-3 
(OsD2) (Liu et al. 2016) affected GN and GW by regulat-
ing IAA content, GA content and BR content, respectively. 
Some gene deletion mutants in rice showed decreased pho-
tosynthetic capacity and inhibited chlorophyll synthesis. The 
orthologues of these rice genes in wheat were also found 
in MQTL, such as TraesCS4A02G388400 of MQTL-4A-6 
(OsFIE1) (Cheng et al. 2019) and TraesCS4A02G010000 

of MQTL-4A-1 (OsGUDK) (Ramegowda et  al. 2014). 
Some candidate genes were found to regulate TN, GW, GN 
and other yield-related traits by regulating plant nitrogen 
transport and utilization, such as TraesCS6A02G326200 
of MQTL-6A-5 (OsNR2) and TraesCS6D02G020700 of 
MQTL-6D-1 (OsNRT2) (Gao et al. 2019; Fan et al. 2016). 
The orthologous genes of CKI and Hd3a were found in 
MQTL, which was proved to be related to the flowering and 
heading dates (Kwon et al. 2015; Galbiati et al. 2016). In 
addition, several orthologous genes related to grain size were 
also found in the MQTL region. A recent review showed that 
the genes affecting wheat yield were mainly concentrated 
in five aspects, including transcription factors that affect 
spike development, genes involved in signal transduction 
of growth regulators, genes involved in cell division and 
proliferation, flower regulators that affect the structure of 
inflorescence and genes involved in carbohydrate metabo-
lism (Nadolska-Orczyk et al. 2017). All five types of candi-
date genes were found in MQTL, and their functions in rice 
have been confirmed.

Previous studies have shown that GA can directly regulate 
grain development (Tiwari et al. 2011). In this study, can-
didate genes involved in GA synthesis pathway including 
TaKAO-4A (TraesCS4A02G460100) and TaGA20ox1-4A 
(TraesCS4A02G319100) were found in the MQTL regions. 
A CAPS marker was developed on the TaKAO-4A gene, and 
its two haplotypes showed significant differences in grain 
width and grain weight in a three-year field trial of 94 wheat 
accessions. As an important upstream gene of GA synthe-
sis, TaKAO-4A plays a key role in regulating GA content 
(Pearce et al. 2015). Additionally, the expression patterns of 
GA biosynthetic and signaling genes in separate tissues of 
the developing grain revealed that GA biosynthetic genes, 
such as TaKAO-4A, TaGA20ox2-3B and TaKO-7A, were 
mainly high-expressed in endosperm, while GA signaling 
gene TaGID2-3D was predominantly expressed in seed 
coat. TaGID2-3D, which encoded an important component 
GID2 of  SCFGID2, was the key gene for the ubiquitination 
degradation of DALLA and the initiation of GA reaction. 
All of those indicated that the main synthesis site of GA 
in developing grains was in endosperm, while the signal 
transduction mainly occurs in outer layer, which implied the 
transportation of GA in inner and outer tissues of grains. 
Considering that this period is one of the rapid horizon-
tal expansion stages of developing grain, it is obvious that 
bioactive GA may avoid limiting endosperm growth by 
promoting the cell expansion of seed coat. In addition, the 
Rht1 dwarf mutant also exhibited reduced sensitivity to GA 
and reduced grain size (Flintham et al. 1997). TaGW2-6A, 
another important gene that affected grain size, had also 
been reported to regulate grain size through the GA syn-
thesis pathway (Li et al. 2017). All these proved that GA 
content was important to regulate grain size. In general, the 
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contribution of TaKAO-4A to grain size, especially grain 
width, was verified in natural populations, and a convenient 
and efficient CAPS marker was developed, which could be 
directly used in wheat molecular marker-assisted breeding.

Finally, based on their orthologues’ functions in rice, 
expression patterns and existing knowledge of these can-
didate genes, a schematic diagram of the major candidate 
genes affected wheat yield formation were preliminarily 
drawn (Fig. 9). Similar to the summary of Nadolska-Orczyk 
et al. (2017), the candidate genes that play a role in photo-
period response, grain development, multiple plant growth 
regulator pathways, carbon and nitrogen metabolism and 
spike and flower organ development were all found in the 
MQTL intervals. The results showed that photoperiod genes 
were mainly expressed in flower organs, affecting TN and 
grain filling by regulating multiple key growth stages; grain 
development genes were highly expressed in the process of 

grain development, affecting grain size, GN and grain filling; 
and the participation included GA, IAA, BR, JA and other 
growth regulator genes regulate plant development by regu-
lating the response and sensitivity to different hormones, 
and have an impact on growth period, plant height, TN, 
GW, GN, etc., while many genes affecting carbon and nitro-
gen metabolism are mainly expressed in the main sources 
such as roots, stems, leaves and other transport organs to 
regulate nitrogen absorption and utilization efficiency, so 
as to increase the inflow of source and then affect the yield 
(Fig. 9). Finally, the genes on spike and flower organ for-
mation were mainly expressed in spike development and 
floral organ, and affected the number of spikelets and grains 
by affecting the formation and fertility of spikelets. In gen-
eral, based on homology alignment and expression pattern 
analysis, a large number of high-confidence candidate genes 
affecting wheat yield were found in MQTL region.

Fig. 9  Contributions of yield-related traits to yield and possible fac-
tors affecting these traits. The inner circle represents the contribu-
tions of the 11 yield-related traits used in this study to yield. The 
size of each character circle represents the number of MQTL identi-
fied. The line length represents the number of MQTL co-located for 
each two traits and the shorter the line, the more MQTL co-located 
with the two traits. The line thickness represents the number of ini-
tial QTL contained in MQTL and the thicker the line, the more QTL 
the MQTL contains. The outer ring represents the main pathway or 
process affecting these yield-related traits. Several representative 
candidate genes within the MQTL regions and their tissue expres-
sion characteristics are marked near to each pathway. Wheat tis-
sue expression data were downloaded from the wheat-expression 
database (http:// www. wheat- expre ssion. com), and the heat map was 
displayed using log2 (TPM + 1). SA: shoot apical meristem, RA: 

root apical meristem, SP: spike, LF: leaf, AN: anther, SO: stigma & 
ovary, GR: grain, EN: endosperm, EM: embryo proper. The wheat 
candidate genes are named according to their orthologous genes in 
rice. TaD2-3D: TraesCS3D02G106100, TaRLCK102-4A: TraesC-
S4A02G016800, TaTAD1-4D: TraesCS4D02G341200, TaPUP7-1D: 
TraesCS1D02G393900, TaMADS50-5A: TraesCS5A02G515500, 
TaCKI-5B: TraesCS5B02G433300, TaHd3a-7A: TraesC-
S7A02G115400, TaPho1-5A: TraesCS5A02G395200, TaFLO2-2A: 
TraesCS2A02G517100, TaNF-YB9-7D: TraesCS7D02G216600, 
TaNR2-6B-1: TraesCS6B02G024900, TaNR2-6B-2: TraesC-
S6A02G326200, TaNPF6.1-3B: TraesCS3B02G095900, TaGRF6-
4B: TraesCS4B02G060000, TaFIE1-4A: TraesCS4A02G388400, 
TaHGW-7B: TraesCS7B02G018300, TaJar1-1A: TraesC-
S1A02G425100

http://www.wheat-expression.com
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