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Abstract
Key message Simulations highlight the potential of genomic selection to substantially increase genetic gain for com-
plex traits in sugarcane. The success rate depends on the trait genetic architecture and the implementation strategy.
Abstract Genomic selection (GS) has the potential to increase the rate of genetic gain in sugarcane beyond the levels 
achieved by conventional phenotypic selection (PS). To assess different implementation strategies, we simulated two differ-
ent GS-based breeding strategies and compared genetic gain and genetic variance over five breeding cycles to standard PS. 
GS scheme 1 followed similar routines like conventional PS but included three rapid recurrent genomic selection (RRGS) 
steps. GS scheme 2 also included three RRGS steps but did not include a progeny assessment stage and therefore differed 
more fundamentally from PS. Under an additive trait model, both simulated GS schemes achieved annual genetic gains of 
2.6–2.7% which were 1.9 times higher compared to standard phenotypic selection (1.4%). For a complex non-additive trait 
model, the expected annual rates of genetic gain were lower for all breeding schemes; however, the rates for the GS schemes 
(1.5–1.6%) were still greater than PS (1.1%). Investigating cost–benefit ratios with regard to numbers of genotyped clones 
showed that substantial benefits could be achieved when only 1500 clones were genotyped per 10-year breeding cycle for the 
additive genetic model. Our results show that under a complex non-additive genetic model, the success rate of GS depends 
on the implementation strategy, the number of genotyped clones and the stage of the breeding program, likely reflecting how 
changes in QTL allele frequencies change additive genetic variance and therefore the efficiency of selection. These results 
are encouraging and motivate further work to facilitate the adoption of GS in sugarcane breeding.

Introduction

Sugarcane is a major industrial crop predominantly grown 
in tropical and subtropical regions, and it accounts for more 
than 70% sugar produced worldwide (Ming et al. 2005). 

Sugarcane is also increasingly used as a bioenergy crop, e.g. 
for ethanol production and its total production has increased 
by threefold over the past 50 years, mainly due to a sig-
nificant expansion in cultivation area. For instance, China 
and Brazil increased their acreage between 1973 and 2013 
by 237% and 500%, respectively (Zhao and Li 2015). This, 
and developments in management practices like fertilisation 
and irrigation techniques, has substantially contributed to 
an increased total cane production worldwide (Morais et al. 
2015). While breeding has considerably contributed to these 
trends, the current rates of improvement appear to have pla-
teaued in many major production regions over the past few 
decades. For traits like resistance against smut, significant 
progress has been made through breeding (Bhuiyan et al. 
2013). However, for more complex traits such as tonnes of 
cane per hectare (TCH), it has been more challenging to 
increase the rate of genetic gain (Wei and Jackson 2016; 
Yadav et al. 2020). From a sugarcane breeding perspective, 
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substantial barriers to increased gains are (i) the very long 
breeding cycle in conventional breeding schemes and (ii) 
potentially a large proportion of non-additive genetic vari-
ance for key commercial traits (Wei and Jackson 2016). 
Genomic selection (GS), a modern breeding tool that has 
contributed to increased genetic gains in numerous crop 
and livestock genetic improvement programs (Gaffney et al. 
2015; Cooper et al. 2014; Hickey et al. 2017; García-Ruiz 
et al. 2016), holds to the potential to accelerate the rate of 
genetic gain in sugarcane (Yadav et al. 2020). GS is particu-
larly promising because it could help to reduce the breeding 
cycle length and contribute to a more accurate prediction of 
clonal performance and breeding values of parents.

There are numerous studies in crops which demon-
strate that quantitative traits can be accurately predicted 
using DNA markers, for example in maize (Riedelsheimer 
et al. 2012; Bernardo and Yu 2007; Zhao et al. 2012), rice 
(Spindel et al. 2015), wheat (Heffner et al. 2011; Poland 
et al. 2012; Rutkoski et al. 2012), sorghum (Hunt et al. 
2018; Fernandes et al. 2018), barley (Zhong et al. 2009; 
Lorenz et al. 2012), rapeseed (Werner et al. 2018) or cas-
sava (Oliveira et al. 2012; Ly et al. 2013). However, for 
sugarcane, there are only a few studies that investigated the 
potential of GS. It is important to note that modern sugar-
cane cultivars are typically interspecific hybrids between 
Saccharum officinarum and Saccharum spontaneum with 
an extreme level of ploidy. Recent next-generation DNA 
sequencing efforts have made significant progress towards 
improving our understanding of how the highly complex 
sugarcane genome has evolved over time (Garsmeur et al. 
2018; Zhang et al. 2018). With regard to implementing GS, 
a main potential challenge that could arise from this high 
genome ploidy is allele dosage, which is known to affect 
phenotypic trait variation in crops, e.g. in maize or tomato 
(Osborn et al. 2003). The few studies in sugarcane that 
have tested the accuracy of genomic prediction of complex 
traits all assumed a biallelic genetic model. For example, 
Gouy et al. (2013) investigated genomic prediction accura-
cies for ten commercially important traits in two sugarcane 
panels from a commercial breeding program (167 clones 
each) that were genotyped with 1499 DArT markers. They 
reported prediction accuracies between 0.11 and 0.62 
within panels and 0.13–0.55 between panels, depending 
on the trait and the prediction method. In a recent study, 
Deomano et al. (2020) reported average genomic predic-
tion accuracies for sugar content and cane yield between 
0.25 and 0.45 in three larger commercial sugarcane panels 
consisting of almost 2,400 clones using cross-validation 
of prediction accuracies. Hayes et al. (2021) investigated 
different genomic prediction approaches in forward valida-
tions, i.e. predicting the performance of new germplasm 
tested in new years and regions, and found similar predic-
tion accuracies for TCH, CCS and fibre content. These 

levels of prediction accuracy seem encouraging for imple-
menting GS, especially given that a simplified diploid 
model was assumed in these studies.

The explicit consideration of allele dosage in genomic 
prediction has been shown to provide a more realistic rep-
resentation of genotypic class effects and therefore improve 
the accuracy of genomic prediction. This was demonstrated 
in several autotetraploid species, including potato (Endel-
man et al. 2018; Slater et al. 2016), Guinea grass (C Lara 
et al. 2019) and blueberry (Bem Oliveira et al. 2019). In 
sugarcane, the polyploidy level and hence the number of 
chromosome copies varies within and across individuals. 
Garcia et al. (2013) have quantitatively assessed the level 
of allele dosage using 1034 genome-wide SNP markers and 
found that the largest portion of SNP showed multi-allelic 
calls with estimated dosages ranging from 6 to 20. Using 
cytogenetic analyses, Piperidis and D’hont (2020) showed 
that the number of copies in modern sugarcane ranges from 
10 to 13. Aitken et al. (2016) developed an Axiom SNP 
array with over 400,000 SNPs from which about 40,000 
were single-dose and covered the whole genome. Single-
dosage means that there is only a single copy of an allele for 
a locus. Studies have demonstrated that single-dose markers 
(i.e. markers heterozygous and present on only one copy 
of the homologous chromosomes) are prevalent throughout 
the genome (Aitken et al. 2005). This shows that the imple-
mentation of allele dosage in GS in sugarcane is much more 
complicated than in other species with precisely defined 
levels of polyploidy.

Today, all sugarcane breeding programs rely on conven-
tional phenotypic selection which involves (i) the creation 
of a large number of seedlings through targeted crossing, (ii) 
the assessment of seedlings in unreplicated progeny assess-
ment trials (PAT), (iii) the testing of the best individuals 
from the best families that were clonally propagated and 
planted in partially replicated single-row 10 m plots in clonal 
assessment trials (CAT) and iv) very intensive final assess-
ment trials (FAT) in which the best clones from the CAT 
trial are tested in 4-row 10 m plots across 4–5 environments 
and 3 crops (years). One breeding cycle of a phenotypic 
selection scheme takes around 9–10 years, which imposes 
significant challenges for generating rapid genetic gains. 
Seedlings that were generated through targeted crossing are 
propagated as clones throughout the whole breeding cycle. 
This means that recombination through crossing, and hence 
reshuffling of alleles, is only carried out once every 10 years 
per individual breeding cycle. Furthermore, key traits such 
as tonnes of cane per hectare (TCH) were reported to show 
very low narrow-sense heritabilities, and therefore selec-
tion of parents based on their predicted breeding value was 
reported to be inefficient for such highly complex traits 
(Wei and Jackson 2016). GS holds the potential to over-
come problems associated with the long generation intervals 
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and inaccurate selection, but the question of how to best 
incorporate the technology in a breeding program needs to 
be addressed.

Therefore, we adopted a simulation-based evaluation 
approach in our study. Because of the notorious complex-
ity of the sugarcane genome, we made simplified assump-
tions of a biallelic genetic model with single-dose markers 
and QTL that affect a quantitative trait (e.g. TCH) in the 
base population. Albeit being likely overly simplistic, this 
was inspired by recent empirical work that showed that of 
400,000 genome-wide SNP identified in a panel of sugarcane 
clones about 40,000 were single-dose (Aitken et al. 2016), 
and that single-dose markers can represent over 75% of poly-
morphic markers in an individual cross (George and Aitken 
2010; Baker et al. 2010). This simplification also facilitated 
the simulation of non-additive genetic effects, in particular 
QTL x QTL epistasis, which is challenging to model in a 
high ploidy context (i.e. interaction effects between multi-
dose QTL). Therefore, we consider our study as a first step 
towards addressing important features and considerations 
for the implementation of GS in sugarcane, while undoubt-
edly further work is required, e.g. to specifically address the 
effect of allele dosage.

Our simulations were designed to compare a conventional 
phenotypic selection scheme with two proposed GS-based 
breeding schemes with regard to genetic gain and changes in 
genetic variance over time. The objectives were to (i) inves-
tigate the effect of GS-based breeding schemes on the rate 
of genetic gain, (ii) investigate the effect of trait architecture 
on the rate of genetic gain and genetic variance over several 
selection cycles through comparisons of an additive with a 
non-additive genetic model and (iii) assess the cost–benefit 
ratio associated for the proposed GS schemes.

Materials and methods

Simulation of the base population and additive QTL 
effects

A base population of 1000 clones was simulated with 100 
chromosomes of 110 cM each that were evenly distrib-
uted across ten subgenomes. Inspired by empirical work 
which identified 40,000 out of 400,000 genome-wide 
SNP as single-dose in a panel of sugarcane (Aitken et al. 
2016), and studies which show that single-dose markers 
can represent over 75% of polymorphic markers in an indi-
vidual cross (George and Aitken 2010; Baker et al. 2010), 
we simulated a total of 10,000 biallelic single-dose SNP 
markers with allele frequencies between 0.3 and 0.6 which 
were evenly distributed across the 100 chromosomes. The 
simplification of assuming single-dose loci, which have 
been shown to be very informative in a high polyploidy 

(Wu et al. 1992; George and Aitken 2010; Baker et al. 
2010) and bivalent pairing of homologous chromosomes 
during meiosis was made to approximate the extreme 
genomic complexity of sugarcane. This was also inspired 
by work that shows that there is evidence of some pref-
erential pairing probably involving chromosomes from 
the same species (Jannoo et al. 2004; Aitken et al. 2005). 
These simplified assumptions are unlikely to reflect the 
full genome complexity of sugarcane, but they facilitated 
the simulation of non-additive gene action which is chal-
lenging under the assumption of multi-dosage and random 
pairing (see below). Further investigations are needed for 
more detailed considerations of topics related to genome 
complexity, in particular allele dosage and random chro-
mosome pairing. A total of 1000 biallelic QTL with inter-
mediate allele frequencies contributing to the simulated 
quantitative trait were randomly assigned to the 100 chro-
mosomes which resulted in 6–16 QTL per chromosome. 
We used the random number generator implemented in R 
(R Core Team 2018) to generate the base population. For 
each of the 10,000 SNP, we randomly sampled a value for 
the alternate allele frequency from a uniform distribution 
ranging from 0.3 to 0.6. Based on that, the total number 
of alternate alleles per SNP were randomly distributed 
over the 1000 simulated clones (e.g. for a sampled allele 
frequency of 0.3, 600 alleles were randomly distributed 
over 2000 potential copies). For each of the 1000 QTL, we 
assumed intermediate allele frequencies based on which 
alternate QTL alleles (i.e. ‘active copies’) were randomly 
distributed over the 1000 clones. To introduce linkage dis-
equilibrium (LD) among SNP and QTL, we used a burn-in 
phase of phenotypic selection which resulted in LD levels 
that were comparable to those observed in a real popula-
tion of elite sugarcane clones (see below).

QTL effects Q for the 1000 QTL were randomly sampled 
from a normal distribution with mean = 0 and variance = 1. 
The QTL effects ranged from  − 2.94 to 2.97. Because the 
accuracy of genomic selection is critically dependent on 
the level of linkage disequilibrium (LD) among markers 
and QTL, we simulated five phenotypic selection cycles as 
a burn-in phase to allow LD to build up (see below). We 
calibrated this genome simulation to the actual observed 
levels of LD observed in 1041 elite sugarcane clones from 
the Sugar Research Australia breeding program that were 
genotyped with the Affymetrix sugarcane SNP array, which 
yielded 23,957 high-quality SNP markers. LD was calcu-
lated as  r2 among all possible pairs of the 23,957 SNP that 
were segregating in that sample population. LD was also 
calculated among all possible SNP pairs in the simulated 
data after five cycles of burn-in phenotypic selection in 100 
simulated clones, and the distribution of LD in the real and 
simulated data was compared. Figure 1 shows that the dis-
tribution of LD in the simulated data was comparable to that 
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observed for the empirical SNP data from a real sugarcane 
population.

Genetic models and quantitative traits

An additive trait genetic model (A_model) was simulated as 
follows. Firstly, an additive genotypic effect (total genotypic 
value) for each clone was calculated as the sum of the allele 
effects Q across all 1000 QTL. The phenotype was simulated 
by adding to the additive total genotypic value a random 
environmental error term that was randomly sampled from 
a normal distribution with a mean = 0 and a variance = Ve. 
Ve was calculated as Vg

H2
− Vg at each selection stage, follow-

ing the general formula for broad-sense heritability 
H2 =

Vg

Vg+Ve

 where Vg is the total genetic variance (variance 

of the total genotypic values among genotypes in the popula-
tion) and Ve is the variance for the residual term. We assumed 
different estimates of broad-sense heritability for the three 
phenotypic selection stages, i.e. H2 = 0.15 for the progeny 
assessment trial (PAT, stage 1), H2 = 0.4 for the clonal 
assessment trial (CAT, stage 2) and H2 = 0.7 in the final 
assessment trial (FAT, stage 3), as suggested by Australian 
sugarcane breeders. Throughout the simulated program, H2 
calculations were based on the current genetic variance at 
the respective stages of the breeding cycle.

The influence of trait genetic architecture was further 
investigated by introducing non-additive genetic effects to 
the trait genetic model. The total genotypic value of the 
quantitative trait that was also affected by dominance and 
additive-by-additive epistasis (i.e. interactions between 
two or more QTL) were simulated as the sum of the addi-
tive genotypic value and a dominance and epistasis term 

(ADE_model). Supplementary Figure S1 summarises 
how the non-additive genetic effects were simulated. This 
was inspired by earlier work that investigated the relative 
importance of gene networks on breeding selection (Pod-
lich and Cooper 1998; Cooper et al. 2002). Dominance was 
simulated by assigning an effect of d ∗ Q to heterozygous 
QTL, where Q designates the additive QTL effect that was 
defined as described above. The parameter d was defined 
as the absolute value from a random draw from a normal 
distribution with mean = 0 and variance = 0.25. Values 
of d that were > 1 were set to 1. Because the dominance 
term was added to the additive component, in the most 
extreme case there was full dominance at a heterozygous 
QTL, i.e. the effect of the heterozygous QTL was equal to 
the effect of the QTL homozygous for the allele with the 
sampled additive effect. To define the additive-by-additive 
epistatic component, a total of 441 interactions involving 
674 genome-wide QTL were randomly assigned (Supple-
mentary Figure S1). Epistatic effects were sampled from 
continuous numbers between − 5.87 and 5.94 (twice the 
range of the additive QTL effects), with a corresponding 
U-shaped beta density distribution with alpha = beta = 0.1 
(Supplementary Figure S1c). Pairwise epistatic effects 
were only assumed to be present if both interacting QTL 
were homozygous for the alternate allele (i.e. A1/A1 and 
A2/A2 for  QTL1 and  QTL2 where A is the alternate allele 
with a sampled additive effect). The amount of non-addi-
tivity (the sum of dominance and epistasis effects) in the 
trait genetic model was defined in preliminary adjustment 
runs in which the true narrow-sense heritability was calcu-
lated in 10 cycles of phenotypic selection. Using the above 
settings for dominance and epistasis, the true narrow-sense 
heritability (i.e. the offspring’s total genotypic value 

Fig. 1  Distribution of linkage disequilibrium (r2) in real and simu-
lated sugarcane populations. The X-axes represent the level of linkage 
disequilibrium (LD) between pairwise markers, and the Y-axes repre-
sent the fraction of marker pairs with this level of LD relative to the 
total number of marker pairs. In both cases, the proportion of markers 
with moderate LD (r2 > 0.2) was 0.26. The real data consisted of 1041 

elite sugarcane clones that were genotyped for 23,957 single-nucleo-
tide-polymorphism (SNP) markers. The simulated data consisted of 
100 clones after five burn-in cycles of phenotypic selection under the 
additive A_model scenario genotyped for 10,000 SNPs (see materials 
and methods for details)
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regressed on the parents’ average total genotypic value) 
ranged between h2 = 0.0—0.6 across the six phenotypic 
selection cycles and across 30 replications, with an aver-
age of around h2 = 0.3 (Supplementary Figure S2). After 
obtaining the total genotypic values for each clone, which 
were calculated as the sum of the additive, dominance and 
epistasis component, the phenotypes were simulated fol-
lowing the same procedure as described above.

The crossing and selection steps in the simulations of the 
breeding schemes were run with routines developed in the 
C programming language, using an interface to the statisti-
cal software R version 3.4.4 (R Core Team 2018) which is 
implemented in the R-package SelectionTools 18.1 (popu-
lation-genetics.uni-giessen.de/ ~ software/). Each breeding 
scheme simulation was run with 100 replications. Recom-
bination during meiosis was modelled using a count-loca-
tion algorithm (Karlin and Liberman 1978), assuming that 
the number of crossovers on a chromosome of length λ in 
Morgan (M) is a Poisson distributed random variable with 
parameter λ, which was a constant of 1.1 in our study (i.e. 
110 cM per chromosome). The location of a crossover on 
the chromosome was modelled as a random variable with 
uniform distribution. These assumptions are mathematically 
equivalent to those of Haldane’s map function (Haldane 
1919), assuming no interference in crossover formation.

The simulated breeding schemes

Phenotypic selection

Based on discussions with breeders from Sugar Research 
Australia and CSIRO, and based on the information pro-
vided in Park et al. (2007), we developed a classical phe-
notypic selection (PS) breeding scheme (Fig. 2) and com-
pared expected rates of genetic gain with two alternative 
breeding schemes that incorporate GS (Figs. 3, 4). All 
three schemes were assumed to have the same cycle length 
of approximately 9–10 years. It is important to note that 
under PS, crossing was only carried out at the start of the 
breeding cycle while in the GS schemes three additional 
rounds of intercrossing were simulated. Therefore, the term 
‘breeding cycle’ in our study rather reflects a temporal clas-
sification, i.e. the amount of increase in gain that can be 
achieved through varying intercrossing and selection steps 
in a timeframe of 9–10 years. For each of the three breeding 
programs, we simulated phenotypic selection as outlined in 
Fig. 2 for the first five cycles and considered this the burn-
in phase. Comparisons of genetic gain and genetic variance 
between the three different breeding schemes were made 
over five breeding cycles after the first five burn-in PS cyc
les.

All three breeding program simulations were initiated 
by randomly sampling 83 clones from the base population 

as parents. Typically, about 40% of the clones selected as 
parents cannot be used in the mating design due to com-
plications with flowering initiation and synchronisation. 
Therefore, we randomly dropped out 33 of the 83 parents 
to account for this practical constraint. The 50 remaining 
clones were each randomly mated to five other clones to 
generate a total of 250 F1 families with 100 offspring each. 
The resulting 25,000 seedlings were tested in a simulated 
stage 1 field trial in which H2 = 0.15 was assumed. We per-
formed between and within family selection based on the 
simulated phenotypes. At first, the best 50% of the families 
were selected based on their mean trait phenotype, resulting 
in identification and advancement of 125 families. Then, 
the seedlings with the highest trait phenotypic value within 
each family were selected. Breeders typically prioritise bet-
ter performing families which means that more seedlings are 
selected from the top-performing families. This process was 
simulated by imposing a linear gradual reduction of selected 
seedlings so that the best families of the 125 selected con-
tributed 30 clones to the next selection stage whereas the 
worst families of the 125 contributed only 10 individuals.

The selected 2500 clones were tested in a simulated stage 
2 trial assuming H2 = 0.4. From this stage on, clones were 
bulked and selected on an individual performance-basis. The 
best 150 clones were selected in stage 2 and went into the 
final stage 3 trial in which H2 = 0.7 was assumed. The best 
83 clones from stage 3 were selected as parents to initiate the 
next breeding cycle. In each of the five breeding cycles, the 
total genotypic value and genetic variance of the 83 selected 
best clones were recorded. It should be noted that in a con-
ventional phenotypic selection program, breeders typically 
perform across-generation selection of parents to initiate a 
new breeding cycle. This means that the best parents of the 
current breeding population are typically evaluated with the 
newly selected parents to form a new breeding population, 
i.e. only a fraction of the old parents is replaced by new 
clones. This ensures that clones that produce crosses of high 
genetic merit are retained until better cross-combinations are 
identified. This practice reflects the very high complexity 
around trait genetic architectures and improvement via selec-
tion. In our simulations, we made the assumption that all 
parents were replaced after a breeding cycle. The numbers 
of parents and population sizes were adjusted to represent 
one of four regional Australian breeding programs, which 
are typically interconnected through germplasm exchange 
(Park et al. 2007).

Genomic selection schemes 1

The first evaluated GS scheme (GS1, Fig. 3) followed the 
same routines as the phenotypic selection scheme until stage 
2. After stage 2, three rapid recurrent GS (RRGS) cycles 
were implemented as follows. The 2500 clones at stage 2 
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were used as a training population and genome-wide marker 
effects for genomic selection were predicted using a ridge 
regression BLUP (rrBLUP) model (Meuwissen et al. 2001). 
The best 83 clones were selected based on their genomic 
estimated breeding values (GEBVs) and used to initiate the 
first of three RRGS cycles. Again, 40% of the 83 clones 
were dropped out to simulate complications associated with 
flowering synchronisation and the remaining 50 clones were 
used to generate 250 families with 40 offspring each, result-
ing in a total of 10,000 seedlings. These 10,000 seedlings 
were assumed to be genotyped for the 10,000 SNP markers 
described above. The previously predicted marker effects 
from stage 2 were used to obtain GEBVs for each of the 
10,000 seedlings. The 83 clones with the highest GEBVs 
were selected to initiate the next RRGS cycle. After three 
RRGS cycles, the total genotypic values of the best 83 geno-
types and the corresponding genetic variance were recorded.

Genomic Selection Scheme 2

The second GS scheme (GS2, Fig. 4) was initiated by using 
the best 83 clones from the last burn-in cycle to initiate a 
population of 2500 clones. This population of 2500 clones 

was used as a training population for the next three RRGS 
cycles involving 10,000 seedlings each, with the same rou-
tines as described above. After that, the best 2500 clones 
were taken forward to a stage 2-like trial with a broad-sense 
heritability of 0.4. From this trial, the best 83 clones were 
selected to initiate the next GS2 cycle and their total geno-
typic values and the corresponding genetic variance were 
recorded.

For both GS breeding schemes, it was assumed that the 
breeding cycle, and hence selection of new parents for the 
next cycle, was concluded before these clones were evalu-
ated in FAT trials, which was assumed to be part of the 
product development process. Each of the three simulated 
breeding programs was run for a total of ten cycles (5 × burn-
in cycles plus 5 × breeding cycles) with 100 replications.

Estimating relative cost–benefits of different GS 
breeding schemes with regard to genotyping costs

Typically, breeders work with limited financial resources 
that can be allocated to different steps in the breeding pro-
gram. A key question that arises when considering the 
implementation of GS in a breeding program is how much 

Fig. 2  Simulated phenotypic selection scheme
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genetic gain could be generated for the money that was spent 
for genotyping. To address that question for sugarcane, we 
compared the two breeding schemes GS1 and GS2 in terms 
of predicted genetic gains that could be generated when 
500, 1000, 2500, 5000 or 10,000 clones were genotyped 
per RRGS step (i.e. 1500, 3000, 7500, 15,000 or 30,000 per 
breeding cycle). We took the most recent cost figure for gen-
otyping using the Affymetrix Axiom SNP chip which is $95/
sample as an estimate (CSIRO, personal communication). 
We ran 100 × replicates for each combination of genetic 
model (A_model or ADE_model) and varying numbers of 
clones genotyped per RRGS step (500, 1000, 2500, 5000 or 
10,000). To compare the relative benefit of the two simulated 
GS schemes we compared the rate of genetic gain to the 
conventional PS scheme.

Results

Genomic prediction accuracies

For the A_model, prediction accuracies for the simulated 
trait ranged between 0.3 and 0.5 and were ~ 0.4 on average, 

with a decreasing trend over the three first RRGS steps, 
reflecting increased genetic distance and less shared haplo-
types between the reference population and the prediction 
population. This is in accordance with average prediction 
accuracies for commercial cane sugar (CCS) (0.43–0.47) 
and fibre content (0.43–0.45), and slightly above total cane 
harvested (TCH) (0.28–0.30) as reported in the forward pre-
dictions by Hayes et al. (2021).

For the complex ADE_model, prediction accuracies for 
the simulated trait ranged from  − 0.25–0.4, depending on 
the breeding cycle, with average accuracies of about 0.2. 
Given that the TCH predictions based on breeding trial data 
as reported by Hayes et al. (2021) were higher than those 
in our ADE_model simulations, the ADE_model can be 
considered to represent a scenario with potentially stronger 
non-additive effects than what is observed in an elite popula-
tion of sugarcane clones. Taken together, the results for the 
A_model and ADE_model simulations could be considered 
as an informative upper and lower boundary for expected 
results for GS from an empirical breeding program.

Fig. 3  Simulated genomic selection scheme 1
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Genetic gain and genetic variance for a quantitative 
trait with an additive genetic architecture

For all three breeding schemes, genetic improvement as 
defined by the increase in the average total genotypic value 
of the population was observed for the A_model (Fig. 5a). 
After the five burn-in PS cycles, the improvement rates fol-
lowed an almost linear trend. A slightly asymptotic behav-
iour in the increase in the average total genotypic value was 
observed for both GS schemes, however without reaching 
a plateau by breeding cycle 5. Both GS schemes achieved 
rates of genetic gain that were almost twice as high as for the 
conventional PS scheme. The average increases in the mean 
total genotypic value for all three breeding schemes are sum-
marised in Supplementary Table S1. Assuming an average 
cycle length of 10 years for all three breeding schemes, the 
average rate of genetic gain per year for the three breeding 
programs was 1.4%, 2.6% and 2.7% for PS, GS1 and GS2. 
The rate of genetic gain for the PS scheme was similar to that 
reported by Sugar Research Australia (SRA, Performance 
Report 2015–2016, page 25).

The development of the total (additive) genetic vari-
ance after the last burn-in cycle showed strong differences 

between the three breeding programs (Fig. 5b, Supple-
mentary Table S1). The conventional PS scheme gradually 
reduced the genetic variance to a total reduction after the five 
PS cycles of  − 40%, compared to the starting point. Con-
versely, the GS breeding schemes both drastically increased 
diversity after the first breeding cycle to + 370% and + 111% 
compared to the starting point (after burn-in) for GS1 and 
GS2, respectively. After the five breeding cycles, the genetic 
variance in GS1 was 34% above the genetic variance meas-
ured at the starting point (after burn-in), whereas under GS2 
the reduction in genetic variance at the end-point was similar 
to PS ( − 40%).

Genomic selection schemes increase genetic gain 
and genetic variance

Under both GS schemes, there was a very strong increase 
in additive genetic variance after the first breeding cycle 
(Fig. 5b, Supplementary Table S1), along with substantial 
increases in genetic gain of + 32% and + 33% for GS1 and 
GS2, respectively. To investigate what could have caused 
this substantial increase in the additive genetic variance we 
recorded the changes in allele frequencies for each of the 

Fig. 4  Simulated genomic selection scheme 2
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1000 QTL after each of the 10 selection cycles (5 × burn-in 
plus 5 × breeding cycles) compared to the previous cycle. 
The changes of the QTL alleles are summarised in Fig. 6. 
For the PS scheme, there was an observable relationship 
between QTL frequency change and sampled QTL effect, i.e. 
QTL with large absolute effects were constantly increased in 
frequency at higher rates than QTL with low effects. Simi-
larly, QTL with negative effects were decreased at stable 
rates across the breeding cycles. For both GS schemes, there 
was a notable, strong change in QTL allele frequencies after 
the first breeding cycle, which corresponds to the additive 
genetic variance peak shown in Fig. 5b. Notably, there was 
a substantial increase in allele frequencies of QTL with 
moderate effects, implying that under GS those QTL are 
stronger selected for than under phenotypic selection. This 
trend flattened out as the simulation progressed over the next 
breeding cycles (Fig. 6).

To investigate the relationship between allele frequency 
changes and QTL effects, and to put this into context with 
the strong increase in genetic gain in GS-featured breeding 
schemes, we calculated average effects for the favourable 
QTL alleles (i.e. for QTL with negative effects for allele 
Q , we calculated the average effect for allele q). Neglect-
ing the dominance term, we calculated the average effect 
as � = (1 − freq_Q) ∗ eff_Q where � is the average effect, 
freq_Q is the frequency of allele Q and eff_Q is the ‘true’ 
QTL effect, which was sampled as described above. The 

relationship between the average effect � and the true QTL 
effect eff_Q in the three compared breeding schemes is 
shown in Supplementary Figure S3. Because frequencies 
of QTL with high absolute effects were increased at higher 
rates than QTL with lower absolute effects throughout the 
selection cycles, their average effect decreases gradually. 
Both GS schemes drove a large portion of QTL with the 
largest ‘true’ effects to fixation, hence their average effect 
was zero after the five breeding cycles. Under PS, fixation of 
those QTL was not reached after five breeding cycles (Sup-
plementary Fig. 3b). We then investigated which breeding 
scheme achieved the highest realisation of improvement for 
the 1000 QTL after the first breeding cycle by calculating 
the product of the average allele effect after burn-in and the 
allele frequency change after one cycle of selection, and 
plotting this against the average allele effect after burn-in 
(Fig. 7). This clearly shows that both GS schemes increase 
frequencies of QTL alleles with high average effects at 
much higher rates than the PS scheme. Figure 7 also shows 
a higher downward trend for QTL alleles with lower average 
effects, which could potentially explain the peak in additive 
genetic variance for both GS-based breeding schemes after 
one cycle of breeding (Fig. 5b).

We investigated if LD between QTL that were targeted 
in the GS schemes and other QTL on the same chromo-
some was the reason for the peak in additive genetic variance 
after one GS cycle, i.e. LD was causal for the contrasting 

Fig. 5  Genetic gain and additive genetic variance over 10 selection 
cycles for three different breeding schemes assuming a purely addi-
tive trait genetic architecture. B1–B5 = burn-in cycles of phenotypic 
selection as outlined in Fig. 2. C1–C5 = breeding cycles for the three 
breeding schemes phenotypic selection (PS), genomic selection 1 
(GS1) and genomic selection 2 (GS2) as outlined in Figs.  2, 3 and 

4. Light lines represent the single replicates per breeding scheme, 
bold lines represent averages across 100 replicates. (a) Average true 
breeding value among the 83 clones that are selected as parents. (b) 
Average additive genetic variance among the best 83 clones after each 
cycle. Base = randomly sampled initial 83 parents from the base pop-
ulation
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frequency changes of the different QTL. Therefore, we 
selected the top 20 QTL that were increased or decreased at 
the highest rates after the first GS1 cycle (see GS1 in Fig. 6) 
and calculated pairwise LD as r2 between them and all other 
QTL on the same chromosome. Then, we measured allele 
frequency changes of those co-located QTL and plotted this 
against the corresponding pairwise r2 values, to investigate if 
there were observable patterns (Supplementary Figure S4). 
As shown in Supplementary Figure S4, there were no detect-
able trends of LD between the top 20 increased/decreased 
QTL and the frequency changes of QTL on the same chro-
mosome. It is not clear if co-location of QTL on the same 
chromosome could be the reason for the contrasting allele 
frequency changes (instead of LD), but since the effect was 
so strong it seems unlikely that this is simply a consequence 
of sampling error.

To investigate if there is an association between the strong 
increase in additive genetic variance after one GS cycle and 
the genome size, we repeated the above described simula-
tions for a simulated organism in which the 10,000 SNP 
markers and 1000 QTL were distributed on only 10 chro-
mosomes of 110 cM (instead of 100). As shown in Sup-
plementary Figure S5, the increase in genetic variance in 
both GS schemes was much smaller than for the simula-
tions in which a genome with 100 chromosomes was used. 
This implies that the genome size could be important for the 
development of genetic variance over breeding cycles when 
GS is implemented. Interestingly, the difference in the rate 
of genetic gain between the GS schemes and the PS scheme 
was larger when a genome consisting of 10 chromosomes 
was considered (Supplementary Figure S5), compared to the 

initial simulations in which 100 chromosomes were assumed 
(Fig. 5).

Genetic gain and genetic variance for a quantitative 
trait with a non‑additive genetic architecture

The development of genetic improvement and the total 
genetic variance for the ADE_model is shown in Fig. 8. 
Here, the rates of gain were substantially lower compared 
to the A_model, particularly for the two GS schemes. The 
average gains per year were 1.1%, 1.5% and 1.6% for the 
PS, GS1 and GS2 breeding schemes, respectively (Sup-
plementary Table S2). Further, the variability between the 
100 replicates for each breeding simulation has increased 
substantially compared to the A_model (Fig. 5). After the 
first cycle of both GS-based breeding schemes, there was 
a substantial drop in genetic gain which was not observed 
for the PS scheme (Fig. 8a). The rank of the two GS-based 
breeding schemes changed over the course of the breed-
ing cycles, so GS2 yielded about 3% more gain after five 
cycles than GS1. The average trend of the total genetic 
variance over time was very similar to the trend observed 
under the A_model (Fig. 8b), i.e. there was a substantial 
increase in total genetic variance under the two GS-based 
breeding schemes. However, under the ADE_model, no 
difference in the average total genetic variance between 
GS1 and GS2 was observed.

Fig. 6  Allele frequency changes of the 1000 QTL under the purely 
additive genetic model. B1–B5 = burn-in cycles of phenotypic selec-
tion as outlined in Fig.  2. C1–C5 = breeding cycles for the three 
breeding schemes phenotypic selection (a), genomic selection 1 

(GS1, b) and genomic selection 2 (GS2, C) as outlined in Figs. 2, 3 
and 4. Each coloured line represents one QTL. The colours indicate 
the initially sampled ‘true’ QTL effect. Allele frequency shifts are 
averaged across 100 replicates
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Cost–benefit of genomic selection under an additive 
genetic model

The results of comparing the cost–benefit ratio of two GS 
schemes with different numbers of genotyped clones under 
the A_model are summarised in Fig. 9. Here, 1000 QTL 
additively contribute to the simulated quantitative trait with 
no non-additive gene action. After the first breeding cycle, 
gains achieved from GS2 when only 500 clones were geno-
typed were below the gains achieved through phenotypic 
selection (Fig. 9). While GS1 delivers more gain through-
out the five breeding cycles for relatively low numbers of 
genotype clones, both GS1 and GS2 converge when 10,000 
clones are genotyped per rapid cycling step.

Overall, there is an increase in genetic gain when 
increasing the number of genotyped clones in the GS 
breeding scheme (Fig.  9, dashed lines). This trend 
increased with the number of breeding cycles, i.e. the dif-
ference between the dashed lines and the solid purple line 
(Fig. 9, phenotypic selection) is larger in cycle 5 than in 
cycle 1. Relative gains per $1000 invested for genotyping 
increased from less than 0.05% in cycle 1 to almost 0.2% 
in cycle 5 (Fig. 9, solid lines). A value of 0.1% means that 
for every $1000 that were invested in genotyping, a rela-
tive increase in genetic gain of 0.1% could be achieved 
compared to standard phenotypic selection. Based on the 
average total cane harvested in Australia (31.37MT) and 
the average CCS content of 13.72% between 2006 and 

2015 (Sugar Research Australia 2016), and assuming a 
sugar price of $450 per tonne, a 1% improvement in cane 
yield and CCS would deliver $19.37 M more revenue to 
the industry per annum. Net profits from 1% improvement 
would be $12.5 M annually, considering harvesting and 
milling costs of $9.5 and $12.5 per tonnes. Assuming that 
a 1% increase equates to $12.5 M annual net profit for 
the Australian sugarcane industry, a relative increase of 
0.1% through GS means that for every $1000 that were 
invested in genotyping the return is $12,500. This value is 
already corrected for the genetic gain achievable through 
phenotypic selection. In cycle 5 under GS1, every $1000 
invested in genotyping resulted in an increase in genetic 
gain with an approximate return of investment of more 
than $35,000. The return of investment associated with 
increased genotyping is, however, diminishing. To inves-
tigate the effect of substantial investments into increasing 
the size of a conventional selection scheme we simulated 
a double-sized PS scheme in which we simulated 500 
crosses to generate 50,000 offspring, a CAT stage with 
5000 tested clones and a FAT stage in which the best 300 
were assessed. Under the A_model, doubling the size of 
the PS scheme only resulted in an extra 5% in genetic gain 
at the end of breeding cycle 5 (Supplementary Figure S6).

Fig. 7  Realised additive genetic gain for the 1000 QTL under the 
purely additive genetic model after one breeding cycle. The three 
breeding schemes phenotypic selection (PS, A), genomic selection 
1 (GS1, B) and genomic selection 2 (GS2, C) as outlined in Figs. 2, 
3 and 4 are shown. Each coloured dot represents one QTL. X-axes 

show the average allele effect for each QTL after 5 burn-in pheno-
typic selection cycles. Y-axes show the product of the average allele 
effect and the corresponding shift in allele frequency after the first 
breeding cycle
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Cost–benefit of genomic selection under a complex 
non‑additive genetic model

The results of comparing the cost–benefit ratio in two GS 
schemes with different numbers of genotyped clones under 
the ADE_model are summarised in Fig. 10. Gains achieved 
in the GS schemes after cycle 1 are negative for all geno-
typing scenarios, except for GS1 when 10,000 clones are 
genotyped per RRGS step (i.e. 30,000 per cycle). Even there, 
gains are well below the PS scheme (Fig. 10). In cycle 2, 
GS1 slightly overtakes the PS in terms of genetic gain when 
10,000 clones per RRGS step are genotyped. However, rela-
tive %-gain per $1000 invested is very close to zero (cycle 2 
in Fig. 10, solid lines). From cycle 4 on, GS1 overtakes phe-
notypic selection even when only 500 clones are genotyped 
per RRGS step, i.e. 1500 per cycle. From then on, relative 
%-gains per $1000 invested in genotyping are positive for 
GS1, also when only 1500 clones are genotyped per cycle 
(Fig. 10). In cycle 5, the relative cost–benefit of genotyp-
ing only 1500 clones per cycle is higher than genotyping 
30,000 clones. The rank of the two GS schemes changed 
depending on how many clones are assumed to be genotyped 
in the breeding scheme, for both the relative cost–benefit 
(Fig. 10, solid lines) and the absolute %-gains that were 
realised (Fig. 10, dashed lines). GS1 tends to perform better 
when lower numbers of clones are genotyped, whereas GS2 

realises higher gains when higher numbers of clones are 
genotyped. Even in the complex ADE_model scenario, an 
average $1000 investment in genotyping resulted in a $5,000 
return through an increase in genetic gain, again assum-
ing that a 1% increase in genetic gain equates to $12.5 M 
annual net profit for the Australian sugarcane industry. As 
opposed to the situation under an additive genetic model, the 
increases in gain in the doubled PS scheme were very sub-
stantial under the complex ADE_model. It took until the end 
of breeding cycle 5 until the two GS schemes with 30,000 
clones genotyped per cycle reached similar levels of genetic 
gain as the doubled PS scheme (Supplementary Figure S6).

Discussion

Recent studies that investigated genomic prediction for com-
plex traits in sugarcane show promising prediction accura-
cies (Deomano et al. 2020; Hayes et al. 2021). This shows 
the potential of the technology for commercial breeding pro-
grams. Here, we assessed two alternate strategies for imple-
menting GS in commercial sugarcane breeding. To cover a 
range of traits that could be the breeding target, we simulated 
an additive quantitative trait (A_model) and a complex quan-
titative trait that is substantially affected by non-additive 

Fig. 8  Genetic gain and total genetic variance over 10 selection 
cycles for three different breeding schemes assuming a non-additive 
trait genetic architecture. B1–B5 = burn-in cycles of phenotypic 
selection as outlined in Fig. 1. C1–C5 = breeding cycles for the three 
breeding schemes phenotypic selection (PS), genomic selection 1 
(GS1) and genomic selection 2 (GS2) as outlined in Figs.  2, 3 and 
4. Light lines represent the single replicates per breeding scheme, 

bold lines represent averages across 100 replicates. (a) Average total 
genotypic value among the 83 clones that are selected as parents. (b) 
Average total genetic variance among the best 83 clones after each 
cycle. Base = randomly sampled initial 83 parents from the base pop-
ulation. See materials and methods and Supplementary Figure S1 for 
detailed description of the simulation of non-additive QTL effects



1505Theoretical and Applied Genetics (2021) 134:1493–1511 

1 3

gene action (ADE_model). In our study, we made simpli-
fied assumptions regarding the simulation of the genome 
which is therefore unlikely to reflect the full complexity 
observed in sugarcane. We consider our study as a first 
attempt to assess the potential of GS for improving genetic 
gain for a range of complex traits (additive to non-additive) 
while noting that doubtlessly further work is required that 
addresses the limitations of our study. Key areas for further 
investigation are a detailed assessment of the effect of allele 

dosage on complex trait improvement through breeding and 
the investigation of different parameterisations of additive 
and non-additive trait genetic architectures. This includes 
the exploration of different effect distributions for assigning 
genetic component effects (i.e. other distributions than the 
U-shape distribution used in our study), and the considera-
tion of directional dominance which is likely to be impor-
tant in sugarcane. Our results provide a first assessment of 

Fig. 9  Cost–benefit of the two genomic selection schemes using dif-
ferent numbers of genotyped clones in the rapid recurrent genomic 
selection step under the additive ‘A_model’. Here, it is assumed that 
the quantitative trait is affected by additive QTL effects only. Five 
different scenarios with 500, 1000, 2500, 5000 and 10,000 geno-
typed clones per RRGS step are compared. Because both GS schemes 
deploy three RRGS steps, the total number of genotyped clones per 
cycle is 1500, 3000, 7500, 15,000 and 30,000. Genetic gain is com-
pared to the genetic merit of the base population after the 5 × burn-in 

cycles. The solid purple line represents genetic gain achieved through 
phenotypic selection. A value of 0.1% (solid lines, left Y-axis) means 
that for every $1000 dollar that were invested in genotyping, a rela-
tive increase in genetic gain of 0.1% could be achieved compared to 
standard phenotypic selection. Assuming a 1% increase equates to 
$12.5  M annual net profit in Australian sugarcane, a value of 0.1% 
(solid lines, left Y-axis) means that for every $1000 invested in geno-
typing the return is $12,500. This value is already corrected for the 
genetic gain achievable through phenotypic selection
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potential increases in genetic gain that could be realised 
under the assumptions made in our simulations.

Under the A_model, GS drives genetic gain at an almost 
doubled rate of that achieved by PS. This accelerated genetic 
gain from the GS schemes is contributed by the three addi-
tional rounds of crossing, recombination and selection dur-
ing the three RRGS steps. This allows a much more rapid 
frequency increase in favourable alleles of the additive 
QTL. Notably, both GS schemes were much more efficient 
in driving the allele frequencies of QTL with moderate ‘true’ 
effect but relatively high average effect, implying that GS 
can capture and increase favourable alleles which are at com-
paratively low frequency in the breeding population. Other 
simulation studies have shown that selection that is purely 
based on GEBVs can reduce genetic variance and increase 
the rate of inbreeding (Cros et al. 2015; Jannink et al. 2010). 
Interestingly, strong increases in genetic variance under GS 
could be observed in our study. Since this trend was much 
weaker when an organism with only 10 chromosomes was 
considered, we hypothesise that trends in genetic gain and 
genetic variance under GS-based breeding schemes could 
be quite different for crops with very large and complex 
genomes, compared to well-established major crops with 
much smaller and less complex genomes, such as maize or 
rice. This could be associated with the fact that QTL are 
spread across more chromosomes. While we were not able 
to explain the increase in genetic variance with LD between 
favourable and unfavourable QTL for the 20 QTL with the 
strongest frequency changes after the first breeding cycle 
(Fig. 6a, b), this could potentially rather be explained by an 
accumulated effect of many small-scale covariances between 
genome-wide QTL. This is also implied by the work of 
Gorjanc et al. (2018) who also found a substantial increase 
in genetic variance when transitioning from a phenotypic 
selection to a genomic selection scheme. Notably, Gorjanc 
et al. (2018) show that while the genetic variance increases 
in the first few cycles of the transition to GS-based breeding 
schemes, the genic variance decreases gradually.

Interestingly, similar trends for genetic variance were 
observed in an empirical study that investigated the genomic 
impacts of adapting tropical maize to temperate climates, 
through ten cycles of recurrent selection for flowering time 
(Wisser et al. 2019). In this study, major flowering genes 
with the largest effects on flowering time showed the strong-
est allele frequency shifts in the first four generations of 
recurrent selection. After that, an enrichment of alleles with 
smaller-sized phenotypic effects was observed, which was 
associated with an increase in both, heterozygosity and addi-
tive genetic variance in the population under consideration 
(Wisser et al. 2019). In our study, GS1 reduced the genetic 
variance at much slower rates than GS2, which implies that 
GS1 could deliver more long-term gains. In addition, this 
GS-based breeding strategy could be implemented in current 

conventional sugarcane breeding programs because it does 
not require substantial structural changes to the breeding 
program design. The first few stages of the GS1 scheme fol-
low the same routines as in the PS scheme, i.e. generation 
of seedlings through crossing, selecting among and within 
families based on unreplicated row trials, and testing the 
best 2,500 clones in clonal assessment trials. The main dif-
ference of GS1 compared to the PS scheme is that instead 
of evaluating the best 150 clones from the CAT stage in 
FATs directly, three rounds of RRGS are included to rapidly 
increase frequencies of favourable alleles in this relatively 
strongly pre-selected material. After these three RRGS 
rounds, the best clones would be assessed in FAT-like trials 
for variety development, and also be recycled to initiate the 
next breeding cycle.

A major challenge in sugarcane is the complexity of the 
genome. With regard to GS, the importance of allele dosage 
for phenotypic trait variation has been demonstrated, e.g. 
for sugar content (Ming et al. 2001). It has been shown that 
general polysomy is important in chromosome assortment, 
with some cases of preferential pairing (Aitken et al. 2005, 
2014; Jannoo et al. 2004), while meiosis mainly involves 
bivalent pairing (Price 1963). Furthermore, homologous 
gene conservation has been found to be prevalent (Garsmeur 
et al. 2011). In Saccharum spontaneum, it was shown that 
the numbers of alleles of the 35,525 annotated genes ranged 
from one to four with an average allele number of 2.3 (Zhang 
et al. 2018). To approximate this high complexity in our 
simulations, we made the simplified assumption of single-
dose QTL, inspired by the recent Affymetrix SNP array for 
sugarcane for which 40,000 single-dose SNP were reported 
(Aitken et al. 2016) and which has recently been used for 
genomic prediction by Hayes et al. (2021). We acknowl-
edge the limitations of our study and that the simplifica-
tions of the features underlying our meiosis simulation are 
unlikely to capture the full genomic and meiotic complex-
ity as present in sugarcane. With regard to dosage effects, 
it could be that combining the results from these SNPs in 
our simulation study gives similar results as simulating 
higher-dose SNP markers if single-dose SNPs are present 
throughout the genome. If selection has resulted in parts of 
the genome being duplicated with low levels of polymor-
phism, then incorporating dosage would be more valuable. 
Detailed follow-up simulation work could aim at address-
ing these questions which are not covered by our simulation 
work presented here. In addition, further empirical research 
that improves the understanding of molecular recombina-
tion processes on a genome-wide scale is required. This will 
provide new possibilities for parameterisation of population 
genomic simulations beyond what is feasible based on cur-
rent knowledge. This could enable future studies that focus 
more explicitly on the role of allele dosage in the context 
of GS-based breeding schemes, to provide further guidance 
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for modern genetic improvement programs, especially with 
regard to non-additive gene action. However, our simu-
lated scenarios matched observations from empirical data 
in terms of distributions of pairwise LD between SNPs, 
average narrow-sense heritability and genomic prediction 
accuracies (e.g. as reported by Hayes et al. 2021). Calibrat-
ing genetic and genomic properties of simulated populations 
with empirical data is critical to enable that the conclusions 

drawn are transferable and relevant to the targeted genetic 
improvement program, and that the full potential of simula-
tions can be explored in the breeding optimisation process 
(Bernardo 2020).

Our results show that under the complex non-additive 
genetic ADE_model, the success rate of GS depends on the 
GS breeding scheme, the number of clones that are geno-
typed and the stage of the breeding program, likely reflecting 

Fig. 10  Cost–benefit of the two genomic selection schemes using dif-
ferent numbers of genotyped clones in the rapid recurrent genomic 
selection step under the non-additive ‘ADE model’. Here, it is 
assumed that the quantitative trait is affected by additivity, domi-
nance and epistasis (average h2 = 0.3). Five different scenarios with 
500, 1000, 2500, 5000 and 10,000 genotyped clones are compared. 
Because both GS schemes deploy three RRGS steps, the total num-
bers of genotyped clones per cycle is 1500, 3000, 7500, 15,000 and 
30,000. Genetic gain is compared to the genetic merit of the base 
population after the 5 × burn-in cycles. The solid purple line repre-

sents genetic gain achieved through phenotypic selection. A value 
of 0.1% (solid lines, left Y-axis) means that for every $1000 dollar 
that were invested in genotyping, a relative increase in genetic gain of 
0.1% could be achieved compared to standard phenotypic selection. 
Assuming a 1% increase equates to $12.5 M annual net profit in Aus-
tralian sugarcane, a value of 0.1% (solid lines, left Y-axis) means that 
for every $1000 invested in genotyping the return is $12,500. This 
value is already corrected for the genetic gain achievable through 
phenotypic selection
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how changes in QTL allele frequencies change available 
additive genetic variance and therefore the efficiency of 
selection. Given the relatively high accuracies in forward 
predictions that were reported in commercial sugarcane 
breeding trials by Hayes et al. (2021) (e.g. up to 0.33 for 
TCH, 0.55 for CCS and 0.55 for Fibre), it can be assumed 
that the simulated non-additive ADE_model scenario rep-
resents an extreme case and is perhaps more complex than 
what can be expected in a commercial breeding program. 
The fact that even under extreme non-additivity the relative 
cost–benefit of genotyping only 500 clones per rapid cycling 
step can be larger than genotyping 10,000 clones (cycle 4–5 
in Fig. 10) is encouraging that GS can successfully be imple-
mented to improve complex traits in sugarcane, like TCH, at 
moderate investment costs.

Our results are encouraging for implementing GS in sug-
arcane, especially for quantitative traits that are substantially 
affected by additive genetic effects (e.g. CCS, Fibre, disease 
resistance). Genotyping using a SNP array is still relatively 
costly in sugarcane ($95/sample), in comparison with other 
crops. However, as shown in Fig. 9, substantial gains can 
be achieved when only 1500 clones are genotyped per GS 
breeding cycle (i.e. $142,500 per 10-year cycle). As geno-
typing costs drop, as has happened in other crop species, 
GS would become even more accessible. If GS was imple-
mented in a way that it replaces the relatively costly CAT 
stage, the relative cost–benefits would likely be much larger 
than in the current simulations. Interestingly, doubling the 
size of the PS scheme only had a minimal positive effect on 
the rate of gain under the additive A_model. Under the com-
plex ADE_model, however, a PS scheme of twice the size 
compared to the reference PS scheme in our study resulted 
in substantial increases in genetic gain. These results imply 
that investing in enhancing PS is particularly worthwhile 
if the trait is strongly affected by non-additive gene action.

The strong variation in genetic gain that was observed 
between the five breeding cycles in the non-additive ADE_
model scenario implied that QTL allele frequencies are the 
main driver for additive and non-additive genetic variance, 
i.e. the frequencies of QTL alleles that are involved in epi-
static networks determine how much additive genetic vari-
ance there is, and hence how effectively the quantitative trait 
can be improved via selection. This is in accordance with 
earlier work that investigated the role of epistasis for direc-
tional selection and genetic improvement (e.g. Cheverud 
and Routman 1996, 1995; Cooper et al. 2002; Podlich and 
Cooper 1998). Cheverud and Routman (1996) showed in 
a two-locus example that when strong additive x additive 
epistasis was present, additive variance is large when one 
of the two interacting QTL is at an extreme allele frequency 
(i.e. 0 or 1). In such a situation, the variation at the other 

locus is exposed as additive and can be explored through 
selection. This might explain the rapid increase in genetic 
gain for both GS-based breeding schemes after completion 
of breeding cycle 1.

The RRGS steps in the two GS-based breeding schemes 
prioritise parents with high additive genetic effects and 
therefore capture and improve general combining ability 
(GCA) in each generation. However, this practice is less 
efficient for crossbred populations in which specific com-
bining ability (SCA) is likely to play a major role (in theory, 
SCA is affected by dominance and epistasis), as expected 
in sugarcane. This could also explain the negative trends in 
genetic gain for both GS schemes under the ADE_model 
after the first breeding cycle, i.e. that QTL with positive 
additive effects were assigned to epistatic interactions that 
have a strong negative effect on the simulated trait. This 
motivates the investigation of alternate GS-based breeding 
strategies that could help to overcome problems associated 
with strong non-additive gene action, for instance, based on 
reciprocal recurrent selection which aims to maximise both 
GCA and SCA (Comstock et al. 1949). A detailed descrip-
tion of a potential GS-based reciprocal recurrent selection 
program for sugarcane is given by Yadav et al. (2020). In 
theory, the combination of improving both, additive and 
non-additive genetic effects holds the potential to improve 
long-term genetic gain in hybrid sugarcane breeding but fur-
ther investigations are needed. A GS-based breeding scheme 
like GS1 presented here might be a first step for implement-
ing GS technology in sugarcane because it requires relatively 
few structural changes to the existing design of a conven-
tional PS program. The results reported here motivate both 
further empirical and simulation work to develop improved 
strategies for GS implementation in sugarcane breeding that 
are tailored to specific breeding program contexts.
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