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Abstract
Key message Two QTL mapping approaches were used to identify a total of six QTL associated with Phytophthora 
root and crown rot resistance in a biparental squash population.
Abstract Phytophthora root and crown rot, caused by the soilborne oomycete pathogen Phytophthora capsici, leads to severe 
yield losses in squash (Cucurbita pepo). To identify quantitative trait loci (QTL) involved in resistance to this disease, we 
crossed a partially resistant squash breeding line with a susceptible zucchini cultivar and evaluated over 13,000  F2 seedlings 
in a greenhouse screen. Bulked segregant analysis with whole genome resequencing (BSA-Seq) resulted in the identification 
of five genomic regions—on chromosomes 4, 5, 8, 12, and 16—featuring significant allele frequency differentiation between 
susceptible and resistant bulks in each of two independent replicates. In addition, we conducted linkage mapping using a 
population of 176  F3 families derived from individually genotyped  F2 individuals. Variation in disease severity among these 
families was best explained by a four-QTL model, comprising the same loci identified via BSA-Seq on chromosomes 4, 5, 
and 8 as well as an additional locus on chromosome 19, for a combined total of six QTL identified between both methods. 
Loci, whether those identified by BSA-Seq or linkage mapping, were of small-to-moderate effect, collectively accounting for 
28–35% and individually for 2–10% of the phenotypic variance explained. However, a multiple linear regression model using 
one marker in each BSA-Seq QTL could predict  F2:3 disease severity with only a slight drop in cross-validation accuracy 
compared to genomic prediction models using genome-wide markers. These results suggest that marker-assisted selection 
could be a suitable approach for improving Phytophthora crown and root rot resistance in squash.
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Introduction

Squash and pumpkin (Cucurbita pepo, C. maxima, and C. 
moschata) are important crops grown for fruit that can be 
consumed either immature (e.g., summer squash) or mature 
(e.g., winter squash and pumpkin), as well as used decora-
tively (e.g., pumpkin and gourds). One of the major diseases 
affecting their production in the USA, which was valued 
at over $380 million in 2018 (USDA-NASS 2019), is Phy-
tophthora root and crown rot, caused by the soilborne oomy-
cete Phytophthora capsici. Phytophthora root and crown rot 
causes lesions on roots and lower stems, leading to damping 
off in young seedlings and reduced vigor or death in older 
plants (Hausbeck and Lamour 2004). Disease management 
strategies are mostly limited to cultural practices meant to 
improve drainage, prevent splashing of infested soil, and 
reduce water movement within a field, in addition to the use 
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of fungicides (Granke et al. 2012). However, the efficacy of 
several chemical active ingredients has been threatened by 
the emergence of fungicide insensitivity in pathogen popula-
tions (Lamour and Hausbeck 2000; Parra and Ristaino 2001; 
Dunn et al. 2010; Jackson et al. 2012). Host resistance is 
greatly desired by growers but has not been identified in 
appreciable levels in commercial cultivars.

To date, no sources of complete Phytophthora root and 
crown rot resistance have been described in squash, although 
germplasm screens in C. pepo (Padley et al. 2008) and C. 
moschata (Chavez et al. 2011) revealed a range of resistance 
levels among accessions of both species. In C. pepo, the 
most economically valuable of the three major domesticated 
squash species (Lust and Paris 2016), cultivars of C. pepo 
ssp. pepo (e.g., zucchini and pumpkin) are slightly less sus-
ceptible than cultivars of C. pepo ssp. ovifera (e.g., crook-
neck summer squash and acorn squash), but these differ-
ences are too small to provide economically relevant levels 
of disease control (Camp et al. 2009; Meyer and Hausbeck 
2012; Krasnow et al. 2017).

Little is known about Phytophthora root and crown rot 
resistance in wild Cucurbita species, which have played an 
important role in breeding for resistance to other diseases 
of squash (Rhodes 1964; Menezes et al. 2015; Holdsworth 
et al. 2016), although a C. moschata breeding line with 
introgressions from C. lundelliana and C. okeechobeen-
esis subsp. okeechobeenesis showed resistance to several 
Florida isolates of P. capsici (Padley et al. 2009). In crosses 
with different breeding lines representing distinct sources 
of resistance, segregation ratios suggest that resistance is 
genetically complex and controlled by multiple genes (Pad-
ley et al. 2009; Michael et al. 2019).

Selection for Phytophthora root and crown rot resist-
ance is typically performed in controlled environments at 
the seedling stage (Padley et al. 2009; LaPlant et al. 2020). 
Nevertheless, predictable levels of disease pressure are 
often difficult to obtain, as the extent and rate of symptom 
development are highly influenced by the choice of patho-
gen isolate and inoculation method as well as the environ-
mental conditions in the greenhouse and age of plants at 
the time of inoculation (Lee et al. 2001; Tian and Baba-
doost 2004; Enzenbacher and Hausbeck 2012). Higher than 
expected disease severity in a selection screen may leave 
little genetic variation remaining among the survivors in a 
breeding population and result in the death of plants pos-
sessing desirable resistance alleles. Knowledge of the quan-
titative trait loci (QTL) conferring Phytophthora root and 
crown rot resistance would enable marker-assisted selection 
(MAS), eliminating or reducing the number of generations 
in which plants would need to be inoculated in a resistance 
breeding program. While QTL conferring Phytophthora root 
and crown rot resistance have been reported recently in C. 

moschata (Ramos et al. 2020), to our knowledge none have 
been identified in C. pepo.

The combination of bulked segregant analysis with whole 
genome resequencing (BSA-Seq), first shown in yeast to be 
capable of detecting QTL of both major and minor effects 
(Ehrenreich et  al. 2010; Wenger et  al. 2010), has since 
become a popular method for mapping QTL in crop spe-
cies (Takagi et al. 2013; Yang et al. 2013; Lu et al. 2014; 
Illa-Berenguer et al. 2015). Compared to traditional linkage 
mapping, where progeny are individually genotyped and 
phenotyped, BSA requires the preparation of fewer samples 
for genotyping and allows for more efficient phenotyping, 
as only individuals representing the phenotypic extremes of 
a population need to be identified (Michelmore et al. 1991). 
The choice of whole genome resequencing as the genotyp-
ing strategy in BSA provides an effective way to estimate 
genome-wide allele frequencies in bulks (via allele-specific 
read counts) without the need for prior marker development 
(Ehrenreich et al. 2010; Magwene et al. 2011; Takagi et al. 
2013). BSA-Seq, however, features several disadvantages 
compared to traditional QTL mapping, such as the inability 
to estimate allelic effect sizes or to test for QTL-by-QTL 
interactions (i.e., epistasis).

In this study, we used a combination of BSA-Seq and 
traditional linkage mapping to discover QTL conferring 
resistance to Phytophthora root and crown rot in a biparen-
tal zucchini (C. pepo) population. Using a cross between 
a susceptible zucchini cultivar and a Cornell breeding line 
with intermediate resistance to Phytophthora root and crown 
rot, but poor fit as a zucchini or summer squash cultivar due 
to its growth habit and fruit shape (LaPlant et al. 2020), our 
goal was to identify QTL that can be directly used in MAS 
for introgressing disease resistance loci into genetic back-
grounds representing more widely grown squash types. By 
synthesizing results from the two QTL mapping methods, 
we were able to estimate allelic effect sizes, generate lists 
of candidate genes in QTL regions, and test the predictive 
ability of QTL in independent datasets from those used for 
their detection.

Materials and methods

Development of mapping population

A replicated greenhouse experiment evaluating germplasm 
from the Cornell squash breeding program for Phytophthora 
root and crown rot resistance resulted in the identification of 
one  F4:5 family, Pc-NY21, with superior resistance compared 
to the other entries in the trial (LaPlant et al. 2020). This 
family was selected from a cross between Romulus, a Cor-
nell zucchini cultivar, and PI 615089 from the National Plant 
Germplasm System, a white vegetable marrow accession 
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with partial Phytophthora resistance. Eight individual  F5 
progeny from Pc-NY21, which were descended from the 
same  F4 plant, were crossed with ‘Dunja  F1’ (Enza Zaden), 
a susceptible zucchini variety, and an equal number of indi-
viduals from the eight  F1 families were then intermated to 
generate an  F2 mapping population.

Selection of bulks and sequencing of DNA 
pools

Two separate sets of  F2 individuals (Rep 1 and Rep 2) were 
evaluated for root and crown rot resistance in a greenhouse 
at Cornell AgriTech in Geneva, NY, in the fall of 2017. For 
each set, 6,912 seeds were sown in 72-cell trays (for a total 
of 96 trays) and inoculated with a zoospore suspension of P. 
capsici when the plants had two fully expanded true leaves 
(17–18 days after sowing). New York P. capsici isolate 
0664–1 (Dunn et al. 2010) was used for inoculations, and 
inoculum was prepared as in LaPlant et al. (2020). Inocu-
lum was diluted to a concentration of  1x104 zoospores/mL 
and sprayed over the tops of trays using a diaphragm pump 
backpack sprayer at a rate so as to deliver an intended total 
of 144 mL per tray, for a target of 20,000 zoospores (2 mL) 
inoculated onto each seedling.

A random (RAN), susceptible (SUS), and resistant (RES) 
tissue bulk were selected in each replicate. In order to target 
15% of the population to include in each bulk, as has been 
shown in simulations to maximize QTL detection power 
and resolution (Magwene et al. 2011; Takagi et al. 2013), 
approximately 11 plants were sampled from each 72-cell 
tray. Plants for the RAN bulks were randomly sampled 
within 3 days prior to inoculation. Plants for the SUS bulks 
were sampled 4–5 days after inoculation, a point when early 
disease symptoms were beginning to appear in the popula-
tion but before plants were completely killed. Plants sampled 
for the SUS bulks were visually identified as those within 
their respective trays featuring the greatest degree of wilt, 
stem necrosis, and sporulation on stem lesions. Plants for 
the RES bulks were sampled 7–10 days after inoculation and 
were identified as the plants that featured the least degree 
of wilt and leaf chlorosis in their respective trays. In trays 
where the most phenotypically extreme 11 plants were dif-
ficult to distinguish, as few as 6 or as many as 16 plants were 
sampled for the SUS and RES bulks. Tissue was sampled 
from all selected plants by taking a 3-mm hole punch from a 
newly emerging leaf. Tubes containing tissue samples were 
flash frozen in liquid nitrogen, stored at  − 80 °C, and then 
lyophilized for 48 h prior to DNA extraction.

To minimize the heterogeneity of the DNA contributed 
by each individual to its pool, tissue samples from each 
tray were bulked separately for a total of 96 tubes per bulk 
(RAN, SUS, or RES). After extracting DNA from samples 

representing within-tray bulks, equimolar volumes of DNA 
from the 96 samples were then combined for a final DNA 
pool representing selections from all trays. This strategy 
was elected as a compromise between performing a sepa-
rate DNA extraction for every individual plant sample and 
bulking >1,000 leaf punches prior to DNA extraction. DNA 
extractions were performed using the DNeasy 96 plant kit 
(Qiagen, Valencia, CA, USA), with the following modifica-
tions to maximize the purity and integrity of DNA from 
diseased plant samples: the volumes of buffers AP1, P3, and 
AW1 were doubled; the  − 20 °C incubation was extended 
from 20 to 60 m; and an additional wash step was performed 
with 800 μl molecular-grade ethanol. The DNA concentra-
tion of each sample was measured using a Qubit fluorom-
eter (Thermo Fisher Scientific, Waltham, MA, USA) prior 
to pooling.

The six DNA pools (RAN, SUS, and RES for each of the 
two replicates) and parental DNA samples were submitted 
to the Cornell University Biotechnology Resource Center 
for library preparation and sequencing. To represent the 
resistant parent, DNA was extracted from the  F4 progenitor 
of Pc-NY21. PCR-free libraries were created by mechani-
cally shearing DNA samples and ligating adapters, using 
reagents equivalent to those in the TruSeq library prepara-
tion kit (Illumina, San Diego, California). For several DNA 
pools, two separate libraries were created, resulting in tech-
nical replicates. Library yields were determined using digital 
droplet PCR. Libraries were then pooled and sequenced on 
either 1 or 2 lanes, depending on the library, of an Illumina 
NextSeq500 generating paired-end 150 bp reads. Due to 
a technical error during library preparation, reads for Rep 
1 RAN were unusable and therefore not included in any 
analyses.

BSA‑Seq data analysis

Raw reads were filtered and trimmed from both ends using 
fastp v 0.20.0 (Chen et al. 2018) with default parameters, 
except the arguments --correction and --trim_poly_g were 
enabled to correct bases in overlapped regions and remove 
polyG strings in read tails. Trimmed reads were then aligned 
to the C. pepo reference genome (v 4.1; Montero-Pau et al. 
2018) with bwa v 0.7.17 (Li and Durbin 2009) using the 
MEM algorithm and default parameters. Resulting bam files 
were sorted and indexed with samtools, and variants were 
called using the bcftools mpileup and call commands (Li 
et al. 2009). The minimum alignment mapping quality was 
set to 20, and the consensus-caller method was used. The 
resulting VCF file was filtered with VCFtools version 0.1.17 
(Danecek et al. 2011) to remove indels and SNPs with more 
than 2 alleles. Reference and alternate allele counts for every 
SNP in each pool were then extracted from the filtered VCF 
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file using a custom python script and imported into R (R 
Core Team 2019) for filtering.

SNPs with a total read depth lower than the 5th percentile 
or higher than the 95th percentile of the read depth distri-
bution across all SNPs were removed, as were SNPs with 
a minor allele frequency (calculated using allele counts in 
each pool) < 0.10. Unanchored SNPs (i.e., those on scaf-
fold Cp4.1LG00) were also removed. Parental genotypes 
with fewer than 6 reads were set to missing, and only SNPs 
where the parents were homozygous for opposite alleles 
were retained. Parental genotypes were then used to recode 
alleles from reference/alternate coding to Dunja-derived/
Pc-NY21 derived. Allele counts in samples representing 
technical sequencing replicates of the same DNA pool were 
summed at this point. Further filtering was then performed 
within each pool, by setting to missing any sites with an 
allele frequency <0.10 or >0.90 or with a read depth lower 
than the 10th percentile for that pool. These missing sites 
were not included for calculation of allele frequencies nor 
for any statistical test involving that pool.

For visualization of allele frequencies, allele frequency 
means for each pool were estimated in 500-Kb sliding win-
dows with a 100-Kb increment. To test for deviations in 
allele frequencies between SUS and RES pools, the soft-
ware program MULTIPOOL (v 0.10.2; Edwards and Gif-
ford 2012), which estimates pool allele frequencies using a 
dynamic Bayesian network, was used. The argument –mode 
was set to contrast. We set 1,056 as the number of individu-
als contributing DNA to each pool (-n) and 125,636 as the 
length, in base pairs, of a centimorgan in squash (-c), which 
was estimated by dividing the mean of the lengths of three 
published genetic maps (Esteras et al. 2012; Holdsworth 
et al. 2016; Montero-Pau et al. 2017) by the estimated C. 
pepo genome size of 283 Mb (Montero-Pau et al. 2018). 
MULTIPOOL was also used to test for allele frequency 
deviations between Rep 1 SUS and Rep 2 SUS as well as 
Rep 1 RES and Rep 2 RES in order to generate a null distri-
bution of LOD scores reflecting the comparison between two 
independent bulks of plants selected in the same direction.

Phenotyping of  F2:3 population

One hundred eighty-seven  F2 plants were self-pollinated 
to generate  F2:3 families. These  F2 plants represented two 
different cohorts of individuals: a ‘random’ cohort of 169 
plants started from remnant seed and a ‘selected’ cohort 
comprising 18 survivors from the BSA-Seq screen. In 
order to collect seed from infected plants from the BSA-
Seq screen, 42 seedlings (18 in Rep 1 and 24 in Rep 2) 
that appeared healthy at 14–15 days post-inoculation were 
treated with mefenoxam (Ridomil Gold EC; Syngenta AG, 
Basel, Switzerland) and transplanted to 3-gal pots. Eighteen 

of these 42 plants survived and produced viable seed after 
self-pollination.

The 187  F2:3 families, in addition to parental and  F1 
checks, were evaluated for Phytophthora root and crown rot 
resistance as seedlings in the greenhouse. An  F5:6 family 
derived from one selfed  F5 Pc-NY21 individual was included 
to represent the resistant parent. Experimental units con-
sisted of 12 adjacent cells in a 72-cell tray and were arranged 
in a randomized complete block design with three replica-
tions. Three of the 187 families were only included in two 
blocks due to limited seed. Inoculum was prepared as in the 
BSA-Seq screen, except plants were inoculated by pipetting 
a suspension of 10,000 zoospores to the potting soil surface 
adjacent to each plant.

Plots were rated for incidence of mortality at several 
days post-inoculation (dpi) (3, 5, 7, 10, and 12 dpi for Rep 
1 and 3, 4, 5, 6, 7, and 10 dpi for Reps 2 and 3). Seedlings 
were declared dead when they either had all wilted leaves, 
had only one or fewer non-chlorotic leaves, or were com-
pletely prostrate due to stem lesions. The relative area under 
the disease progress curve (rAUDPC; Fry 1978) was then 
calculated for each plot according to the following formula:

where yi is the mortality rating as a percentage at the i th 
observation, ti is the time point in days at the i th observa-
tion, and n is the total number of observations. The relative 
AUDPC was used to normalize AUDPC values between 
blocks as they were rated for different numbers of days.

Ratings for any plot with fewer than 6 germinated plants 
were set to missing. The following mixed linear model was 
then fit using the R package lme4 (Bates et al. 2015) in order 
to estimate best linear unbiased estimators (BLUEs) for the 
effect of each family on rAUDPC:

In this model, yij are raw phenotypic observations, � 
is the grand mean, �i is the fixed effect for the i th family, 
bj ∼ iidN

(

0, �2

b

)

 is a random effect for the jth block (i.e., 
replication), and eij ∼ iidN

(

0, �2

e

)

 . is the residual effect. 
Separate models were also fit using mortality ratings at 3, 
5, 7, and 10 dpi as the response variables. In order to calcu-
late line-mean heritability (H2; Holland et al. 2003), a simi-
lar model was fit, except family was included as a random 
instead of fixed effect. The following formula was then used:
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1
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where �2

g
 is the genotype variance, �2

e
 is the error variance, 

and r is the harmonic mean of the number of replications per 
family without missing data.

Genotyping of F2 individuals and genetic 
map construction

Newly emerged leaves were sampled from the  F2 parents of 
the  F2:3 mapping population and desiccated using silica gel 
(Millipore Sigma, Burlington, MA). Total genomic DNA 
was then isolated using the DNeasy Plant Mini Kit (Qia-
gen, Valencia, CA, USA) following manufacturer’s direc-
tions, except DNA was eluted into ultrapure water instead 
of Buffer AE. DNA samples were obtained from a total of 
188  F2 progeny (19 ‘selected’ and 169 ‘random’), as well 
as the two parents of the population, with the  F4 progenitor 
of Pc-NY21 sampled to represent the resistant parent. DNA 
samples were sent to the University of Wisconsin-Madison 
Biotechnology Center for preparation of genotyping-by-
sequencing (GBS) libraries digested with ApeKI (Elshire 
et al. 2011), a restriction enzyme that has previously been 
shown effective for GBS variant discovery and genotyping 
in C. pepo (Holdsworth et al. 2016). Libraries were then 
paired-end sequenced on an Illumina NovaSeq6000 with a 
target output of two million reads per sample.

Genotypes were called using GBS-SNP-CROP (Melo 
et  al. 2016), a variant calling pipeline designed to run 
with paired-end reads. As part of this pipeline, reads were 
demultiplexed, trimmed using Trimmomatic (v 0.39; Bolger 
et al. 2014), and aligned to the squash reference genome 
(Montero-Pau et al. 2018) using BWA-mem (Li and Durbin 
2009). Variants were called using the default parameters 
in GBS-SNP-CROP, except the arguments -altStrength, 
-mnAlleleRatio, -mnAvgDepth, and -mxAvgDepth were 
set to 0.9, 0.15, 7, and 150, respectively. These parameters 
were chosen in order to enrich for variants with allele fre-
quencies as expected in an  F2 population (altStrength), avoid 
undercalling of heterozygotes (mnAlleleRatio), and avoid 
spurious variants (mnAvgDepth) or variants in regions with 
alignment issues (mxAvgDepth), taking into account the 
read depth distributions in our dataset. Genotype calls were 
then converted to a dosage matrix and imported into R for 
filtering.

Unanchored SNPs were removed, as were SNPs that 
did not meet the following criteria: minor allele frequency 
(MAF) >0.1, call rate >0.9, and read depth between 15 
and 90. Three individuals with over 40% missing data 
were removed as well. SNPs were then removed that were 
not homozygous for opposite alleles in the parents or that 
failed a Chi-squared goodness-of-fit test (p < 0.01) for 1:2:1 
AA:AB:BB segregation among the  F2 progeny. In order to 

identify potential errors during DNA extraction or library 
preparation, pairwise genotype concordance was calcu-
lated among all pairs of samples. Four pairs of samples 
were found to have >99% identical genotype calls. For each 
pair, the sample with the least missing data was retained 
for genetic map construction and the phenotypic records for 
those retained samples were set to missing. Finally, mark-
ers were pruned by identifying sequences of consecutive 
SNPs with identical genotype calls on all non-missing indi-
viduals and retaining the marker with the least missing data. 
Genotypes were then re-coded as “A/B/H” for genetic map 
construction.

The R package R/qtl (Broman et al. 2003) was used to 
estimate recombination fractions between all pairs of mark-
ers in order to build a genetic map. Linkage group assign-
ments were based on the physical coordinates of markers 
on the reference genome, except for six markers which 
displayed high recombination fractions with all markers on 
their respective linkage groups and were manually re-located 
to the correct linkage group. The MSTMap algorithm (Wu 
et al. 2008) was then used to re-order markers within each 
linkage group, using the R package ASMap (Taylor and But-
ler 2017). Recombination fractions were converted into map 
distances using the Kosambi map function.

Linkage mapping and validation of BSA‑Seq 
QTL

A multiple QTL mapping (MQM) procedure was performed 
in R/qtl (Broman and Sen 2009) using the 176  F2:3 fami-
lies with genotype and phenotype data that passed filtering. 
First, conditional genotype probabilities were calculated 
at 1 cM positions across the genetic map using the calc.
genoprob function. The genotyping error rate was set to 
0.001, reflecting the average proportion of discordant geno-
type calls among the four pairs of erroneously duplicated 
samples. In order to estimate penalties for the inclusion of 
terms in model selection, rAUDPC values were permuted 
1,000 times relative to genotypes, and a two-dimensional 
QTL scan using Haley–Knott regression (Haley and Knott 
1992) was performed using the scantwo function. Penalties 
at α=.05 were derived from the resulting null distribution of 
LOD scores using the calc.penalties function, and the best-
fitting QTL model was identified with the forward/backward 
stepwise search algorithm implemented in the stepwiseQTL 
function, again using the Haley–Knott regression. The func-
tion bayesint was used to calculate 90% Bayesian credible 
intervals for QTL locations, with the ends of the intervals 
extended to marker positions so as to convert genetic mark-
ers to physical coordinates on the reference genome.

The fitqtl function, which performs a likelihood ratio test 
after dropping one QTL from the model at a time, was used 
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to calculate LOD scores and p-values for each QTL, as well 
as estimate their effect sizes and proportion of phenotypic 
variance explained. Two QTL models were fit, one contain-
ing the loci detected via BSA-Seq and one containing those 
identified from multiple QTL mapping using the  F2:3 phe-
notypes. The QTL detected via BSA-Seq were placed on the 
genetic map by identifying, for each QTL, the GBS marker 
nearest the midpoint of the MULTIPOOL LOD peaks 
from Reps 1 and 2. For plotting QTL effects and estimat-
ing QTL allele frequencies in the two  F2 cohorts, missing 
GBS genotypes were imputed using the Viterbi algorithm 
as implemented in the argmax.geno function. Significant 
differences between rAUDPC means for  F2:3 families with 
differing QTL marker alleles were determined using Tukey’s 
honestly significant difference test at α=.05 using the func-
tion HSD.test in the R package agricolae (Mendiburu and 
Simon 2015).

Synteny with C. moschata

To assess whether QTL in C. pepo were syntenic with those 
reported by Ramos et al. (2020) in C. moschata, we followed 
the approach used in the ‘SyntenyViewer’ module of the 
Cucurbit Genomics Database (Zheng et al. 2019) in order 
to identify and visualize regions of synteny between the 
genomes of the two species. Briefly, the C. pepo (Montero-
Pau et al. 2018) and C. moschata (Sun et al. 2017) protein 
sequences were aligned against each other using blastp 
(Camacho et al. 2009) and synteny blocks were identified 
from the resulting alignments using MCScanX (Wang et al. 
2012). The R package circlize (Gu et al. 2014) was then used 
to visualize syntenic relationships.

Candidate gene identification

QTL regions, which we defined as the union of BSA-Seq 
and MQM credible intervals, were cross-referenced with the 
squash reference gff file (Montero-Pau et al. 2018) using bed-
tools v 2.28 (Quinlan and Hall 2010) in order to generate a 
list of genes annotated in QTL regions. SnpEff v 4.3T (Cin-
golani et al. 2012) was then used to annotate variants between 
Pc-NY21 and Dunja for their putative functional impact 
on these genes. The whole genome resequencing genotype 
calls from BSA-Seq were used for variant annotation. These 
genotype calls were filtered on read depth and minor allele 
count frequency as for the BSA-Seq analysis, except, in order 
to prevent the removal of potential causative variants, indels 
were retained, low read-depth sites were not set to missing, 
and variants that were heterozygous in one parent were not 
removed. Variants where the minor allele was not called in at 
least 5 samples, including parents and pools, were removed. 

Genes in QTL regions were also evaluated for their homology 
with melon (Cucumis melo) genes shown to be differentially 
expressed following inoculation with P. capsici, as reported 
by Wang et al. (2020). Homologues were defined as recipro-
cal best hits on the basis of e-value after using blastp (Cama-
cho et al. 2009) to align the complete sets of melon (v 3.6.1; 
Garcia-Mas et al. 2012) and squash (Montero-Pau et al. 2018) 
protein sequences against each other.

Prediction models

A cross-validation approach was used to assess the ability 
of different linear models, featuring markers either genome-
wide or only in QTL regions, to predict rAUDPC estimates 
among  F2:3 families. Four models were compared: a mul-
tiple regression model in which the allele dosages at the 
GBS markers tagging each BSA-Seq QTL were treated as 
fixed effects (QTL MLR); a genomic best linear unbiased 
prediction model (GBLUP), where genome-wide markers 
were used to model the covariance between families with 
a genomic relationship matrix; a GBLUP plus QTL model 
(GBLUP+QTL) where, in addition to the inclusion of the 
genomic relationship matrix, QTL marker allele dosages 
were included as fixed effects; and a whole-genome regres-
sion Bayesian approach (BayesB; Meuwissen et al. 2001), in 
which marker effects are assigned a prior distribution where 
a portion equal zero and the rest have a scaled-t distribution. 
The QTL MLR model was fit using the lme4 R package 
(Bates et al. 2015), the two GBLUP models using R package 
rrBLUP (Endelman 2011) and the BayesB model using R 
package BGLR (Perez and Gustavo de los Campos 2014). 
The genotype data used in models, whether genome-wide or 
only at the five QTL markers, were from the genetic map-
imputed GBS SNP set.

For cross-validation, the data were partitioned randomly 
into two subsets: a training set used to fit a given model, 
comprising 80% of the individuals, and a test set used for 
assessing prediction accuracy, comprising 20% of the indi-
viduals. The same partitions were used for all five models, to 
enable direct comparison, and this was replicated 50 times. 
In each cross-validation partition, prediction accuracy was 
estimated by taking the Pearson’s correlation coefficient 
between the observed values and estimated breeding values 
of the test individuals, as predicted by the training-set model.

Results

BSA‑Seq

DNA pools were sequenced from two independent repli-
cates of resistant, susceptible, and random (Rep 2 only) 
bulks selected from phenotypic screens featuring >6,500  F2 
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squash seedlings each. A total of 192 Gb of sequencing reads 
were generated from the five DNA pools and the parents of 
the population (Table 1). After aligning reads to the squash 
reference genome and identifying variants, between 182,311 
and 186,020 SNPs were retained in each pool after filtering. 
These SNPs featured a median read depth of 9–10 in the par-
ents, 57–70 in SUS and RES pools, and 24 in the Rep 2 RAN 
pool (Table 1). While the majority of the genome featured 
dense marker coverage, several regions contained few or no 
SNPs, including regions >1 Mb in size on chromosomes 7, 
13, 14, 16, and 20 (Figure S1; Figure S2).

Allele frequencies at individual SNPs fluctuated, with the 
median standard deviation of SNP allele frequencies binned 
in 500 Kb windows ranging from 0.07 in Rep 2 RES, the 
pool with the highest read depth, to 0.11 in Rep 2 RAN, 
the pool with the lowest read depth. Averaging individual 
values in 500-Kb sliding windows enabled easier visualiza-
tion of allele frequencies, showing that for the majority of 
the genome, RES, SUS, and RAN pools featured little dif-
ferentiation (Figure S1; Figure S2).

We used the program MULTIPOOL to test for differences 
in allele frequencies between pools and determine 90% cred-
ible intervals for QTL positions. A null test between repli-
cates for both RES and SUS pools resulted in a maximum 
LOD score of 2.59, and we decided to use a conservative 
LOD score threshold of 4 for QTL detection. Five genomic 
regions, on chromosomes 4, 5, 8, 12, and 16, featured LOD 
scores >4 in both Reps 1 and 2 after testing for differences 
between RES and SUS pools (Table 2; Fig. 1). Two addi-
tional regions, on chromosome 17 and the beginning of chro-
mosome 4, surpassed the LOD score threshold in only one 
of two reps and were therefore not considered for further 
analysis. In the QTL regions on chromosomes 4, 5, and 8, 
the RES pool featured a higher frequency of the Pc-NY21 
allele compared to the SUS pool, whereas the opposite was 
true in the chromosome 12 and 16 regions, indicating that 
the allele conferring resistance in each of these two regions 
was inherited from susceptible parent Dunja. In all five QTL 
regions, the RAN pool in Rep 2 displayed allele frequency 
values intermediate between those of the RES and SUS 

Table 1  Sequencing statistics for BSA-Seq samples

a SUS, susceptible pool; RES, resistant pool; RAN random pool
b Genome coverage (X) was calculated by dividing total the base pairs represented in samples by the C. pepo reference genome size of 
263,500,452 bp
c Only aligned reads with a mapping quality >20 are counted

Samplea Raw reads (Gb) Raw reads (X)b Filtered reads 
(Gb)

Filtered reads 
(X)b

Aligned reads 
(Gb)c

Aligned reads 
(X)bc

Median SNP 
read depth

Dunja 4.34 16 3.82 14 2.59 10 10
PcNY-21 4.15 16 3.59 14 2.30 9 9
Rep 1 SUS 50.40 191 43.63 166 26.57 101 64
Rep 1 RES 35.55 135 28.12 107 18.12 69 57
Rep 2 SUS 39.90 151 34.82 132 22.79 87 68
Rep 2 RES 43.08 163 38.28 145 25.22 96 70
Rep 2 RAN 14.58 55 12.10 46 7.71 29 24

Table 2  BSA-Seq QTL mapping results

a Maximum LOD scores, positions, and 90% credible intervals (CIs) determined using MULTIPOOL
b Values for Reps 1 and 2 are separated by a “/.”
c Maximum smoothed allele frequency difference, calculated as mean resistant pool allele frequency – mean susceptible pool allele frequency in 
500-Kb sliding windows with a 100-Kb increment

Chromosome Max  LODab Max LOD position (Mb) (90% CI)ab Max allele frequency 
 differencebc

Max allele frequency 
difference position 
(Mb)bc

Cp4.1LG04 7.98/12.96 9.16 (8.3–10.38)/9.04 (8.7–9.36) 0.13/0.17 9.25/9.05
Cp4.1LG05 7.34/9.36 0.6 (0.18–1.68)/0.05 (0.04–2.47) 0.12/0.13 0.65/2.55
Cp4.1LG08 6.66/7.64 4.7 (1.95–6.72)/2.25 (1.84–5.18) 0.12/0.13 3.15/2.55
Cp4.1LG12 4.4/4.77 0.06 (0.06–6.9)/4.71 (0.36–7.38) − 0.09/− 0.09 0.25/4.95
Cp4.1LG16 4.6/7.09 6.36 (4–8.22)/7.57 (5.84–8.26) − 0.10/− 0.12 7.95/7.45
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pools. Segregation distortion was evident in the chromo-
some 8 QTL, where RES, SUS, and RAN pools all showed 
enrichment for the Pc-NY21 allele, although this deviation 
was greater in the RES compared to the SUS pool. 

The maximum smoothed allele frequency difference 
between RES and SUS pools was modest in all cases, rang-
ing from 0.09 on chromosome 12 (averaging across reps) to 
0.15 on chromosome 4 (Table 2). For the QTL on chromo-
somes 4 and 5, which featured the highest LOD scores, 90% 
credible intervals ranged from 0.66 to 2.43 Mb in size, and 
the location of LOD peaks was consistent between reps, dis-
playing a difference of 0.12 Mb on chromosome 4 and 0.55 
Mb on chromosome 5. The QTL on chromosomes 8, 12, and 

16, on the other hand, had larger credible intervals ranging 
from 2.41 to 7.01 Mb in size and showed little consistency in 
the location of QTL peaks between reps, varying in the case 
of the chromosome 12 QTL by as much as 4.65 Mb, almost 
half the length of the chromosome.

Validation of BSA‑Seq results and linkage 
mapping with  F2:3 families

One hundred eighty-seven  F2 plants—comprising 18 sur-
vivors of the BSA-Seq screen (‘selected’ plants) and 169 
plants grown from remnant seed (‘random’ plants)—were 

Fig. 1  a Pc-NY21 allele frequencies in susceptible (SUS), resistant 
(RES), and random (RAN) (Rep 2 only) pools for all chromosomes 
that feature a region surpassing a MULTIPOOL LOD score of 4 in 
both reps. Plus signs are individual SNP allele frequencies, and lines 
are smoothed means calculated in 500-Kb sliding windows with a 

100-Kb increment. For ease of visualization, only a random subset of 
25% of SNPs are shown. Smoothed means were not calculated in any 
window featuring fewer than 30 SNPs. b Genome-wide LOD scores 
from MULTIPOOL testing for allele frequency deviations between 
susceptible and resistant pools for Reps 1 and 2 of BSA-Seq
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individually genotyped with genotyping-by-sequencing 
and selfed to generate an  F2:3 mapping population. In a 
greenhouse experiment, the family-mean heritabilities 
among  F2:3 families for mortality at 3,5,7, and 10 dpi 
ranged from 0.40 to 0.76, with heritability increasing 
with dpi (Table S1). A summary statistic incorporating 
ratings at all time points, rAUDPC, featured a higher her-
itability (0.77) compared to mortality at any individual 
time point and was therefore used for all future analyses. 
The distribution of BLUEs for rAUDPC among  F2:3 fami-
lies appeared slightly non-normal, with a long left (i.e., 
resistant) tail (Fig. 2A). Transgressive segregation was 
observed, with two families displaying rAUDPC estimates 
lower than Pc-NY21 and 33 families displaying rAUDPC 
estimates higher than Dunja. Lower rAUDPC estimates 
were observed among  F2:3 families derived from ‘selected’ 
plants, which featured a median of 60.69, compared to  F2:3 

families from ‘random’ plants, which featured a median 
rAUDPC estimate of 74.18 (Table S1; Fig. 2B).

A genetic map was constructed from 605 GBS-derived 
SNPs that were called on 181  F2 individuals with high-
quality genotype data. The map was 2,023.38 cM in length 
and consisted of 20 linkage groups corresponding to the 
20 chromosomes of C. pepo (Table S2; Figure S3). Link-
age groups featured between 7–76 markers and ranged in 
length from 43.50 to 193.55 cM. Genetic marker positions 
were largely correlated with physical marker positions on 
the reference genome, except for 6 markers that mapped 
to the wrong linkage group and two genomic regions —
covering approximately 8 Mb on the beginning of chromo-
some 4 and 1 Mb on the end of chromosome 17—where 
the genetic marker order was inverted in relation to the 
physical marker order (Figure S4).

Fig. 2  Distributions of best linear unbiased estimates of relative area 
under the disease progress curve (rAUDPC) for 187  F2:3 families. a 
Histogram of  F2:3 rAUDPC estimates with lines representing esti-
mates for the parents and  F1 generation b Overlapping histograms for 
 F2:3 families derived from 169 ‘random’  F2 individuals grown from 

remnant seed (blue) and 18 ‘selected’  F2 individuals that survived the 
BSA-Seq screen. c–g rAUDPC estimates for  F2:3 families vs their  F2 
parent’s genotype at each of five SNP markers tagging QTL detected 
via BSA-Seq. Values are shown for 176  F2:3 families with both phe-
notype and genotype data
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The GBS markers nearest the BSA-Seq QTL locations, 
which ranged from 1 to 196 Kb away from the midpoint of 
the LOD peaks from BSA-Seq Reps 1 and 2, were identified 
(Table S3). For all 5 of these QTL markers, the frequency of 
the resistant allele, as determined by BSA-Seq, was enriched 
in the ‘selected’ compared to the ‘random’  F2:3 families, 
with the magnitude of the allele frequency difference (0.19) 
greatest for the QTL on chromosome 4 and smallest (0.04) 
for the chromosome 16 QTL. rAUDPC means were signifi-
cantly different among  F2:3 families with different marker 
genotypes for the QTL on chromosomes 4, 5, 8, and 16, 
although not for the chromosome 12 QTL (Fig. 3C-G). Con-
sistent with the BSA-Seq results, the Pc-NY21 allele was 
associated with lower rAUDPC estimates at the chromo-
some 4, 5, and 8 QTL markers, and associated with higher 
rAUDPC estimates at the QTL markers on chromosomes 12 
and 16. A multiple regression model fit with the 5 markers 

tagging BSA-Seq QTL explained 27.82% of the variance 
in rAUDPC estimates among  F2:3 families, with individual 
QTL explaining between 1.92 and 9.82% of the phenotypic 
variation (Table 3). Additive allelic effects on rAUDPC 
ranged in absolute value from 1.93 for the chromosome 12 
QTL to 4.98 for the QTL on chromosome 5, and dominance 
deviations, as a percentage of the additive effect, varied from 
30 to 115%, indicating a mixture of partially dominant and 
dominant gene actions.

The genetic map and  F2:3 phenotypic data were also used 
to discover QTL de novo using a multiple QTL mapping 
approach. The best-fitting model, explaining 35.18% of the 
phenotypic variance, was found to contain four non-inter-
acting QTL, consisting of the same loci identified via BSA-
Seq on chromosomes 4, 5, and 8, in addition to a locus on 
chromosome 19 where the resistant allele was contributed 
by Dunja (Table 4; Figure S5). MQM and BSA-Seq credible 

Fig. 3  Most likely QTL 
positions (open circles) and 
credible intervals (bars) for 
QTL detected via BSA-Seq 
Reps 1 and 2 and multiple QTL 
mapping (MQM). Tick marks 
represent SNPs discovered 
by genotyping-by-sequencing 
(GBS) and used for genetic map 
construction. BSA-Seq QTL 
tagging markers were identified 
as those closest to the midpoint 
of QTL locations from Reps 1 
and 2 of BSA-Seq

Table 3  Effect sizes of BSA-Seq QTL in  F2:3 population.

a Genotyping-by-sequencing (GBS) markers representing BSA-Seq QTL were those nearest the midpoint of MULTIPOOL LOD peaks from 
BSA-Seq Reps 1 and 2
b a additive effect of Pc-NY21 allele on rAUDPC
c d dominance effect of Pc-NY21 allele

Chromosome Position of QTL-tagging 
GBS marker (Mb)a

Position of QTL-tagging 
GBS marker (cM)a

LOD Proportion variance 
explained (%)

F test p-value ab dc

4 8.91 84.16 2.98 5.85 1.61 ×  10− 3  − 4.1 1.21
5 0.39 1.71 4.87 9.82 2.70 ×  10− 5  − 4.98  − 3.39
8 3.46 44.48 3.12 6.13 1.22 ×  10− 3  − 4.02 1.99
12 2.39 24.94 1.17 2.25 0.08 1.93  − 2.21
16 7.01 49.84 1.00 1.92 0.12 2.05 1.60
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intervals overlapped for the three QTL identified via both 
approaches, except for the chromosome 4 QTL, where the 
BSA-Seq Rep 2 and MQM credible intervals were disjoint 
(Fig. 3). For the QTL on chromosomes 5 and 8, the most 
likely QTL positions as determined by MQM were very 
close to the GBS markers tagging BSA-Seq QTL, differ-
ing by 0.48 cM on chromosome 8 and falling on the same 
marker on chromosome 5. In the case of the chromosome 4 
QTL, however, the MQM position and the BSA-Seq QTL 
marker were 9.08 cM apart.

Candidate gene identification

QTL regions were defined conservatively as the union of 
BSA and MQM credible intervals for the purposes of candi-
date gene identification. Excluding the chromosome 19 QTL, 
which was only identified via MQM and therefore featured 
a much narrower credible interval, QTL regions contained 
between 365 and 815 annotated genes (Table 5). In each 
QTL region, between 280 and 548 of these genes featured 
variants that were polymorphic between Dunja and PcNY-21 
and had a functional effect predicted to be moderate (e.g., 

missense mutation or in-frame insertion/deletion) or high 
(e.g., non-sense mutation or frameshift insertion/deletion). 
Of the genes with a predicted moderate- or high-effect vari-
ant, 63-144 in each QTL region featured homologs in melon 
that were differentially expressed post-inoculation with P. 
capsici. Several of these had annotations potentially related 
to disease resistance, including three receptor-like protein 
kinases on chromosomes 4, 5, and 12 (Cp4.1LG04g11730, 
Cp4.1LG08g07850, and Cp4.1LG12g09630, respectively) 
and a nucleotide-binding site Toll/interleukin-1 receptor 
(TIR-NB) protein on chromosome 5 (Cp4.1LG05g03340).

Prediction models

In order to assess the practical value of the QTL discovered 
via BSA-Seq, a multiple linear regression model containing 
QTL markers was compared to three genomic prediction 
models using genome-wide markers for their ability to pre-
dict  F2:3 rAUDPC estimates (Fig. 4). The median predic-
tion accuracy of the QTL MLR model, as determined by 
cross-validation, was found to be moderate (0.43), although 
it was slightly outperformed by all three genomic prediction 

Table 4  Multiple QTL mapping results and effect sizes

a CI, credible interval
b Chromosome 4 credible interval disjoint due to discrepancy in marker orders between reference genome and genetic map
c a additive effect of Pc-NY21 allele on rAUDPC
d d dominance effect of Pc-NY21 allele

Chromosome Position (Mb) (90%  CIa) Position (cM) (90%  CIa) LOD Proportion varia-
tion explained (%)

F test p-value ac dd

4 8.07 (0–0.02;8.07–8.5)b 75.08 (69.98–81.23) 5.54 10.12 5.51 ×  10− 6  − 5.28 2.5
5 0.39 (0.1–1.02) 1.71 (0.00–8.02) 5.33 9.69 8.85 ×  10− 6  − 4.94  − 3.33
8 3.46 (1.26–3.94) 44.00 (14.06–50.14) 3.98 7.11 1.68 ×  10− 4  − 4.63 1.13
19 3.3 (2.73–3.56) 35.20 (32.60–37.96) 4.66 8.41 3.76 ×  10− 5 2.26  − 6.52

Table 5  Candidate genes in QTL regions

a QTL region defined as union of BSA-Seq and multiple QTL mapping credible intervals
b Functional effects of variants (moderate or high) determined by SnpEff
c DE differentially expressed in Wang et  al. (2020); homologs between squash and melon defined as reciprocal best hits following reciprocal 
blastp alignments

Chromosome QTL region (Mb)a Number genes Number genes, 
moderate effect 
 variantb

Number genes, 
high effect 
 variantb

Number genes, 
DE melon 
 homologc

Number genes, DE melon 
homolog and moderate/high 
effect

4 0–0.02; 8.07–10.38 365 234 46 99 63
5 0.04–2.47 425 205 33 127 63
8 1.25–6.72 666 444 104 175 115
12 0.06–7.38 815 415 65 234 127
16 4.00–8.26 694 404 85 217 144
19 2.73–3.56 85 32 5 23 11
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models. The GBLUP and Bayes-B models performed 
similarly (median prediction accuracies of 0.51 and 0.50, 
respectively). Incorporating fixed QTL marker effects into 
the GBLUP model, in the case of the GBLUP+QTL model, 
only provided a slight benefit, resulting in a median predic-
tion accuracy of 0.54.

Discussion

As P. capsici continues to spread to previously un-infested 
farms, often via contaminated surface water sources that 
may flood or inadvertently be used for irrigation (Gevens 
et al. 2007; Jones et al. 2014), host resistance is becoming 
increasingly important for the sustainable management of 
Phytophthora root and crown rot. Little is known, however, 
about the genetic basis of resistance in C. pepo, the squash 
species that includes economically important market classes 
such as zucchini, summer squash, and carving pumpkins. In 
this study, we identified a total of six genomic regions asso-
ciated with variation for Phytophthora root and crown rot 
resistance in a biparental C. pepo population. Our approach, 
where we genotyped both individual progeny and bulked 
samples representing phenotypic extremes, also enabled us 
to compare the power, resolution, and practicality of two 
alternate strategies for discovering QTL.

Many aspects influence the QTL detection power and 
mapping resolution of BSA-Seq experiments. These include 
factors associated with the genetic architecture of the trait, 

such as the effect sizes, gene action, and degree of linkage 
between causative loci, in addition to technical considera-
tions controlled by the experimenter, namely the size of the 
mapping population, size of selected bulks, and depth of 
sequencing coverage (Ehrenreich et al. 2010; Magwene et al. 
2011; Takagi et al. 2013; Pool 2016). Generally, in a QTL 
mapping experiment, an increase in population size results 
in greater statistical power to detect QTL and more precise 
localization of QTL, since more recombination events are 
captured among the individuals in the population. However, 
with BSA-Seq, the gains in power and resolution conferred 
by an increase in population size are dependent on the choice 
of bulk size and sequencing coverage (Magwene et al. 2011; 
Pool 2016). Analytical results and simulations show that 
increasing the bulk proportion up to approximately 15–20% 
of the population size should provide an increase in power 
by reducing variation in allele frequencies due to random 
sampling (Magwene et al. 2011; Takagi et al. 2013). How-
ever, with larger population sizes, an adequate reduction in 
sampling variance may be achieved with lower bulk propor-
tions (Pool 2016). Furthermore, since bulk allele frequencies 
are not measured directly, but are instead estimated from a 
subsample of randomly drawn sequencing reads, larger bulks 
may not be advantageous without corresponding increases in 
sequencing depth (Magwene et al. 2011; Pool 2016)

The mapping population we evaluated in this experiment, 
consisting of approximately 7,000 plants per replicate, was 
large compared to most BSA-Seq experiments in plants, 
although several other researchers have evaluated plant 
populations in the range of 10,000 or even 100,000 individu-
als (Yang et al. 2013; Haase et al. 2015; Yuan et al. 2016). 
Following recommendations in the literature (Magwene 
et al. 2011; Takagi et al. 2013), we aimed to include 15% 
of the total population, or approximately 1,000 individuals, 
in each RAN, SUS, and RES bulk. Our realized sequencing 
depth of 24–70 (Table 1), however, meant that the number 
of reads sampled at a given site on average captured fewer 
than 0.5% of the approximately 2,000 distinct chromosomes 
represented in bulks. Consequently, variation from sequenc-
ing noise likely represented a much greater source of error 
in our experiment than variation from sampling individuals 
for bulks. Given our population size and level of sequenc-
ing depth, it may therefore have been advantageous to have 
selected smaller bulks, thereby applying a higher selection 
intensity and driving a higher divergence in allele frequency 
between RES and SUS bulks.

Nevertheless, we were able to overcome some of the 
limitations imposed by shallow sequencing and low allele 
frequency differentiation by using a statistical method, 
MULTIPOOL, that considers information from all markers 
on a chromosome simultaneously in order to identify the 
positions of QTL (Edwards and Gifford 2012). Compared 
to other methods for QTL mapping with BSA-Seq data, 

Fig. 4  Cross-validation prediction accuracies for four models predict-
ing  F2:3 rAUDPC. QTL MLR: multiple linear regression model with 
allele dosages at five SNP markers tagging BSA-Seq QTL. GBLUP: 
Genomic best linear unbiased prediction model using 605 genome-
wide SNPs. GBLUP+QTL: GBLUP model with five SNP markers 
tagging BSA-Seq QTL as fixed effects. Bayes-B: Bayes-B model 
using 605 genome-wide SNPs
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MULTIPOOL results in a low rate of false negatives and 
false positives even at low levels of sequencing coverage 
(Duitama et al. 2014; Huang et al. 2020). The two methods 
most popular in the plant breeding literature—QTL-Seq 
(Takagi et al. 2013) and the G’ test (Magwene et al. 2011), 
both based on sliding window-smoothed statistics—perform 
well in many scenarios but improperly control for multiple 
testing, leading to poor detection of QTL in low read depth 
situations (Huang et al. 2020). While the authors of MULTI-
POOL do not suggest a LOD threshold for declaring a QTL 
significant, we were able to determine an appropriate cut-off 
by assessing a null distribution of LOD scores from inter-rep 
comparisons of bulks selected in the same direction. Our 
use of multiple replicates, which are not typical in BSA-Seq 
experiments but common in conceptually similar ‘evolve & 
resequence’ experiments (Long et al. 2015), also granted us 
greater confidence in the five QTL that were discovered, as 
they represented regions featuring significant differentiation 
between two independent selections of RES and SUS bulks.

Multiple QTL mapping with 176  F2:3 families resulted 
in the identification of a similar set of QTL compared to 
BSA-Seq. Both methods agreed in the identification of three 
regions—on chromosomes 4, 5, and 8—where the resistant 
allele was inherited from resistant parent Pc-NY21. How-
ever, the two methods identified distinct loci where the allele 
associated with resistance was inherited from Dunja, possi-
bly due to the lower effect sizes of these QTL. Multiple QTL 
mapping credible intervals were considerably narrower than 
the credible intervals determined by MULTIPOOL from the 
BSA-Seq data (Figure 3), although this is likely explained 
by the fact that MQM credible intervals, as estimated in R/
qtl, do not account for uncertainty in the positions of other 
identified QTL and are therefore overly liberal (Broman and 
Sen 2009). Indeed, credible intervals for these same loci as 
identified in R/qtl via a single QTL interval mapping scan, 
as opposed to MQM, were similar in size to those identified 
via BSA-Seq (data not shown). For the loci on chromosomes 
5 and 8, the most likely QTL position determined by MQM 
was remarkably close to the midpoint of the QTL positions 
identified by Reps 1 and 2 of BSA-Seq, differing by 62 kb on 
chromosome 5 and 16 kb on chromosome 8 (Figure 3). This 
was not the case, however, with the chromosome 4 QTL, 
where MQM determined the most likely QTL position to 
be over 1 Mb from the midpoint of the BSA-Seq positions. 
Of the 20 chromosomes, chromosome 4 also featured the 
greatest discrepancy in terms of marker order on the genetic 
and physical maps, with markers on the first 8 Mb of the 
chromosome inverted on the genetic map compared to their 
coordinates in the reference genome sequence (Figure S4). 
This discordance, which could either reflect a mis-assembly 
in the reference genome or a true inversion in the parents of 
our population, likely was the reason for the poor estimation 
of the QTL position by MULTIPOOL, as markers showing 

no signal in terms of allele frequency differentiation were 
incorrectly assumed to be tightly linked with markers featur-
ing high signal. Several artifacts of this discrepancy between 
the physical and genetic maps can be seen in our results: the 
quite sudden allele frequency differentiation between RES 
and SUS pools between 8–9 Mb on chromosome 4, which 
appears much more abruptly compared to the onset of other 
QTL we identified, as well as the appearance of a second, 
spurious LOD peak at the beginning of the chromosome, 
which actually surpassed our significance threshold in Rep 
2. In this case, an approach using small reference-based slid-
ing windows, such as QTL-Seq, may have resulted in a more 
accurate determination of the chromosome 4 QTL position 
compared to a model-based method liked MULTIPOOL that 
considers all markers on a chromosome at once.

Overall, the two approaches—BSA-Seq using a large 
population of  F2 individuals and linkage mapping with a 
modestly sized population of  F2:3 families—performed simi-
larly in terms of mapping power, resolution, and localization 
of QTL. Other considerations, however, may influence the 
decision by a researcher to choose one of these methods over 
the other. Genotyping of individual progeny, as required in 
linkage mapping, allows for the estimation of QTL effect 
sizes and the testing of QTL x QTL interaction effects, both 
of which are not possible with BSA-Seq. Individual genotyp-
ing also enables a researcher to use a single genotype dataset 
to map multiple traits, also impossible with BSA-Seq, given 
that the individuals that contribute to the sequenced DNA 
pools are selected based on their values for one particular 
phenotype. On the other hand, BSA-Seq, especially for a 
trait evaluated on seedlings, is easily scaled up to larger 
population sizes, making it a more powerful approach for 
trait mapping in early generations like an  F2 or  BC1. This is 
especially relevant in squash, since plants require manual 
self-pollination and take up considerable space in a field or 
greenhouse, making the generation of inbred lines highly 
resource-intensive.

Between the two QTL mapping approaches used in this 
experiment, a total of six QTL were identified, suggesting 
an oligogenic genetic architecture for Phytophthora root and 
crown rot resistance in squash. Each QTL was of small-to-
moderate effect, with the largest-effect QTL we identified, 
those on chromosomes 4 and 5, individually accounting for 
only 9-10% of the phenotypic variance explained among  F2:3 
families in the MQM model. Furthermore, models including 
the five QTL discovered via BSA-Seq or the four discov-
ered via MQM only explained a modest proportion of the 
phenotypic variance: 28 and 35%, respectively. Considering 
the relatively high broad-sense heritability for rAUDPC in 
the  F2:3 population (0.77), it seems likely that we lacked the 
statistical power to detect additional small-effect loci con-
tributing to variation among  F2:3 families. Based on these 
results, Phytophthora root and crown rot resistance may have 
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a more polygenic genetic architecture in squash compared to 
pepper (Capsicum annuum), where the genetics of resistance 
have been much better characterized. Crosses with different 
resistant pepper accessions have consistently identified, in 
addition to small- and moderate-effect loci, a major QTL 
that accounts for over 50% of the phenotypic variance for 
disease resistance explained in many populations (Thabuis 
et al. 2003; Thabuis et al. 2004; Mallard et al. 2013; Liu 
et al. 2014). It remains unknown whether such large-effect 
resistance genes exist in Cucurbita germplasm. In addition, 
mapping experiments in pepper using diverse isolates of P. 
capsici have shown that minor resistance QTL often have 
isolate-specific effects (Ogundiwin et al. 2005; Truong et al. 
2012; Rehrig et al. 2014; Siddique et al. 2019). Although a 
sibling line of the resistant parent in our cross expressed a 
consistent resistance response when inoculated with diverse 
P. capsici isolates (LaPlant et al. 2020), it is possible that 
separate genes from those discovered in this experiment are 
involved in resistance to different isolates.

Despite the wide range of crops susceptible to Phytoph-
thora root and crown rot (Granke et al. 2012), relatively little 
research has been conducted on the genetic basis of resist-
ance in species beside pepper. Recently, however, Ramos 
et al. (2020) reported the identification of three resistance 
QTL in C. moschata, two of which featured resistance alleles 
inherited from the susceptible butternut parent of their cross. 
Interestingly, we found that the regions comprising the QTL 
identified by Ramos et al. on C. moschata chromosomes 11 
and 14 contained blocks of shared synteny with the C. pepo 
QTL regions we identified on chromosomes 4 and 8, respec-
tively (Figure S6). While these results are suggestive of a 
possible common evolutionary origin for the casual resist-
ance genes at these loci, it is also possible that QTL from 
the two species shared regions of synteny due to chance, 
especially when considering the fact that a substantial por-
tion of the C. pepo genome (8%) was contained within the 
six QTL we identified. Because Ramos et al. used a BSA-
Seq strategy combined with further selective genotyping 
for marker validation, QTL effect sizes were not reported, 
making additional comparisons between QTL from the two 
experiments difficult.

Unfortunately, the successful identification of candidate 
genes in our experiment was made difficult by the high 
degree of statistical uncertainty in QTL positions, as the 
intersections of credible intervals from BSA-Seq and MQM 
generally spanned several Mb and comprised hundreds of 
genes (Figure 3; Table 5). Furthermore, unlike qualitative 
disease resistance, which is typically conferred by proteins 
belonging to a small number of well-characterized gene fam-
ilies (Kourelis and van der Hoom 2018), quantitative disease 
resistance in plants is mediated by a wide variety of genes 
with diverse functions (Nelson et al. 2018). In squash, Phy-
tophthora root and crown rot resistance is associated with a 

reduction in pathogen infection of vascular tissue (Krasnow 
et al. 2017), similar to in pepper, where the secretion of root 
exudates and the formation of callose and cell well apposi-
tions appear to prevent the colonization of P. capsici beyond 
the outermost layers of the cortex in resistant roots and stems 
(Kim and Kim 2009; Dunn and Smart 2015; Piccini et al. 
2019). The genes that confer these defense responses are 
unknown and may have various functions, such as those 
related to pathogen recognition, signaling, or the production 
of antimicrobial molecules. Therefore, we found functional 
annotations relatively uninformative for the identification of 
candidate genes in QTL intervals. However, we were able to 
identify a reduced number of higher-confidence candidate 
genes—between 63 and 144 per QTL region—that were 
segregating for variants of moderate or high effect in our 
population and that featured a homolog in melon that was 
differentially expressed post-inoculation with P. capsici. 
Additional sources of information, such as transcriptomic 
data on the parents of our population, may be able to further 
prioritize candidate genes in QTL intervals. Alternatively, 
fine mapping experiments using more advanced populations 
such as heterogeneous inbred families, which allow for the 
testing of allelic effects in more homogenous genetic back-
grounds (Tuinstra et al. 1997), may be effective in reducing 
the size of the QTL we report.

The results from this experiment are promising for the 
implementation of MAS for Phytophthora root and crown rot 
resistance in squash. Although QTL effect sizes were small, 
we showed that prediction models using just five markers—
one for each QTL detected via BSA-seq—could predict the 
resistance levels of  F2:3 families with a drop in prediction 
accuracy of only 0.07–0.08 compared to whole genome 
prediction models that did not fit QTL effects (Figure 4). 
While this difference is not negligible, genotyping progeny 
at five markers instead of several hundred may be easier 
to implement in a breeding program and could translate to 
meaningful cost-savings. Due to the fact that these QTL only 
explained a moderate portion of the phenotypic variance, 
we do not envision MAS replacing phenotypic selection for 
Phytophthora root and crown rot resistance. Rather, markers 
could be used to enrich for individuals or families carrying 
beneficial alleles that could then be carried forward for fur-
ther testing in the greenhouse or field.

Additional research is necessary to test the effects of these 
QTL in different populations and environments. It should 
be noted that both parents of our cross belonged to C. pepo 
ssp. pepo, the more resistant (Camp et al. 2009; Meyer and 
Hausbeck 2012; Krasnow et al. 2017) of the two indepen-
dently domesticated subspecies of C. pepo (Decker 1988; 
Sanjur et al. 2002) and were therefore both likely fixed for 
the resistant alleles at additional, unknown loci that are pre-
sumably polymorphic between C. pepo ssp. pepo and ssp. 
ovifera. Efforts to introgress resistance from Pc-NY21 into 
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C. pepo ssp. ovifera cultivars via MAS may not be successful 
without accounting for these loci. Furthermore, it is impor-
tant to mention that neither of the parents of our mapping 
population were fully inbred lines, since they were chosen 
more for their utility in breeding rather than their suitability 
for QTL mapping. By only using informative markers that 
were homozygous in the parents, we were able to map the 
genomic positions of QTL that were polymorphic between 
Dunja and Pc-NY21. If the parent carrying the resistant 
allele for a given QTL was actually heterozygous at that 
locus, however, these markers would be uninformative for 
MAS, as they would be unable to differentiate between the 
resistant and susceptible haplotypes from the donor parent of 
the resistant allele. We suspect, however, that this is not the 
case for the major QTL we identified on chromosomes 4, 5, 
and 8, given the low proportion of heterozygous markers in 
PcNY-21 in these regions (data not shown).

In conclusion, we discovered a total of six genomic 
regions associated with Phytophthora root and crown rot 
resistance in a biparental squash population. Three featured 
resistant alleles inherited from the resistant parent of our 
cross and were identified independently via both BSA-Seq 
and linkage mapping; the other three featured resistant 
alleles inherited from the susceptible parent of the cross and 
were only identified via one of the two methods. Despite the 
small- to moderate-effect sizes of these QTL, we believe 
that markers in these regions can be used to accelerate dis-
ease resistance breeding in various market classes of squash. 
Our mapping resolution was too low to conclusively identify 
strong candidates for genes conferring resistance in QTL 
regions. Nevertheless, these results represent an early step 
toward uncovering the genetic and molecular mechanisms 
underlying Phytophthora root and crown rot resistance in 
squash.
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