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Abstract
Key message  Improving the nutritional content of graminaceous crops is imperative to ensure nutritional security, 
wherein omics approaches play pivotal roles in dissecting this complex trait and contributing to trait improvement.
Abstract  Micronutrients regulate the metabolic processes to ensure the normal functioning of the biological system in all 
living organisms. Micronutrient deficiency, thereby, can be detrimental that can result in serious health issues. Grains of 
graminaceous crops serve as an important source of micronutrients to the human population; however, the rise in hidden hun-
ger and malnutrition indicates an insufficiency in meeting the nutritional requirements. Improving the elemental composition 
and nutritional value of the graminaceous crops using conventional and biotechnological approaches is imperative to address 
this issue. Identifying the genetic determinants underlying the micronutrient biosynthesis and accumulation is the first step 
toward achieving this goal. Genetic and genomic dissection of this complex trait has been accomplished in major cereals, 
and several genes, alleles, and QTLs underlying grain micronutrient content were identified and characterized. However, no 
comprehensive study has been reported on minor cereals such as small millets, which are rich in micronutrients and other 
bioactive compounds. A comparative narrative on the reports available in major and minor Graminaceae species will illustrate 
the knowledge gained from studying the micronutrient traits in major cereals and provides a roadmap for dissecting this trait 
in other minor species, including millets. In this context, this review explains the progress made in studying micronutrient 
traits in major cereals and millets using omics approaches. Moreover, it provides insights into deploying integrated omics 
approaches and strategies for genetic improvement in micronutrient traits in graminaceous crops.

Introduction

Globally, 2 billion people suffer from severe micronutrient 
deficiencies due to the non-availability of nutritious food 
(Mayer et al. 2008; White and Broadly 2009). Micronutri-
ents constitute minerals and vitamins that are derived from 
the diet, as they could not be synthesized in the body (Bouis 
and Welch 2010). The daily requirement of each micronutri-
ent varies according to the stage of development. An aver-
age healthy adult requires 15 mg each of iron (Fe) and zinc 
(Zn) and 600 µg of vitamin A; however, this requirement 
is not met through the food consumed by the majority of 
the population. The present-day food constitutes cereals in 
significant proportion, and these cereals have high calorific 
value. Thus, the normal staple diets supply only 2–3 mg of 
Fe, 7–8 mg of Zn, and traces of vitamin A, which is not 
sufficient to sustain the human body (https://​www.​who.​int/​
vmnis/​datab​ase/​en/). These values are projected to decrease 
due to the poor availability of micronutrients in the frontline 
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crops like rice and wheat. Furthermore, while micronutrients 
play a prime role in regulating the metabolic activities in 
the cells and tissues, their deficiency results in irreparable 
consequences. Approximately 43% of the children below the 
age of five are prone to anemia due to Fe deficiency (Stevens 
et al. 2013). In the case of zinc, 17.3% of the population 
faces inadequacy in dietary zinc (Wessells and Brown 2012). 
Similarly, 190 million children at their pre-school age face 
vitamin A deficiency (Imdad et al. 2017; Visser et al. 2017). 
Previously, White and Broadly (2005) showed that 340 mil-
lion children suffer from malnutrition, leading to stunt-
ing, wasting, or overweight, which results in disorders like 
xeropthalmia, skin disorders, and cancers. This has neces-
sitated the biofortification of major cereals through breeding 
and transgene-based approaches (Garg et al. 2018). Further, 
studies on the mechanism of micronutrient uptake, the effect 
of soil fertility, processing techniques, targeted genes for 
nutrient mobilization, and anti-nutritional factors that hinder 
the bioavailability of micronutrients were performed (Welch 
and Graham 2004; Palmgren et al. 2008; Cakmak 2009; de 
Valenca et al. 2017; Das et al. 2019; Hossain et al. 2019).

Advancements in genetic dissection of micronutrient bio-
synthesis and accumulation in major cereals had pinpointed 
the genes, alleles, and QTLs underlying these complex traits. 
This information was further used in molecular breeding for 
improving the micronutrient content of the grains. Recently, 
recombinant DNA and genome editing approaches were also 
being deployed in major cereals for biofortification (Majum-
dar et al. 2018). These studies also widened the understand-
ing of the research gaps and limiting factors in attaining the 
target mineral bioavailability in cereals. Though significant 
progress has been made in major graminaceous species (like 
rice, wheat, maize, and sorghum), a class of minor cereals, 
including small millets, remain underutilized and neglected 
(Muthamilarasan and Prasad 2021). Small millets consti-
tute eleven millet species that are rich in minerals, vitamins, 
essential amino acids, and antioxidants (Saleh et al. 2013; 

Muthamilarasan et al. 2016; Vetriventhan et al. 2020). The 
micronutrient content of millet grains in comparison with 
major cereals is provided in Table 1. Despite their nutritional 
superiority over the major cereals, deciphering the genetic 
determinants of micronutrient contents in minor millets and 
exploiting them for the genetic improvement in cultivated 
varieties with enriched minerals and vitamins remain elu-
sive. However, studies on major cereals provide a roadmap 
for identifying the genes, alleles, and QTLs underlying 
micronutrient traits in other graminaceous species. Further 
deployment of omics tools will enable the manipulation of 
target genes for improving the nutritional content of minor 
species per se. Also, it will facilitate the transfer of candi-
date genes to other major cereals through transgene-based 
approaches. Thus, identifying the genetic determinants holds 
the key for such biofortification programs, and given their 
importance, the present review enumerates the knowledge 
generated so far in understanding the genetic determinants 
of micronutrient traits in graminaceous crops using different 
approaches. It also provides the roadmap for further studies 
to enhance the nutritional potential of small millets and other 
graminaceous crops to provide a long-term and sustainable 
solution to micronutrient deficiency prevalent worldwide.

Current understanding of the mechanism 
of micronutrient uptake and their manipulation 
to enhance mineral absorption

The solubilization and mobilization of minerals from the 
soil to the grains are intricate processes involving different 
biochemical and molecular components. As the mineral 
uptake is proportional to the concentration or richness in 
the soil, agronomic biofortification provided limited suc-
cess in improving the nutritional status of major cereals 
(Garg et al. 2018). However, an exogenous supply of min-
erals resulted in the accumulation of unused elements in 
the soil, which could be toxic to plant growth at higher 

Table 1   Micro- and 
macronutrient content of millets 
and cereals

The data show the mean normalized concentrations (ppm) of the elements analyzed using inductively cou-
pled plasma atomic emission spectrometer (ICP-AES)

Crop K Ca P Mg S Zn Fe B Mn Ni

Barnyard millet 2680.1 1188.4 3198.2 1340.5 1080.5 32.7 22.7 5.8 14.45 2.6
Finger millet 3206.6 2707.6 2207.15 1378.35 954.7 22.85 26.8 8 114.65 0.95
Foxtail millet 2992.86 440.04 3939.12 1510.92 1615.56 44.45 18.15 4.45 9.4 2.7
Kodo millet 1817.85 167.3 2599.35 1263.7 1057.25 25.6 12.55 3.55 9.35 1.35
Little millet 1922.1 180.05 3392.5 1432.15 1185.1 26.9 32.65 4.55 9.15 1.85
Pearl millet 2756.75 180 2520.8 920.3 989.25 26.7 25.5 6.85 9.55 1.5
Proso millet 1773.15 98 3165.05 1357.55 1233.7 28.9 21.95 3.2 8.9 1.4
Wheat 3329.45 477.25 3055.2 870 835.35 28.8 19.6 2.85 19.7 0
Rice 1715.65 155.15 2753.75 1071.6 1065.05 33.3 8.15 10.8 5.8 0.85
Sorghum 3390.75 256.2 3105.55 1330.05 848.35 19.3 17.1 0 11.15 0.45
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concentrations. On the other hand, growing the crops in 
micronutrient deficient soils results in decreased accu-
mulation, affecting the grain nutritional content (Shukla 
et al. 2016). For example, the uptake of zinc has been 
severely affected in crops grown in calcareous soils (Gupta 
et al.2016). Thus, gaining mechanistic insights into the 
nutrient uptake will provide insights into understanding 
the nutritional quality of these crops. Nutrient absorp-
tion from the soil could be facilitated by the secretion of 
redox enzymes, chelating compounds, and the associa-
tion of microbes in the soil. Graminaceous crops absorb 
the micronutrients by chelation, while non-graminaceous 
species imbibe the micronutrients by reduction reactions 
occurring in the rhizosphere. Cereals eventually capture 
these micronutrients from their rhizosphere, where the 
nutrients enter the roots by acidification of their plasma 
membrane (Morrissey and Guerinot 2009). Due to this 
humification and change in the Eh (redox potential) 
of soils, the tightly held cations in the soil surface are 
released toward the roots by a cation exchange reaction 
(Gaxiola et al. 2007). To stimulate this absorption, plants 
also release organic acids and phytosiderophores to facili-
tate the uptake of essential nutrients like Fe and Zn. One 
such phytosiderophores is mugienic acid that has a higher 
affinity for absorbing Fe and Zn by chelation. Cereals like 
rice, wheat, and maize release these compounds into their 
rhizosphere using a transporter-like TOM 1 (Ishimaru 
et al. 2006). Rice secretes 2-deoxymugineic acid (2-DMA) 
while barley releases 3-epihydroxymugineic acid. These 

compounds effectively form complexes with the available 
Fe and Zn from the rhizosphere and effects absorption by 
chelation (Schaaf et al. 2004).

After absorption from the soil, further studies on the 
ascent of micronutrients under normal and controlled con-
ditions in rice described the role of roots for a continuous 
uptake under control conditions. Typically, the roots absorb 
the required nutrients for the growth and development up to 
the plant establishment phase. After the ripening stage, the 
sinks depend entirely on their leaves for nutrient transloca-
tion (Cakmak and Kutman 2018). Hence, the roots initially 
transport the nutrients from the soil toward the stem and 
leaves which are stored as a reserve for distribution to other 
parts. Thus, identifying the genes involved in this uptake 
mechanism and exploiting them for enriching the cereal 
grains using transgenic-based approaches have derived 
importance (Fig. 1). Biofortification of the mainstream cere-
als by manipulating such genes involved in the uptake pro-
cess has increased the Fe uptake up to 3.7-fold in rice (Goto 
et al. 1999). Improvising the Fe uptake in rice by overex-
pressing the chelating gene NAS1 (nicotianamine synthase), 
iron influx gene YSL2 (yellow stripe-like2), iron uptake gene 
IDS3 (iron-deficiency-specific clone 3), and manipulation 
of Fe uptake regulating translocators [vacuolar iron trans-
porters VIT1 and VIT2, and hemerythrin motif-containing 
really interesting new gene (RING)-and zinc-finger protein 
HRZ1] has significantly increased the Fe concentration in 
the grains (Suzuki et al. 2008; Lee et al. 2012; Ishimaru 
et al. 2010). The uptake of Fe by reducing Fe3+ to Fe2+ to 

Fig. 1   Genes and transporters 
underlying uptake, translocation 
and storage of iron and zinc in 
graminaceous crops. ZIP: zinc-
regulated transporter; ZIP2: 
zinc-regulated transporter 2; 
YS: yellow stripe; YSL: yellow 
stripe-like transporter; MTP: 
metal transporter protein; ENA 
1: efflux transporter of nicotia-
namine 1; VIT: vacuolar iron 
transporter; IRT1: iron-regu-
lated transporter 1; NRAMP 1: 
natural resistance-associated 
macrophage protein 1; FRDL 1: 
ferric reductase defective-like 
1 transporter; TOM1: trans-
porter of mugineic acid family 
phytosiderophores 1; FER: 
ferritin; NAS: nicotianamine 
synthase. Figure generated 
using Biorender



3150	 Theoretical and Applied Genetics (2021) 134:3147–3165

1 3

improve the solubility enhances the Fe uptake in plants (Kim 
and Guerinot 2007). A major proportion of the Fe that gets 
absorbed is accumulated as ferritin in the grains’ aleurone 
layer, which is facilitated by the ferroxidases. These fer-
roxidases can conserve up to 4500 atoms of iron in their 
complexes. Manipulating the ferritin genes has proved to 
be successful in improving grain Fe content in cereals. For 
example, manipulating soybean ferritin genes with rice 
globulin promoters in the rice cultivar, Swarna, showed a 
3.7-fold increase in Fe content (Vasconcelos et al. 2003; Paul 
et al. 2012, 2016). This was considered a significant leap 
in achieving Fe-rich rice to circumvent anemia and related 
issues in the human population.

Biofortification for Fe content in rice has been success-
fully achieved by Masuda et al. (2013) through seven trans-
genic approaches. In the first approach, endosperm-specific 
expression of Fe storage protein, ferritin (SoyferH1, Soy-
ferH2, Pvferritin), was performed to achieve a twofold 
increase in Fe content. In the second approach, nicotian-
amine synthase genes (OsNAS1, 2, 3; HvNAS1) were over-
expressed to produce the metal chelator, nicotinamine. The 
transgenic plants showed a threefold increase in grain Fe 
content. Enhanced expression of a Fe(II)-nicotianamine 
transporter gene (OsYSL2), in the third approach, increased 
the Fe content by fourfold in the grains. Approach four 
had introduced a mugineic acid synthesis gene of barley 
(HvIDS3) in rice to enhance the Fe content in grains by 1.4-
fold. The fifth approach was to overexpress the Fe trans-
porters, OsIRT1 and OsYSL15, the sixth approach involved 
the overexpression of Fe homeostasis-related transcription 
factor (Iron-related bHLH transcription factor, OsIRO2), and 
the seventh was to knock down the vacuolar Fe transport-
ers (OsVIT1 and OsVIT2), which resulted in increased Fe 
accumulation in the grains. Combining these approaches 
had also proven successful in improving the Fe content. For 
example, approaches one, two, and three were combined to 
produce Fe-fortified rice, which showed 4—to sixfold high 
Fe content in the seeds (Masuda et al. 2013).

Agronomic biofortification by incorporating biofertiliz-
ers in the soils eventually plays a crucial role in solubiliz-
ing the micronutrients for uptake by the plants. Microbiome 
in the rhizosphere, including terrestrial fungi and bacteria, 
establishes the essential association with the plants to solu-
bilize the soil nutrients for enabling the plants to take up 
through symbiotic relationships. This underlines the impor-
tance of other external factors like symbionts and fertilizer 
application in improving nutrient availability. An increase 
in the acquisition of Fe and Zn was successfully achieved 
by inoculation of arbuscular mycorrhizae in the rhizosphere 
(Coccina et al. 2019), ferti-fortification by incorporating 
increased external soil application (Clemente et al. 2007), 
foliar application of micronutrients (Cakmak et al. 2010), 
iron solubilizers like azotobacter and azospirillum (Hussain 

et al. 2018), and iron- and zinc-coated fertilizers (Kutman 
et al. 2010). Understanding the mechanism underlying these 
accessory uptakes and identifying the genes having roles in 
the processes could also extrude a more significant drift in 
enhancing the absorption of micronutrients into the plants 
from the soil.

Conventional plant breeding approaches 
for enhancing micronutrient contents

Conventional breeding for biofortification has been success-
ful in delivering improved lines to the farmers. However, 
the success was limited to the crops with excellent genetic 
diversity, whereas transgene-based approaches were used in 
the species that had limited genetic diversity, reduced her-
itability, and linkage drag. Crossing the parent lines with 
high micronutrient content with the recipient lines with bet-
ter agronomic traits for several generations develops elite 
lines with both enhanced micronutrient content and desired 
agronomic traits. This has been demonstrated in several 
varieties, including IR6844 (IR 8 × Taichung Native 1) and 
IR68144-3B-2–2-3 (IR72 X Zawa Bonday), which retained 
80% of the Fe content in the polished seeds (Gregorio et al. 
2000; Virmani and Ilyas-Ahmed 2008; Has et al. 2005). The 
Consultative Group for International Agricultural Research 
(CGIAR), in collaboration with CIAT (International Center 
for Tropical Agriculture) and IFPRI (International Food Pol-
icy Research Institute), established the HarvestPlus initia-
tive, which focuses on breeding for biofortified crop species. 
The initiative was successful in enhancing Fe, Zn, and vita-
min-A in several cultivated species, including rice, wheat, 
and maize (Bouis and Welch 2010). In addition to deploying 
breeding to improve the nutritional levels, the approach has 
also been instrumental in reducing the antinutritional content 
in grains. For example, marker-assisted backcross breeding 
developed low phytic acid grains in rice, maize, and wheat, 
ensuring better bioavailability in the human body after con-
sumption (Virmani and Ilyas-Ahmed 2008; Velu et al. 2014; 
Jeng et al. 2012). In India, the Indian Council of Agricultural 
Research (ICAR) and International Crops Research Institute 
for the Semi-Arid Tropics (ICRISAT) had released several 
biofortified varieties for cultivation by farmers.

Dissecting micronutrient traits using genetics 
and genomics approaches

The agronomic and conventional breeding approaches oper-
ate without the knowledge of the genes, alleles, and QTLs 
underlying the desired traits, whereas genetics and genomics 
had proved successful in identifying the precise molecular 
determinants, thereby enabling the researchers to manipulate 
them for trait improvement. In this direction, a considerable 
amount of work has been done in the previous decades to 
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identify the genetic determinants underlying grain micro-
nutrient contents (Table 2). Providing direct access to the 
genes, alleles, and QTLs regulating these traits overcome the 
limitations in agronomic biofortification and conventional 
breeding.

Rice

Rice being a major staple cereal necessitates the enhance-
ment of its grain micronutrient content. Lu et al. (2008) ini-
tially identified micronutrient QTLs in 241 RILs obtained 
from a cross between Minghui 63 and Zhenshan 97. The 
QTLMapper1.0 detected 10 QTLs for micronutrients, of 
which two major QTLs for Fe (qFE-1, qFE-9) and three 
major QTLs for Ca [qCA-5 (chromosome 5), qCA-9 (chro-
mosome 9), and qCA-4 (chromosome 4)], one minor QTL 
for Mn (qMN-1, on chromosome 1) and Cu (qCU-2 on chro-
mosome 1), three minor QTLs for Zn (qZN-5, qZN-7, and 
qZN-11) were detected. The QTLs, qFE-1, qFE-9, qZn-5, 
qZn-11, and qMN-1 with digenic interactions for micronu-
trients were also located. This presented the involvement of 
more genes in enhancing the micronutrient status. Similarly, 
five QTLs in RILs between Madhurkar and Swarna for Fe 
and Zn concentrations on chromosomes 1, 3, 5, 7, and 12 
were detected by Anuradha et al. (2012). Interestingly, the 
study showed a co-localization of Fe and Zn QTLs on chro-
mosome 7 which underlined their interrelationship. Further, 
putative genes for Fe (metal tolerance protein, OsMTP1; 
and OsYSL1), zinc (OsNAS1-2; acireductone dioxygenase, 
OsARD2; and OsIRT1), as well as both Zn and Fe (adenine 
phosphoribosyltransferase, OsAPRT; and OsNAS3), were 
identified from this study, and this could be implied in bio-
fortifying rice for micronutrients. Parallel co-localization in 
double haploids (DH) was seen in QTLs of Mg/Mn, Mg/P, 
and Mn/Zn present on the 8th and 9th chromosomes. This 
describes the desirable selection for combined improvements 
for micronutrients in cereals. Double haploids were also uti-
lized by Swamy et al. (2018a, b) to identify 59 QTLs and six 
gene families such as endogenous ferritin (OsFER), OsNAS, 
natural resistance-associated macrophage protein (OsN-
RAMP), OsYSL, and zinc-induced facilitator-like (OsZIFL) 
for Zn content in rice.

Later, Calayugan et al. (2020) assessed rice DH derived 
from IR05F102 X IR69428 for three different seasons by 
best linear unbiased estimates (BLUEs) from SNPs. These 
data were further used for inclusive composite interval map-
ping to identify 23 QTLs distributed on all the chromosomes 
except 4, 8, and 11. The dissected QTLs for micronutrients 
were also found to be associated with eight agronomically 
significant traits. Among all, two QTLs for Fe (qFe9.1 and 
qFe12.1) on chromosomes 9 and 12, and 4 QTLs for Zn 
(qZn1.1, qZn5.1, qZn9.1, and qZn12.1) on chromosomes 1, 
5, 9, and 12, respectively, were notable. Interestingly, the 

SNP interval 9,809,545–9,819,278 showed co-localization 
of qFe9.1 and qZn9.1 on chromosome 9. This corresponds 
to the previous studies in understanding the genic linkages 
and confirms their interrelationship. Further, candidate 
genes within the QTLs like, LysM receptor-like kinase 10 
(OsLysM-RLK10) and Receptor-like Cytoplasmic Kinase 
276 (OsRLCK276) (within qFe9.1), SWEET13 (sugars 
will eventually be exported transporter), and OsSWEET13 
(within qFe12.1), ARGOS-like (OsARL1e), OsGATA8, Sar1b 
and OsGATA14 (within qZn1.1), and Os09g0511500 (within 
qZn9.1) were identified. Among these genes, the position of 
rice Zrt and Irt-like protein 6 (OsZIP6) was toward the right 
of the QTL qZn5.1, which was an Fe transporter, also strati-
fies the association between iron and zinc uptake in crops 
(Calayugan et al. 2020).

Although several QTLs have been identified, they differ 
with respect to the confidence level and ambiguous localiza-
tion in the chromosomes (Fig. 2). Hence, meta-QTL analysis 
was more preferable to project the consensus QTLs with 
their exact location. This robust genome-based technique 
pools and analyzes data that have already been reported to 
show concordance level of the traits/QTLs. Several research 
groups have performed meta-QTL analysis, and one such 
study by Dixit et al. (2019) identified meta-QTLs for Fe and 
Zn, on chromosomes 3 and 2. The in silico analysis of these 
QTLs also found few candidate genes, namely OsFDR3, 
Auxin-responsive Aux/IAA gene (IAA5), Proton-dependent 
Oligopeptide Transporter (OsPOT), and OsZIP4. Another 
meta-QTL analysis linked to Fe and Zn also detected 48 
QTLs on chromosome 12 and identified 663 candidate 
genes, which could be widely used for marker-assisted 
breeding and biofortification in rice (Raza et al. 2019). 
These genes and QTLs identified through the meta-QTL 
analysis could be further employed for downstream studies 
to characterize and deploy them in trait improvement.

Maize

In maize, Brunson and Quackenbush (1962) showed the 
variability in the germplasm to facilitate the breeding for 
provitamin A. Studies on the structural differences between 
α- and β- carotene revealed the role of lycopene epsilon 
cyclase (lcyE) locus (Harjes et al. 2008), and also, meth-
odologies to improve carotenoid contents by incorporating 
beta-carotene hydroxylase 1 (crtRB1) and lcyE in maize 
were suggested (Yan et al. 2010). Later, in CIMMYT, 
GWAS for carotenoid content with 380 inbred maize lines 
identified 476,000 SNPs and their validation identified 
genes like crtRB1 and nonheme di-iron β-ring hydroxylase 
(HYD5 and HYD1), which had a crucial role in improv-
ing Vitamin A in maize. Moreover, genes like carot-
enoid cleavage dioxygenases (CCD1), Geranylgeranyl 
pyrophosphate synthase 2 (GGPS2), 1-deoxy-d-xylulose 
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Table 2   Genetic determinants identified in graminaceous crops having roles in micronutrient traits

Crops/Cultivars Micronutrient traits Genetic determinants Reference

Rice
Zhenshan 97 X Minghui 63 (RILs) Ca, Cu, Fe, Mn, Zn qC-4, qCA-5, qCA-9, qCU-2, qFE-

1, qFE-9, qMN-1, qZN-5, qZN-7, 
qZN-11

Lu et al. 2008

Madhurkar X Swarna (RILs) Fe, Zn Fe: OsMTP1, OsYSL1; Zn: 
OsNAS1-2, OsARD2, OsIRT1; 
Fe & Zn: APRT, OsNAS3, Heavy 
metal ion transport and OsN-
RAMP1

Anuradha et al. 2012

Chunjiang 06 X TN1 (DHs) Ca, Fe, Mn, Zn, P,K, Mg 32 QTLs (24 novel QTLs) Du et al. 2013
PSBRc82 x IR69428; PSBRc82 x 

Joryeongbyeo (DHs)
As, B, Ca, Co, Cu, Fe,K, Mg, Mn, 

Mo, Na, P, Zn
59 QTLs; Zn: OsFER, OsNAS, 

OsNRAMP, OsYSL and OsZIFL
Swamy et al. 2018a

O. sativa cv Swarna and O.nivara 
(2 accessions) (BC2F3)

Fe, Zn qZn12.1, qFe8.2, qFe3.1 and 
qFe2.1; 16 metal homeostasis 
gene

Swamy et al. 2018b

IR05F102 x IR69428 Fe, Zn qFe9.1, qFe12.1, qZn1.1, qZn5.1, 
qZn9.1 and qZn12.1; OsLysM-
RLK10 and OsRLCK276, OsS-
WEET13, OsARL1e, OsGATA8, 
Sar1b, OsZIP6,Os09g0511500

Calayugan et al. 2020

Meta-QTL analysis Fe, Zn OsFDR3, AsIAA5, OsPOT and 
OsZIP4

Dixit et al. 2019

Meta-QTL analysis Fe, Zn 48 mQTLs and 663 candidate genes Raza et al. 2019
Maize
26 tropical population Provitamin A CrtB1 and LcyE polymorphism Babu et al. 2013
380 inbred lines Carotenoid crtRB1, HYD5, HYD1, CCD1, 

GGPS2, SXS1 and ZEP1
Suwarno et al. 2015

Maize genome sequence Fe, Zn 48 genes (ZIP, NRAMP, YS, CE, 
ferritin family)

Sharma and Chauhan 2008

B73 X Mo17 (RILs) Fe 3 QTLs Lung et al. 2011
Mu6 x SDM; Mo17 X SDM (F2:3 

Population)
Fe, Zn 31 QTLs Qin et al. 2012

178 X P53 (F2:3 Population) Fe, Zn 10 mQTLs and 5 QTLs Jin et al. 2013
CIMMYT and partner germplasm Fe, Zn Fe: 26 SNPs Zn: 20 SNPs Hindu et al. 2018
Barley
Clipper X Sahara 3771 (DHs) Zn SZnR1 marker (MFLP); Xbcd175, 

Xpsr108, XksuF15 (RFLP) and 
vrs1 (morphological marker)

Sadeghzadeh et al. 2010, 2015)

Clipper X Sahara 3771 (DHs) Zn 5 QTLs Lonergan et al. 2009
298 landraces Zn Zn-qtl-6H_SCRI_RS_10655 Mamo et al. 2014
Hordeum vulgare ssp. vulgare cv. 

Scarlett and Hordeum vulgare 
ssp. Spontaneum (ILs)

Fe, Zn 41 QTLs and Zinc transporter 
gene 8

Reuscher et al. 2016

336 spring barley cultivars Ba, Cu, Fe, K, Mg, Mn, Na, S, Si, 
Zn, Ca

45 QTLs (Zn: Zn-1H-21.97, 
Zn-2H-87.34, and E-5H-44.99)

Gyawali et al. 2017

180 lines (ICARDA) Cu, Fe, Mn, Zn 43 MTAs, MTP5 Detterbeck et al. 2019
Sorghum
KS115 X Macia (RILs) Carotenoid 5 QTLs for β-carotene Fernandez et al. 2008
407 lines (SAP) Element content Zn:Sobic.007G064900, 

Mn:Sobic.003G349200, 
Fe:Sobic.001G213400, Mg: 
Sobic.001G443900

Shakoor et al. 2016

296 B X PVK 801 (RILs) Fe, Zn – Phuke et al. 2017
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5-phosphate synthase (DXS1), and Zeaxanthin epoxidase 
(ZEP1) were found to have a putative role in enhancing 
the total carotenoid content (Suwarno et al. 2015). Earlier, 

Aluru et al. (2008) had demonstrated that overexpress-
ing bacterial phytoene synthase gene, crtB, and crtl with 
super γ-zein promotor increased the carotenoid (especially 

Table 2   (continued)

Crops/Cultivars Micronutrient traits Genetic determinants Reference

403 accessions Carotenoid β-carotene:14 SNPs (CYP97A, 
PDS, GGPPS) Zeaxanthin: 38 
SNPs (MDS, ZDS, DXR, ZEP)

Cruet-Burgo et al. 2020

Small millets
Little millet Fe FRO2 Chandel et al. 2017
Finger millet (113 genotypes) Ca 9 Anchored SSR markers Kumar et al. 2015b

Fig. 2   Physical map of rice showing the locations of QTLs identified 
for micronutrient traits by different studies. The vertical bars repre-
sent chromosomes and the QTL for each micronutrient is mapped in 

colored blocks. Also, the reference to the respective study has been 
provided to the right of each box
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β-carotenoid) accumulation by 34-fold, for four consecu-
tive generations, and could help develop genetic stocks. 
Recently, Natesan et  al. (2020) have also developed 
introgression lines with 7.3-fold higher β-carotene using 
crtRB1 3’TE as a genic marker from HP467-15, UMI 
1200, and UMI 1230. Interestingly, Gautam et al. (2010) 
had also explained that β-carotene has a significant role in 
increasing the bio-accessibility of other minerals. Thus, 
improving β-carotene could consequently enrich maize 
with other essential minerals.

QTLs for different micronutrients in maize revealed 
markers for Zn and Fe. Forty-eight genes associated with 
Fe and Zn in maize were classified into families, namely 
ferritin (1), cation efflux (1), ZIP (13), natural resistance-
associated macrophage protein (NRAMP, 16 genes), and 
yellow stripe (17) gene family. This also identified 34 
SSRs from 28 putative genes for Fe/Zn transporters, which 
was amplified in 124 inbred lines. Several SNPs were 
seated in the exons of candidate genes like ZmZIP11 and 
ZmZIP7. One SNP in ZmZIP11 exhibited polymorphism 
among the inbreds that could be used as a genic marker 
in molecular breeding programs (Sharma and Chauhan 
2008). Later, Lungaho et al. (2011) had identified 3 small 
QTLs for grain Fe content using linear unbiased predic-
tors (BLUPs) among RILs of B73 and Mo17. Molecular 
breeding using these small QTLs would prove to be a bur-
densome task. Later, Qin et al. (2012) had published data 
of a linkage map for Fe and Zn in Mo17, Mu6, and SDM 
inbred lines that progressed the QTL studies in maize for 
micronutrients. Here, the QTL identification and analysis 
were performed using inclusive composite interval map-
ping and identified 31 QTLs for Zn and Fe. Also, Jin et al. 
(2013) had performed both QTL analysis (178 × P53) and 
meta-analysis for QTLs (previous QTL research) associ-
ated with Fe and Zn and identified ten mQTLs and 5 QTLs 
using BioMercator2.1. Out of these ten mQTLs, eight were 
associated with both Fe and Zn, which could be used to 
explain their correlation in simultaneous improvements.

In addition to QTLs, GWAS was performed by Hindu 
et al. (2017) to identify the genomic regions associated 
with Fe and Zn in 923 inbred lines. This revealed 347,765 
SNPs across varying environmental conditions. Out of all 
the SNPs, 46 SNPs were called for Fe and Zinc, of which 
26 were for Fe and 20 for Zn. These associated SNPs could 
be used to assist the molecular approaches in identifying 
target donors from germplasm. Alternatively, transgenic 
approaches to enhance the Fe and Zn uptake by overex-
pressing the phytase gene (Drakakaki et al. 2005), and 
RNAi of ZmZIP5 for the uptake of zinc (Li et al. 2019) 
are other alternative methods to reduce the antinutritional 
factors like phytic acid in maize for enhancing the micro-
nutrient bioavailability.

Barley

Genetic determinants for micronutrients and vitamin A in 
barley were also identified using different QTL, GWAS, and 
GBS approaches. Biparental mapping (Clipper and Sahara 
3771) was used extensively to identify QTLs for Zn in bar-
ley by Sadeghzadeh et al. (2010, 2015) wherein they had 
identified QTLs for Zn on chromosome 2HS. Subsequently 
in 2015, they detected extra QTLs on the chromosomes 
2HL, 3H, and 4H. Like rice and maize, the double haploid 
population in barley (Clipper and Sahara 3771) was used by 
Lonergan et al. (2009) to execute the association study using 
Map Manager QTX and QGene 4.0. They located 5 QTLs 
for grain Zn content on three chromosomes, namely 1H, 
2H, and 5H (Lonergan et al. 2009). Following this, Mamo 
et al. (2014) experimented with a marker-linked associa-
tion in 298 landraces of barley and identified a single QTL, 
Zn-qtl-6H_SCRI_RS_10655, on 6H chromosome. Later, 
critical QTLs such as IL157 on 1H and IL146 on 4H were 
dissected from introgression libraries designed for Fe and 
Zn (Reuscher et al. 2016).

Broader studies with 45 QTLs for 13 micronutrients [Ba 
(2), Ca (2), Cu (4), Fe (11), K (2), Mg (3), Mn (6), Na (4), S 
(3), Si (5), and Zn (3)] by GWAS (TASSEL) projected three 
significant QTLs for Zn viz, Zn-1H-21.97, Zn-2H-87.34, and 
E-5H-44.99 (Gyawali et al. 2017). Besides, population struc-
ture analysis across three regions with DArT™ markers and 
BLUEs presented 43 MTAs for micronutrients, viz. 15 for 
Cu, 6 for Fe, 9 for Mn, and 13 for Zn. The MTAs associated 
with Zn were present on the chromosome 2H (2H|bPb9754) 
near the 2 YSL (yellow stripe-like) genes (AtYSL2 and YSL9). 
MTAs associated with Cu had the highest association with 
the marker 2H|bPb4040. The pleiotropic effects among these 
micronutrient QTLs were between Zn, Cu, and Mn, which 
was linked to the marker bPb4909 (1H), Zn and Cu were 
linked to markers bPb9754 and bPb4040 (2H), and Zn and 
Fe were linked to bPb8836 (6H). This pleiotropism has to 
be further phenotypically evaluated to describe the morpho-
logical effects in enhancing the Fe and Zn content in barley. 
Finally, the validation of these QTLs established MTP5 as 
one of the candidate genes for Zn accumulation in barley 
(Detterbeck et al. 2019).

Sorghum

One of the significant problems in sorghum is the low bioavail-
ability of micronutrients and vitamin A. The genetic variation 
in the level of carotenoids in sorghum grains was used for 
QTL and GWAS mapping. Fernandez et al. (2008) initially 
developed a RIL population with 85 SSRs to associate QTLs 
for carotenoids relating to their endosperm color. Nine putative 
genes for endosperm color, with Phytoene synthase 3 (Psy3) 
as a major contributor, were detected with a co-localization 
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of a carotenoid Ccd1a gene. CIM among the QTLs revealed 
significant co-localization of QTLs for endosperm color 
with carotenoids. Phytoene desaturase (Pds) and Psy3 genes 
showed association with β- carotene and zeaxanthin, while 
six genes, Crtrb1 (5%), Ccd1a, Vp14, Lcye, Psy1, and Psy 3 
(1%), showed significant association with lutein content. The 
elemental genotypic and phenotypic variation studied with the 
GBS data across three locations with Sorghum Association 
Panel was available from Morris et al. (2013), and these data 
exhibited a moderate heritability for Cu (45%), which was 
higher than the heritability of Ca, Co, S, P, Se, Mo, Mn, Fe, Zn, 
and K (< 30%). GWAS in these accessions identified several 
potential candidates, namely Sobic.007G064900 (for Zn con-
tent) was homologous to AtZIP5, Sobic.003G349200 (for Mn 
content) was homologous to AtMTP11, Sobic.001G213400 
locus (for Fe content), and Sobic.001G443900 locus (for Mg 
content) which has been annotated as Peptide transporter 
(PTR2). Ionomics approaches in these genes were later sug-
gested for dissecting the genomics of these genes (Shakoor 
et al. 2016). Later, Phuke et al. (2017), with 336 RILs, pro-
jected the negative association of Fe and Zn with yield, and 
their positive association with 100 seed weight suggested a 
selection pressure for bolder seeds in biofortification of sor-
ghum. They also observed a higher environmental influence 
for Fe than Zn.

Another GWAS for carotenoids in sorghum revealed 14 
SNPs for β-carotene from which only three were located in 
the proximity of major genes, viz. cytochrome P450 97A 
(CYP97A) (chromosome 2), PDS (chromosome 6), and gera-
nylgeranyl diphosphate synthase (GGPPS; chromosome 2). 
For zeaxanthin, overall, 38 SNPs were identified with 12 
association regions, out of which 4 showed presence near 
the priori gene candidates, and they were MDS (chromo-
some 4), ZDS (chromosome 2), DXR (chromosome 3), 
and ZEP (chromosome 6). For lutein, no significant SNPs 
were detected. This study indicated a profound association 
between the SNPs and the Zeaxanthin content as zeaxan-
thin epoxidase (ZEP) and 2-C-methyl-D-erythritol-2,4-cy-
clodiphosphate synthase (MDS) genes were associated with 
zeaxanthin. They proposed that ZEP could have a pertinent 
role in controlling carotenoid content in sorghum and could 
be further utilized in increasing the provitamin A content 
in sorghum. Development of RILs and ILs is in progress 
to validate the markers (Cruet-Burgo et al. 2020). Prob-
ably, marker assisted selection using the identified markers 
could aid in fast forwarding the bio-fortification process in 
sorghum.

Genetics and genomics of micronutrient traits 
in small millets

Minor millets are hidden reserves for several traits, and they 
are highly nutritious than mainstream cereals. They possess 

the desirable glycemic index and are gluten-free in nature. 
Each millet has its distinctive features, which are yet to be 
explored (Muthamilarasan and Prasad, 2021). Among them, 
little millet exhibit abundance in micronutrients with a con-
siderably higher iron content. Studies portrayed ferric che-
late reductase (FRO2) in metal uptake of plants, which was 
characterized in little millet using next-generation sequenc-
ing with the rice ortholog, OsFRO2. The amplified FRO2 
(2.7 kb) gene from little millet (RLM-37 genotype) showed 
a significant similarity with the sequence of OsFRO2. The 
protein sequence of FRO2 incorporated the domains like 
NOX_Duox_Like_FAD_NADP and ferric reductase and 
showed fascinatingly higher similarity in 3D structure of 
both little millet FRO2 and OsFRO2. This study recom-
mended that desirable alleles and micronutrient associated 
gene orthologues in millets could be identified using the 
already reported genes in staple crops (Chandel et al. 2017). 
Previously, Kumar et al. (2015) had evaluated 113 genotypes 
of finger millet which is known for its Ca content which 
is of about 450 mg per 100 g. Molecular screening of this 
germplasm with 23 anchored-SSR primers designed based 
on Ca transporters and sensors revealed polymorphism for 
14 markers, and they contributed to almost 83 alleles. Den-
drogram analysis divided the accessions into 7 clusters, and 
the association studies with TASSEL and STRU​CTU​RE 
identified nine markers linked with the Ca content, which 
could be validated in the near future (Kumar et al. 2015). 
The studies in small millets are still in its budding state, and 
several efforts are ongoing to bring these in the mainstream 
research.

Transcriptomic approaches to understand 
micronutrient traits in major cereals

At present, the NCBI SRA database contains easily acces-
sible RNA-seq data of more than 35,250 samples of rice, 
and also, Gene Expression Omnibus includes a massive 
amount of transcriptome profile data achieved from micro-
arrays (GEO: https://​www.​ncbi.​nlm.​nih.​gov/​geo/). Sev-
eral transcriptomic studies have been reported in rice and 
mostly based on stress. There are fewer reports in micronu-
trient content. In one of the studies by Zheng et al. (2009), 
microarray and transcriptomic analysis were performed to 
understand the antagonistic interaction of Phosphorous (P) 
and Iron (Fe). To decipher the complex nature of the rice 
transcriptome, Lu et al. (2010) used the rice cv. Indica and 
Japonica to develop the whole genome transcriptome pro-
files. Successively, Dong et al. (2018) grew the rice with 
and without minerals, and used root samples to generate 
the entire transcriptome RNA seq data. They explained the 
role of Ser/Arg proteins in the regulation of mineral nutri-
ent homeostasis. Similarly, Sperotto et al. (2012) performed 
the expression profiling of 25 genes associated with metals 

https://www.ncbi.nlm.nih.gov/geo/
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and their homologs, out of which nine (OsNAC5, OsFRO1, 
OsNRAMP1,7 and 8, OsYSL6,8 and 4, and OsNAS1) were 
related to Fe and Zn uptake. Recently, Ren et al. (2019) ana-
lyzed large-scale RNA-seq data and identified 1584 novel 
peptides, which further improvised the annotation of the rice 
genome.

Messias et al. (2014) performed the expression analy-
sis for the carotenoid-related genes among 22 landraces of 
corn (kernel) by RT-qPCR in the hybrid 30F53 at different 
developmental stages and amplified the genes ZmCCD1, 
CYP97C, HYD3, and PSY1. The results showed that the 
PSY1 expression was high at 16 to 22 days after pollina-
tion (DAP). Whereas both CYP97C and HYD3 exhibited a 
peculiar expression pattern wherein an increase in expres-
sion was observed at 10 DAP, it decreased at 13–16 DAP, 
followed by a sharp increase at 19 DAP. Inclusive to all these 
findings, there was a correlation in the expression of HYD3 
with PSY1 and CYP97C. However, ZmCCD1 showed a neg-
ative correlation with the content of carotenoids. Also, it 
explained that the conversion to lutein and zeaxanthin from 
β-carotene could be determined by the expression analy-
sis of CYP97C and PSY1 (Messias et al. 2014). Elucidation 
of elemental accumulation and variation in grains can be 
made easier with transcriptomic studies. For instance, in 
barley (cv Golden promise), Tauris et al. (2009) isolated 
the cells embryo, aleurone, endosperm, and the transfer cell 
tissues using Laser-assisted microdissection followed by an 
RNA extraction. Affymetrix-based microarray (22 K Bar-
ley GeneChip) was used to achieve tissue gene expression 
profile. This explained the abundance of 25 genes related 
to metal homeostasis, which were further categorized into 
several gene families like HMA (heavy metal ATpase), ZIP 
(Zrt-, Irt-like proteins), NRAMP (natural resistance-associ-
ated macrophage proteins), CAX (cation exchanger), VIT1 
(vacuolar iron transporter), CDF (cation diffusion facilita-
tor), ZIF1 (zinc-induced facilitator1), NAAT (nicotianamine 
aminotransferase) metallothionein, NAS (nicotianamine 
synthase), and YSL (yellow stripe-like). Using this gene 
expression data, a zinc trafficking path in barley grains to 
the maturing seed from the phloem was framed. HvYSL9 
was expressed in all other tissues except for the embryo and 
is expected to have a metal transport role in cells (Tauris 
et al. 2009). Similarly, Detterbeck et al. (2019) studied the 
comparative transcriptome of barley lines with low and high 
Zn content. They reported 26 differentially expressed genes 
(DEGs), among which 19 could not be annotated. Further, 
data search revealed the presence of homeostasis genes, 
which were earlier reported by Tauris et al. (2009), and 
they were PCS (phytochelatin synthase), ZIFL (zinc-induced 
facilitator-like), and PME (pectin methylesterase). Concur-
rently, they also proposed that MTP and YSL transporters 
could have a significant role in Zn content in barley grains 
(Detterbeck et al. 2019).

Transcriptomic studies in small millets 
to understand micronutrient traits

The sequence information for all the species of small mil-
lets is unavailable, and they are yet to be disseminated for 
utilization, except for foxtail millet. Hence, the identified 
transcriptomes in small millets serve as a desirable approach 
in targeting the key genes in millets and cereals. Finger mil-
let is rich in Ca content and has a variable concentration of 
Ca in plant tissues due to its differential gene expression. 
For the first time, Singh et al. (2014) conducted a transcrip-
tome-wide investigation for Ca sensor genes in GPHCPB-
45(GP-45) and GPHCPB-1 (GP-1) genotypes of the finger 
millet showing a considerable difference in their Ca content 
(about 100 mg). The tissues were collected for RNA iso-
lation from four different spike developmental stages like 
spike emergence (S1), pollination (S2), dough (S3), and mat-
uration (S4) and were subjected to transcriptome sequenc-
ing using Illumina HiSeq 2000 platform. De novo assembly 
of the transcriptome data against CDS of calcium sensor 
genes from rice was performed. They identified 82 distinc-
tive calcium sensor genes, which were categorized into eight 
families [calmodulin (CaM) and calmodulin like (CaML), 
calcineurin B-like protein (CBLs), calcium-dependent and 
CaM-independent protein kinases (CDPKs), CaM-depend-
ent protein kinases (CaMK), phosphoenolpyruvate carboxy-
lase kinase-related kinases (PEPRKs), CDPK-related pro-
tein kinases (CRKs), Ca2+-/CaM-dependent protein kinases 
(CCaMK), and CBL-interacting protein kinases (CIPKs)]. 
Out of these, 24 genes in GP-45 (high-Ca content) and 11 
genes in GP-1 (low-Ca content) showed upregulated expres-
sion (Singh et al. 2014), and these genes could be further 
validated and used for Ca biofortification.

Similarly, in another study, the investigators identified 
Ca-related genes using rice data from MPSS and Affym-
etrix gene expression. The identified genes (CAX1, TPC1, 
CaMK2, CaMK2, calmodulin, tubulin, and 14–3-3) were 
amplified and cloned with the vector pGEM-T Easy (Pro-
mega) and sequenced by Applied Biosystems 370. The Ca 
content determination revealed a considerable variation dur-
ing the reproductive and vegetative stages. It was found that 
the flag leaf tissues accumulated more Ca with respect to 
the spike. The accession GPHCPB-45 had higher Ca than 
GPHCPB-1 with a difference of almost 100 mg. Also, the 
expression of the two-pore channel (TPC1) and CAX1 was 
higher in the spike of GPHCPB-45 could be the probable 
reason of higher Ca content. Even CAM showed a higher 
expression pattern similar to Ca2+ ATPases in GPHCPB-45. 
Interestingly, a contrasting Ca accumulation pattern was 
observed in both the genotypes wherein GPHCPB-45 had 
a higher accumulation of Ca in seed, whereas GPHCPB-1 
showed a higher accumulation of Ca in flag leaf. Hence, this 
differential expression could be validated to understand the 
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uptake of Ca. The study also proposed that the CAX1 gene 
could be a putative gene in enhancing the seed calcium con-
tent. Moreover, a construct containing both CAX and CaM 
gene would help in the biofortification of grains and cereals 
(Mirza et al. 2014). Recently, Kokane et al. (2018) inves-
tigated the role of the protein CIPK with respect to CAXs 
and Ca2+ translocation during grain filling in cv. GP-1 and 
GP-45. Their differential gene expression revealed that CaM 
was highly expressed in the GP-45 seeds, suggesting that 
it might have a potential role in Ca2+ movement and inter-
acts with Ca2+ ATPase. Moreover, CAX1 showed higher 
abundance in vegetative tissues and in developing spikes, 
whereas CAX3 was highly expressed in spikes. Hence, they 
suggested that Ca2+ translocation and accumulation might 
be controlled by tripartite interactions (Kokane et al. 2018). 
Despite these studies, the transcriptomes of several other 
millets are yet to be studied to understand the differentially 
expressed genes during grain filling and maturation stages 
that have role in biosynthesis and accumulation of micronu-
trients in the grains.

Proteomics and metabolomics studies in major 
cereals and small millets

The proteome profiling of cereals for their micronutrients 
began from Gayen et al. (2016), who compared the nutri-
tional content of transgenic rice with Xa21 (bacterial blight 
resistant) against the wild type using 2D gel electrophoresis 
and observed no significant variation in their nutrient pro-
file. Most of the proteomics study in rice is predominantly 
analyzed for its stress response rather than its nutritional 
content. Metabolomics of cooked grains from 10 rice varie-
ties using UPLC-MS for around 3097 metabolites revealed 
a key variation based on race (aus, indica and japonica). 
They also explained that the genes associated with the bio-
synthesis pathway showed variation in SNP. For tocopherol 
and phenolics, the gene γ-TMT was associated with vita-
min E content in rice (Heuberger et al. 2010). Calingacion 
et al. (2012) studied three waxy rice cultivars (TSN1, HNN, 
and KNL) by integrating genome-wide genotyping with 
metabolomics (H-NMR, derivatized GC–MS, ICP-MS, and 
headspace GC–MS). SNP association and metabolic profile 
revealed that the metabolic profile for each rice variety was 
unique and showed relevance to nutritional content as the 
geographical origin of crop plays a significant role in plant 
metabolite profile. Parallelly, Hu et al. (2015) performed 
metabolite profiling of the rice cv. japonica and indica to 
dissect 121 seed metabolites that showed a correlation of 
phenotype with the metabolites which were dependent on 
the geographical location of rice origin.

Being natural and common pigment of grains, carot-
enoids are widely studied in metabolomics studies. CYM-
MIT and HarvestPlus have come together to fortify corn 

with provitamin A using breeding strategies. Worldwide, 
carotenoid characterization has been performed using tar-
geted metabolomics. For instance, Kuhnen et al. (2011) 
assessed the carotenoid content in 26 landraces of maize 
(white, variegated, orange, purple, and yellow) using 
HPLC–UV-VIS to characterize the carotenoids, from 
which they found a significant amount of lutein and zeax-
anthin, with traces of α-, β- carotene, and β-cryptoxanthin. 
Uarrota et al. (2014) characterized the carotene content in 
eight landraces, viz. MPA, Roxo, Roxa, and Palha, which 
had a higher accumulation of carotenoids like α-carotene, 
cis and trans-β-carotene and also β-cryptoxanthin. They 
detected the presence of non-provitamin A like lutein 
and zeaxanthin. Later, Messias et al. (2014) studied the 
carotenoid biosynthesis pathway and its catabolism across 
22 landraces of maize (yellow, white, and orange). They 
used HPLC–DAD to characterize the carotenoids to dif-
ferentiate α- and β-carotene and α- and β-cryptoxanthin. 
Non-provitamin A like, lutein and zeaxanthin were also 
characterized to be higher in MC3 and MC14. Similarly, 
in another study, varieties of sweetcorn, viz. Jingtian 3 
and 5, and varieties of waxy corn, viz. Jingtianzihuanuo 
2, Jingnuo 8 and Suyunuo 11, were collected and found 
that α-cryptoxanthin (provitamin A), lutein, and zeaxan-
thin were the more significant carotenoids present in corn 
varieties (Song et al. 2015).

Beyond these approaches, thirty-five orange and twenty-
six white maize landrace procured from different areas of 
Malawi revealed lutein to be the most abundant carotenoid 
followed by zeaxanthin, β-carotene, and β-cryptoxanthin in 
the orange landraces. Their analysis suggested that orange 
maize could be a provitamin A natural source (Hwang et al. 
2016). Succeeding them, four maize landraces were evalu-
ated for their carotenoid content and compared to commer-
cial lines. The local landraces (Nano di Verni) contained 
higher amounts of β-carotene and β- cryptoxanthin than 
lutein (Capocchi et al. 2017). There are many reports on 
characterizing carotenoids in maize germplasms to increase 
provitamin A content by breeding or genome editing strate-
gies. Zn could be bound to high molecular weight protein 
in the grains, and this was studied by Dionisio (2018). They 
conducted a proteomics study on Zn binding proteins in the 
grains of barley using three different techniques viz. SDS-
PAGE (protein separation), PVDF (blotting), and DTZ stain. 
Later, they identified the Zn binding proteins like 7S globu-
lins, β and γ hordeins, dehydrins and LEA, and prolamin 
family members, which would help in biofortification pro-
grams. They also suggested that these proteins might have a 
role in binding other cationic elements, which could be vali-
dated with further investigations (Dionisio 2018). Expanding 
the proteomic and metabolomic studies to other underuti-
lized graminaceous crop species will widen the understand-
ing of micronutrient biosynthesis and accumulation in the 
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grains, which could further be exploited using multi-omics 
approaches for enhancing the contents.

Phenomics studies to understand micronutrient 
traits in graminaceous crops

There are various high throughput tools available for phe-
notyping in rice from its leaves (Micol et al. 2009), rice 
panicle (Ikeda et al. 2010), the morphology of roots (Zhu 
et al. 2011), biomass of shoot (Golzarian et al. 2011), grain 
yield (Duan et al. 2015) and photosynthetic integrity (Bau-
riegel et al. 2011). Techniques like visible-light imaging, 
near-infrared imaging, hyperspectral imaging, fluorescence 
imaging, digital X-ray radiography, and X-ray computed 
tomography are the major photonic-based strategies used 
in phenomics (Yang et al. 2013). Unfortunately, there is no 
technique yet that could help in phenotyping the micronutri-
ent traits. Several phenotyping facilities are present to deter-
mine the morphological phenotypes of maize, but these do 
not help understand the micronutrient content. Hence, most 
of the phenomics studies in maize are based on metabolite 
analysis, as discussed earlier. In barley, Long et al. (2017) 
developed RNAi lines of HvIRT1 that showed a 5% decrease 
in the gene expression under Mn supplementation. The 
plants were grown in alkaline soil depriving the plant for 
Mn, and their phenotype was monitored. The RNAi lines 
showed less biomass in the shoot with chlorosis symptoms, 
whereas the wild type grew properly with increased biomass. 
Upon exposure to radiolabeled Mn, the RNAi lines showed 
reduced Mn uptake than the wild type. Interestingly, the 
RNAi lines showed a twofold higher accumulation of Mn in 
the root apoplast, which might be the probable reason that 
Mn could not be loaded to stele, xylem, and pericycle cells. 
Hence, this proposed the role of the IRT1 gene in barley for 
higher Mn accumulation (Long et al. 2017). To study the 
decorticated carotenoid content in sorghum grains, Fernan-
dez et al. (2008) analyzed the grain endosperms by color 
using Konica Minolta colorimeter CR-300, and out of the 
three (a, b, and c) output spectrums, b was selected, which 
infers the role of the intensity of the yellow endosperm color. 
These studies necessitate the importance of phenomics for 
studying the molecular determinants of grain micronutrients.

Integrated omics approaches and strategies 
for genetic improvement in micronutrient traits

Genetic engineering has been an indispensable tool for 
manipulating the genome to increase the nutrient content 
(Table 3). Agrobacterium-mediated transformation was used 
to transfer the ferritin gene from soybean to rice to enhance 
Fe content (Goto et al. 1999; Sivaprakash et al. 2006). Later, 
Ye et al. (2000) incorporated the biosynthetic pathway for 
β- carotene in rice endosperm to enhance the provitamin 

A. Similarly, Lee et al. (2009) used nicotianamine synthase 
gene activation to biofortify rice with Fe. Interestingly, 
Singh et al. (2017) developed transgenic rice lines with 
enhanced Fe, Zn, and β-carotene content by incorporating 
three genes in one locus, namely nicotianamine synthase 
1 (AtNAS1) from Arabidopsis, bacterial carotene desatu-
rase (CRTI), ferritin (PvFerritin from bean), and phytoene 
synthase (ZmPSY) from maize (Singh et al. 2017). Earlier, 
Colmsee et al. (2012) had developed the OPTIMAS—Data 
Warehouse (DW) for maize, and it compiles data generated 
from all the omics techniques, including experimental and 
analytical data from various research. The import tool of 
the OPTIMAS-DW was based on Javascript that aided in 
uploading the data from the experiments performed. For 
easy accessibility of the data, the tool supports various 
file formats that can further analyze and visualize datasets 
(Colmsee et al. 2012). In order to study the reproducibility 
of different profiling techniques, Zeng et al. (2014) selected 
three tissues to perform metabolomics and microarray stud-
ies from 11 traditional varieties of maize. They compared 
the data from both the studies and suggested that microarray 
data could be hindered by the variant genomic sequences 
with unknown functions (Zeng et al. 2014).

Several transgenic maize varieties have been produced 
for disease resistance, but only a few are made to enhance 
micronutrient trait. One such study was performed by over-
expression of bacterial phytoene synthase gene, crtB, and 
crtl in maize using super γ-zein promotor that increased 
the carotenoid (especially β-carotenoid) accumulation by 
about 34-fold, and the trait was reproduced for four genera-
tions. They have used a biolistic approach for transform-
ing maize zygotic embryos with two plasmid constructs, 
viz. pBAR184 + pRBS + pRIS and pBAR184 + pRB + pRI, 
wherein pRB contained crtB gene and pRI contained crtI 
gene. The transgenic lines showed varying carotenoid con-
tent in each generation and individual kernels from a par-
ticular year. This could be the result of epigenetic factors 
or germplasm that were selected for transformation. They 
also concluded that the enhanced β-carotene content shows a 
higher correlation with the increased abundance of lycopene 
β-cyclase gene (Aluru et al. 2008).

Tiong et al. (2014) developed transgenic barley lines 
overexpressing HvZIP7 gene and observed that it was highly 
induced in leaves and roots with higher accumulation of Zn 
during deficiency of Zn with no alteration in the Fe, Mn, 
Cu, and Cd content. However, the study does not explain the 
accumulation of Zn in the grain (Tiong et al. 2014). Earlier, 
Podar et al. (2012) have observed that the HvMTP1 helps in 
transporting Zn to the vacuole when expressed in yeast and 
proposed a hypothesis where they have mentioned that over-
expressing HvMTP1 with D-hordein (endosperm specific 
promotor) could enhance the endosperm Zn content. Later, 
they expressed this HvMTP1 gene along with D-hordein 
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in the Golden Promise cultivar of barley and studied the 
gene expression. RT-qPCR aided in the selection of lines 
with transformed homozygous plants (2-homozygous out 
of 3). To research and compare the gene abundance, they 
used Golden rice as control, GFP (with CaMV35S pro-
moter) expressing homozygous line and the two homozy-
gous transformed lines. The RT-qPCR revealed that both the 
transformed lines had a higher expression level of HvMTP1 
transcript than the GFP-expressing line and control, post 21 
DAP. The transformed plants were cultivated until maturity 

in Zinc devoid soil. The grains were harvested at maturity, 
and the Zn content was measured using ICP-OES for all 
three transformed lines. Higher accumulation of Zn was 
observed in the grains of transformed homozygous plants 
than the transformed heterozygous, control, and GFP expres-
sion plant. The homozygous transformed lines also showed 
a higher accumulation of Cu, Fe, and Mn. They again per-
formed the same experiment by adding Zn in soil. Interest-
ingly, all the plants showed an average increment of 103% 
Zn accumulation compared to the plants grown in Zn devoid 

Table 3   Transgenic crops developed with enhanced micronutrient traits using Agrobacterium-mediated or biolistic approach

Crop Micronutrient Target gene Promoter Transformation 
method

Micronutri-
ent content in 
control plants

Micronutrient con-
tent in transgenic 
lines

Reference

Rice Fe SoyferH1 GluB-1 Agrobacterium 
mediated

14.3 μg/g seed 35.9–38 μg/g seed Goto et al. 1999

Fe PyFerritin, fgMT Gt-1 Agrobacterium 
mediated

9.99–10.65 μg/g 
seed

11.53–22.07 μg/g 
seed

Lucca et al. 2002

Fe SoyferH-1 GluB-1, Glb-1 Agrobacterium 
mediated

11.2 ± 1.8 μg/g 
seed

15.1–15.7 μg/g 
seed

Qu et al. 2005

Fe OsYSL2 OsSUT1 Agrobacterium 
mediated

- 4.4 fold higher in 
polished rice

Ishimaru et al. 
2010

Fe OsNAS1, 
OsNAS2, 
OsNAS3

CaMV- 35S 
promoter

Agrobacterium 
mediated

23.3 µg/g seed 38.8 µg/g seed, 
42.8 µg/g seed, 
35.6 µg/g seed

Johnson et al. 
2011

Cu, Fe, Zn OsNAS3 maize ubiquitin 
promoter

Agrobacterium 
mediated

1.2(Cu), 10 (Fe), 
20 (Zn) µg/g 
seed

2 (Cu), 34 (Fe),42 
(Zn) µg/g seed

Lee et al. 2009

Fe Pvferritin, 
Afphytase, 
AtNAS, pmi

GluB-1, 35S 
promoter

Agrobacterium 
mediated

- sixfold increase in 
Fe content

Wirth et al. 2009

Fe, Zn Osfer2 OsGluA2 Biolistic method 7 (Fe), 20 (Zn) 
µg/g seed

11–15.9 (Fe), 
27–30.75 (Zn) 
µg/g seed

Paul et al. 2012

β-carotene psy (daffodil), 
crtI (bacteria)

Gt-1 and CaMV- 
35S

Agrobacterium 
mediated

– – Ye et al. 2000

β-carotene psy and β-lcy 
(Daffodil), crtI 
(Erwinia)

GluB-1, CaMV- 
35S promoter

Agrobacterium 
mediated

– 1.6 μg/g dry rice 
endosperm

Beyer et al. 2002

β-carotene Zmpsy crtI 
(Erwinia)

Glu01, Ubi-1 Agrobacterium 
mediated

1.6 μg/g dry rice 
endosperm

37 μg/g dry rice 
endosperm

Paine et al. 2005

Fe, Zn, 
β-carotene

AtNAS1, 
PaCRTI, 
ZmPSY, PvFer-
ritin

CaMV- 35S, 
OsGLU-
TELIN1, 
OsGLOBULIN

Agrobacterium 
mediated

5.9 (Fe), 32 (Zn) 
μg/g of seed, 
No β-carotene

6.1–9.1(Fe), 
36.7–38.7 (Zn), 
1.57–2.69 
(β-carotene) μg/g 
seed

Singh et al. 2017

Maize β-carotene crtB and crtl 
(bacterial)

γ-zein Biolistic method – 34 fold increase in 
endosperm

Aluru et al. 2008

Barley Zn HvZIP7 Double 
CaMV35S

Agrobacterium 
mediated

70 mg/ kg of 
seed

110–120 mg/kg 
seed

Tiong et al. 2014

Sorghum β-Carotene ZmPST-1 
and CRT-1 
(Erwinia 
uredovora), 
LPA-1, AtDXS, 
HvHGGT​

α-Kafirin, 
β-kafirin, 
γ-zein

Agrobacterium 
mediated

0.9 − 1.5 μg/g 
β-Carotene

3 − 14 μg/g seed Lipkie et al. 2013
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soil. Surprisingly, there was no fluctuation in the Fe content 
in both conditions. They also confirmed that the HvMTP1 
is expressed in the grain endosperm using three different 
techniques of DTZ (Zn-specific stain), ICP-OES, and fluo-
rescence analysis with Synchrotron X-ray (Menguer et al. 
2017). In barley, loading of Mn in the grain could be very 
fast during early developmental stages of grain due to the 
increased expression of HvIRT1. Surprisingly, Long et al. 
(2017) also observed an increase in expression of HvIRT1 
(35-fold) in the root. They developed HvIRT1 RNAi lines of 
barley and observed that the RNAi lines showed diminished 
photosynthesis function due to low Mn content. In rice and 
Arabidopsis thaliana, it has already been reported that IRT1 
functions in the regulation of Fe, but in this study, no such 
role for Fe was observed (Long et al. 2017). Hence, this 
study could help understand the evolution of the IRT1 gene.

Sorghum, although a staple food, lacks essential micro-
nutrients like Fe, Zn, and β-carotene. Lipkie et al. (2013) 
developed transgenic lines to increase the bioavailability 
β-Carotene in sorghum. Transgenic sorghum lines were 
generated using the Agrobacterium-mediated transforma-
tion strategy in the immature embryo of sorghum TX430. 
The transgenic were developed using three construct, viz. 
(i) ABS168 contained golden rice genes (Paine et al. 2005), 
but the sorghum promoters of α-Kafirin with ZmPST-1 
and β-kafirin with CRT-1 gene from Erwinia uredovora 
with selectable marker PMI gene, (ii) ABS188 contained 
all genes from the previous vector along with LPA-1 gene 
(Low phytic acid) (Increased Zn and Fe bioavailability) and 
(iii) ABS203 contained and extra AtDXS gene (for increased 
isoprenoid) + γ-zein promoter, HvHGGT​ gene + α-Kafirin 
along with the genes in the vector ABS168. The homozy-
gous transgenic plants were achieved with multiple self-
pollination. They have harvested transgenic sorghum grains 
followed by a porridge preparation, which was used for 
carotenoid determination. The carotenoid determination 
using HPLC–DAD plus YMC C30 column showed the pres-
ence of several carotenoids like zeaxanthin, lutein, α- and 
β-cryptoxanthin, all-trans-β-carotene and cis-β-carotene iso-
mers, and provitamin A. One of the transgenic sorghums, 
Homo188-A, showed the highest bioavailability of provita-
min A. On the other hand, no major effect was observed in 
the transgenic lines containing the LPA-1, HGGT, and DXS 
(Lipkie et al. 2013).

Similarly, in another study, three vector constructs were 
made using combinations of genes like Pantoea ananatis 
CRTI, ZmPSY1, HvHGGT​, E. coli PMT AtDXS that were 
cloned in pSBI super-binary vector. The genotype TX430 
was grown in greenhouse, and the immature embryo was 
harvested for Agrobacterium-mediated transformation. The 
selected transgenic lines were selfed to achieve 3:1 trans-
genic to non-transgenic seeds, which was further confirmed 
with qPCR. Finally, to achieve 100% homozygous seeds, 

the plants were self-pollinated. The carotene content of the 
seeds was analyzed using HPLC. The PSY1 protein accumu-
lation was determined using LC–MS/MS, which showed a 
higher accumulation of all-trans β-carotene in the transgenic 
seeds (visibly orange in color). Unfortunately, at room tem-
perature, during seed storage, the β-carotene is degraded due 
to oxidation. Therefore, they also co-expressed the HGGT 
(homogentisate geranylgeranyl transferase) gene, positively 
affecting tocopherol and tocotrienol biosynthesis. Vitamin 
E is a known antioxidant and hence reduced the oxidative 
degradation of β-carotene significantly. Thus, Che et al. 
(2016) successfully developed transgenic sorghum lines with 
increased Vitamin A content. Despite these reports and suc-
cess stories in major cereals, no attempt has been made till 
now in genetic engineering or genome editing of small millet 
species to understand or improve the grain micronutrient 
content.

Roadmap to improve micronutrient content 
and availability in graminaceous species

Micronutrient availability in plants is a crucial content in 
ensuring food security to the people. Owing to these, several 
genes and QTLs associated with micronutrient traits have 
been identified and discussed in the previous sections. These 
findings had a significant impact on increasing the bioavaila-
bility of micronutrients in cereals (Fig. 3). The QTLs, alleles 
and genes could be effectively introgressed for improving 
the micronutrient status of the ruling crop varieties and the 
parents of the elite hybrids. This would satisfy the final util-
ity of the consumers. Commercializing these cultivars at an 
affordable cost to the underprivileged society would further 
reduce the nutritional hindrances existing across the world. 

In addition, there have been several reports where genome 
editing has benefitted grass family members like in maize; 
zinc finger nucleases (ZFNs) were used to insert PAT gene 
cassettes into the endogenous maize ZmIPK1 gene along 
with alterations in inositol phosphate profile for the develop-
ment of maize seeds (Shukla et al. 2009). Similarly, in rice, 
ZFNs were used for identification of safe domains for intro-
duction of genes in rice plants to aid in gene stacking and 
gene integration (Cantos et al. 2014). Modern techniques 
of genome editing like TALENs (Transcription Activator- 
Like Effector Nucleases) and CRISPR are also exploited in 
improving crops like maize, rice, wheat, etc. TALEN-based 
mutagenesis was employed in sabotaging bacterial blight 
susceptibility gene, SWEET14, to develop blight-resistant 
rice (Li et al. 2012). Identical studies have reported that 
powdery mildew resistance in wheat was developed by 
knocking out three homologs of MLO gene (Jung and Alt-
peter 2016). TALENs were also employed for improving 
agronomic traits, as in case of maize, the GLOSSY pheno-
type was enhanced by removing GL2 genes (Kannan et al. 



3161Theoretical and Applied Genetics (2021) 134:3147–3165	

1 3

2017). However, nowadays CRISPR Cas technique is most 
prevalent for approaches like site-directed mutagenesis using 
embryo bombardment in plants like maize and wheat (Svita-
shev et al. 2015; Liang et al. 2017). In fact, the CRISPR 
Cas technique has been optimized in monocots by deploying 
hexaploid wheat (Triticum aestivum) as a template (Liang 
et al. 2017). Several transgenic approaches are in progress 
to attain higher nutritional levels while inculcating advanced 
genome editing techniques to develop superior cultivars in 
a short breeding cycle. The prospectus of biofortification in 
cereals should also be widened in the future by identifying 
desirable genomic regions from small millets as they are 
closely related to the major cereals. In small millets, nutri-
tional content could be improved by exploiting the knowl-
edge of micronutrient associated biochemical pathways and 
their regulation using comparative genomics approaches and 
genome editing. This substantiates and calls for the propor-
tional focus on exploring the nutritionally rich small millets 
in the near future.

Conclusions

The importance of micronutrients in the grains of cereal 
crops has been well recognized, and several focused stud-
ies were performed to identify the genes, alleles, and QTLs 
underlying this complex trait. In addition, breeding and 
biotechnological approaches are already being deployed 
for the genetic improvement in major cereals, as evident 
from the literature; however, a portion of graminaceous 
crops labeled as ’small millets’ remains understudied. 
Though these crops are well known for their superior grain 
quality traits, including elemental composition, they are 
not much explored. The development of genomic resources 
is the first step to proceed with any study to delineate the 

genes or genomic regions that regulate the complex traits. 
To achieve this, next-generation sequencing technology 
should be used to sequencing the genomes and transcrip-
tomes for identifying the genes and pathways and develop 
large-scale genome-wide molecular markers that are useful 
for genotyping purposes. The availability of germplasm 
resources in global repositories should be exploited for 
this purpose for extensive phenotyping of micronutrient 
traits. Advanced approaches like GWAS could be effec-
tively used to pinpoint the marker-trait associations as the 
QTLs underlying micronutrient traits in these crops. Once 
identified, the information could be further used to func-
tionally characterize the genes and corresponding gene 
families in millet species and to establish their role in 
regulating micronutrient content in the grains. These data 
can be further used to genetically enhance the micronutri-
ent traits in millets per se, and also, comparative genomics 
could facilitate the implementation of this information for 
genetic improvement in other graminaceous species.
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