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Abstract
Key message PmSESY, a new wheat powdery mildew resistance gene was characterized and genetically mapped to 
the terminal region of chromosome 1RL of wild rye Secale sylvestre.
Abstract The genus Secale is an important resource for wheat improvement. The Secale species are usually considered 
as non-adapted hosts of Blumeria graminis f. sp. tritici (Bgt) that causes wheat powdery mildew. However, as a wild spe-
cies of cultivated rye, S. sylvestre is rarely studied. Here, we reported that 25 S. sylvestre accessions were susceptible to 
isolate BgtYZ01, whereas the other five confer effective resistance to all the tested isolates of Bgt. A population was then 
constructed by crossing the resistant accession SESY-01 with the susceptible accession SESY-11. Genetic analysis showed 
that the resistance in SESY-01 was controlled by a single dominant gene, temporarily designated as PmSESY. Subsequently, 
combining bulked segregant RNA-Seq (BSR-Seq) analysis with molecular analysis, PmSESY was mapped into a 1.88 cM 
genetic interval in the terminus of the long arm of 1R, which was closely flanked by markers Xss06 and Xss09 with genetic 
distances of 0.87 cM and 1.01 cM, respectively. Comparative mapping demonstrated that the corresponding physical region 
of the PmSESY locus was about 3.81 Mb in rye cv. Lo7 genome, where 30 disease resistance-related genes were annotated, 
including five NLR-type disease resistance genes, three kinase family protein genes, three leucine-rich repeat receptor-like 
protein kinase genes and so on. This study gives a new insight into S. sylvestre that shows divergence in response to Bgt and 
reports a new powdery mildew resistance gene that has potential to be used for resistance improvement in wheat.

Introduction

Modern cultivated wheat (Triticum aestivum L., 2n = 6x = 42, 
AABBDD) is one of the most cultivated cereal crops that 
possesses abundant germplasm resources for improvement of 
its various desirable traits (Li et al. 2019a, b). Usually, wheat 
germplasm resources are classified into primary, secondary, 
and tertiary gene pools. The primary gene pool consists of 
hexaploid species containing AABBDD genome and their 
tetraploid and diploid progenitors, such as common wheat 
(AABBDD), T. spelta (AABBDD), T. dicoccoides (AABB), 
T. durum (AABB), T. urartu (AA), and T. tauschii (DD). The 
secondary gene pool includes the relatives sharing at least 
one homoloeogous genome with cultivated wheat, such as 
T. timopheevii (AAGG) and Aegilops species containing S 
genome related to B genome. Except the species from the 
primary and secondary gene pools, other distant species in 
Triticeae belong to the tertiary gene pool, such as Secale cere-
ale (RR) and Dasypyrum villosum (VV) (Feuillet et al. 2007).
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Blumeria graminis f. sp. tritici (Bgt) is a biotrophic fungal 
pathogen that causes powdery mildew in wheat and subse-
quent yield losses ranging from 5 to 40%. Exploring effective 
powdery mildew resistance genes and development of resistant 
wheat cultivars are important for controlling this disease (He 
et al. 2018; Li et al. 2020a). Up to now, 86 formally designated 
wheat powdery mildew resistance genes/alleles have been 
characterized from the primary (63), secondary (9), and ter-
tiary (14) gene pools of wheat (McIntosh et al. 2017; Li et al. 
2020b; He et al. 2020). Among the genes from the tertiary 
gene pool, Pm7, Pm8, Pm17, Pm20, and Pm56 are derived 
from S. cereale (Friebe et al. 1994; Singh et al. 2018; Hao et al. 
2018), Pm21, Pm55, Pm62, and Pm67 from D. villosum (Chen 
et al. 1995; Zhang et al. 2016; Zhang et al. 2018a, b), Pm40 
and Pm43 from Thinopyrum intermedium (Luo et al. 2009; 
He et al. 2009), Pm51 from Th. ponticum (Zhan et al. 2014), 
Pm2b from Agropryron cristatum (Ma et al. 2015), and Pm29 
from Ae. ovata (Zeller et al. 2002).

The genus Secale (rye) consists of four species, including 
S. cereale, S. vavilovii, S. strictum (syn. S. montanum), and 
S. sylvestre (syn. S. fragile, Tibetan rye). Among them, S. 
sylvestre is an annual and autogamous wild species. It grows 
in sandy regions of rivers, shores, and steppe ecosystems, 
distributing from Hungary to Mongolia. Because morpho-
logical, cytogenetic, and molecular characters are obviously 
different from those of other rye species, S. sylvestre is con-
sidered to be highly divergent from other rye species (Tang 
et al. 2011). In wheat breeding, different species in the genus 
Secale are important germplasm resources; however, S. syl-
vestre is rarely concerned by breeders and researchers so far.

In the present study, we exploited the possibility of using 
S. sylvestre as a genetic resource for wheat improvement 
and identified five accessions conferring effective resistance 
against different isolates of Bgt. Using a population derived 
from the cross between the resistant accession SESY-01 and 
the susceptible accession SESY-11 of S. sylvestre, a new 
powdery mildew resistance gene, PmSESY, was mapped to 
the terminus of the long arm of chromosome 1R.

Materials and methods

Plant materials

S. sylvestre accessions were kindly provided by the National 
Centre for Plant Genetic Resources, Polish Genebank 
(NCPGR) (10), Genebank Information System of the IPK 
Gatersleben (GBIS-IPK) (12), and Germplasm Resources 
Information Network (GRIN) (8) (Table 1). S. strictum (PI 
401405), S. vavilovii (PI 573649), S. cereale cv. Petkus (PI 
428373), and cv. Kustro (PI 392065) were obtained from 
GRIN. The S. sylvestre accession SESY-01 (original acces-
sion number: 31356 in NCPGR) immune to isolate BgtYZ01 

was crossed with the highly susceptible accession SESY-
11 (original accession number: R 801 in GBIS-IPK), and 
the generated 345  F2 individuals and their corresponding 
 F2:3 families were utilized to genetically map the powdery 
mildew resistance gene in SESY-01. All plants used in this 
study were grown under a daily cycle of 16 h of light and 8 h 
of darkness at 22 ± 2 °C in a greenhouse.

Evaluation of powdery mildew response to Bgt 
isolates

All plants of S. sylvestre accessions,  F1 and  F2 individu-
als, and ~ 50 seedlings of each  F2:3 line generated from the 
cross SESY-01/SESY-11 were inoculated with Bgt isolate 
BgtYZ01 at one-leaf stage. The powdery mildew responses 
were evaluated at eight days after inoculation. The responses 
of the resistant accessions to another 15 Bgt isolates, col-
lected from different regions of China, were also assessed, 
using the susceptible accession SESY-11 as control. Infec-
tion types (IT) were scored according to a 0 to 4 scale (Li 
et al. 2020b).

Non‑denaturing fluorescence in situ hybridization 
(ND‑FISH) analysis

S. sylvestre accessions SESY-01, SESY-11, S. strictum, S. 
vavilovii, S. cereale cv. Petkus, and cv. Kustro were used 
for ND-FISH assay. Root-tip metaphase chromosomes were 
prepared using the method described by Han et al. (2006). 
ND-FISH combined with oligonucleotide (oligo) probes 
Oligo-pSc119.2-1(Tang et al. 2014) and (AAC)6 was used 
to identify individual rye chromosomes. The ND-FISH pro-
cedure was carried out as described by Fu et al. (2015).

Molecular detection of rye species

The primers HAdh2e1 and HAdh8e1r were used for ampli-
fication of the partial Adh1 gene from S. sylvestre acces-
sions (Petersen and Seberg 1998; Petersen et al. 2004). PCR 
amplification was carried out using the PrimeSTAR Max 
Premix (TaKaRa, Shiga, Japan). The obtained PCR products 
were extracted from agarose gel and then sequenced using 
the Sanger method. The phylogenetic tree was constructed 
by the neighbor-joining method in the MEGA7.0 software 
(Kumar et al. 2016).

Bulked segregant RNA‑Seq (BSR‑Seq)

The BSR-Seq method was conducted on the  F2 individu-
als derived from the cross SESY-01/SESY-11. After esti-
mating of the powdery mildew responses of  F2 plants 
at one-leaf stage, equal size of the second leaves of 50 
resistant and 50 susceptible plants was sampled as the R 
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and S pools, respectively. Total RNA extraction, RNA-
Seq analysis, quality control, and SNP/InDel calling were 
described in Wu et al. (2018) and He et al. (2020). SNP/
InDel was called using the genome of rye cv. Lo7 (Martis 
et al. 2013; Rabanus-Wallace et al. 2019) as a reference 
and assessed by smoothed G (G’) value (Lott et al. 2009).

Development of molecular markers

In the target genomic region harboring powdery mil-
dew resistance gene in SESY-01, rye genes (Martis et al. 
2013; Rabanus-Wallace et al. 2019) containing the InDels 
and SNPs, revealed by BSR-Seq analysis, were used for 

developing molecular markers. Primers of InDel mark-
ers were designed according to the conserved sequences 
surrounding the polymorphism sites using Primer Pre-
mier 5.0. Primers of SNP markers were designed using 
the CAPS/dCAPS designer (Li et al. 2018). Polymorphic 
markers between the two parents SESY-01 and SESY-11 
are listed in Table 2.

Marker analysis

Genomic DNA solution of each plant was prepared by the 
TE-boiling method and PCR amplified as described by He 
et al. (2017). PCR products of the InDel markers were directly 

Table 1  S. sylvestre germplasms 
and their responses to Bgt 
isolate BgtYZ01

NCPGR National Centre for Plant Genetic Resources, Polish Genebank; GBIS-IPK Genebank Information 
System of the IPK Gatersleben; GRIN Germplasm Resources Information Network

Code Powdery mildew 
response

Origin Original accession Provider

SESY-01 0 Unknown 31356 NCPGR
SESY-02 4 Unknown 31357 NCPGR
SESY-03 4 Unknown 31358 NCPGR
SESY-04 4 Unknown 31359 NCPGR
SESY-05 4 Unknown 31360 NCPGR
SESY-06 4 Unknown 31361 NCPGR
SESY-07 4 Unknown 31362 NCPGR
SESY-08 4 Unknown 31363 NCPGR
SESY-09 4 Unknown 31364 NCPGR
SESY-10 4 Unknown 31365 NCPGR
SESY-11 4 Former Soviet Union R 801 GBIS-IPK
SESY-12 4 Unknown R 802 GBIS-IPK
SESY-13 4 Unknown R 806 GBIS-IPK
SESY-14 4 Poland R 807 GBIS-IPK
SESY-15 4 Russia R 812 GBIS-IPK
SESY-16 0 Unknown R 873 GBIS-IPK
SESY-17 4 Unknown R 891 GBIS-IPK
SESY-18 4 Unknown R 901 GBIS-IPK
SESY-19 0 Unknown R 953 GBIS-IPK
SESY-20 4 Unknown R 956 GBIS-IPK
SESY-21 4 Unknown R 957 GBIS-IPK
SESY-22 4 Hungary R 1033 GBIS-IPK
SESY-23 0 Ukraine PI 592294 GRIN
SESY-24 4 Ukraine PI 614647 GRIN
SESY-25 4 Ukraine PI 614648 GRIN
SESY-26 4 Hungary PI 615332 GRIN
SESY-27 4 Hungary PI 615334 GRIN
SESY-28 0 Ukraine PI 618674 GRIN
SESY-29 4 Bulgaria PI 618675 GRIN
SESY-30 4 Poland PI 618676 GRIN
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separated in 10% non-denaturing polyacrylamide gel electro-
phoresis (PAGE), and those of the SNP markers were cut with 
the corresponding restriction enzymes (Takara, Shiga, Japan) 
(Table 2) prior to separation in 10% PAGE. DNA bands were 
visualized by silver staining.

Genetic analysis and comparative mapping

Genetic analysis of powdery mildew resistance gene in acces-
sion SESY-01 was conduct on an  F2 population derived from 
the cross SESY-01/SESY-11. Chi-squared (χ2) test was used to 
determine the goodness-of-fit of the observed segregation ratio 
to the theoretical Mendelian ratio. Rye contigs corresponding 
to polymorphic markers were used to perform BLAST against 
the genomes of rye cv. Lo7 (Martis et al. 2013; Rabanus-Wal-
lace et al. 2019) and wheat cv. Chinese Spring (IWGSC et al. 
2018) to generate comparative genomics maps. Gene anno-
tations of rye and wheat genomes were adopted to analyze 
the gene composition in the corresponding target region of S. 
sylvestre that was closely flanked by markers Xss06 and Xss09.

Results

Powdery mildew responses of different S. sylvestre 
accessions to Bgt isolates

Thirty S. sylvestre accessions obtained from different inter-
national germplasm resource institutions were tested against 
BgtYZ01, a virulent Bgt isolate prevailing in Yangzhou, 
Jiangsu province (China). The results demonstrated that 
five accessions (SESY-01, SESY-16, SESY-19, SESY-23, 
and SESY-28) were immune (IT 0), whereas the others were 

all complete susceptible (IT 4) (Fig. 1; Table 1). The resist-
ance spectra of the above five resistant accessions were then 
assessed with another 15 Bgt isolates, collected from differ-
ent regions of China. The five BgtYZ01-resistant accessions 
were still highly resistant, among which, accession SESY-01 
conferred immunity to all isolates tested (Table 2).

Morphological, cytological and molecular 
characterization of S. sylvestre accessions

All plants of S. sylvestre accessions used in this study had 
slender culms and set slender seeds. These morphological 

Table 2  Powdery mildew 
responses of S. sylvestre 
accessions to different isolates 
of Bgt 

Bgt isolate SESY-01 SESY-16 SESY-19 SESY-23 SESY-28 SESY-11

Bgt01(BgtYZ01) 0 0 0 0 0 4
Bgt02 0 0 0 0 0 4
Bgt03 0 1 1 0 0 4
Bgt04 0 0 0 0 0 4
Bgt05 0 0 0 0 0 4
Bgt06 0 0 0 1 0 4
Bgt07 0 0 0 0 0 4
Bgt08 0 0 1 0 0 4
Bgt09 0 0 0 0 0 4
Bgt10 0 0 0 0 0 4
Bgt11 0 0 0 0 1 4
Bgt12 0 1 0 0 0 4
Bgt13 0 0 0 0 0 4
Bgt14 0 0 0 0 0 4
Bgt15 0 0 0 0 1 4
Bgt16 0 0 0 0 0 4

Fig. 1  Powdery mildew responses of different accessions of S. sylves-
tre to Bgt isolate BgtYZ01
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characteristics were obviously distinguished from those of 
the other rye species (Tang et al. 2011). ND-FISH assay 
showed that the probe (AAC)6 produced signals on the 
satellites of 1RS arms of S. sylvestre accessions SESY-01 
and SESY-11; however, these signals disappeared from the 
other four Secale accessions (Fig. 2a). This result was con-
sistent with the findings of Cuadrado and Jouve (2002). In 
the phylogenetic tree based on the partial sequence of Adh1 
gene, SESY-01, SESY-11, and S. sylvestre accession H4416 
(AY294170) were clustered in the same clade (Fig. 2b). 
Taken together, accessions SESY-01 and SESY-11 belong 
to the species S. sylvestre.

Genetic characteristics of the powdery mildew 
resistance in accession SESY‑01

S. sylvestre accession SESY-01 immune to all tested Bgt iso-
lates was crossed to the highly susceptible accession SESY-
11 generating  F1,  F2, and  F3 populations. After inoculation 
with isolate BgtYZ01, all the  F1 plants displayed immunity. 
In the  F2 population consisting of 345 individuals, 257 and 
88 were resistant and susceptible, respectively, which fits 
to the ratio 3:1 (χ2 = 0.047, P = 0.828). In the  F3 families, 
90 were homozygous resistant, 167 were segregating, and 
88 were homozygous susceptible, fitting to the ratio 1:2:1 
(χ2 = 0.374, P = 0.829). Hence, it was concluded that the 
powdery mildew resistance in accession SESY-01 is gov-
erned by a single dominant gene, temporarily designated 
PmSESY.

BSR‑Seq analysis of PmSESY

Using the RNA-Seq method, a total of 38,604,908 and 
30,192,360 raw reads were obtained from the resistant 
and susceptible bulks, respectively. After quality control, 
21,236,142 of 38,576,518 high-quality reads from the 
resistant pool and 17,521,940 of 30,156,107 high-quality 
reads from the susceptible pool were uniquely mapped to 
the genome of rye cv. Lo7, respectively. A total of 574,339 
SNPs and InDels between the resistant and susceptible bulks 
were identified by variant calling, and 37,455 of them had 
a depth > 6. The results demonstrated that 157 SNPs and 15 
InDels distributed in different chromosomes, of which, 137 
SNPs and 13 InDels distributed on chromosome 1R. Further 
analysis revealed that most SNPs (84) and InDels (5) lied 
in 695–722 Mb on the long arm of chromosome 1R (1RL) 
(Fig. 3a, b), suggesting that this region provides powdery 
mildew resistance in SESY-01.

Genetic mapping of PmSESY

Based on the results obtained by the BSR-Seq analysis, rye 
genes located in 695–722 Mb of chromosome 1RL, which 
contained InDels and SNPs, were used for development of 
molecular markers. As a result, a total of 15 polymorphic 
markers between the two parents SESY-01 and SESY-11 
were obtained, among which, 3 (Xss01, Xss02, and Xss15) 
were InDel markers and 12 (Xss03–Xss14) were SNP mark-
ers (Fig. 4; Table 3). These markers were then used to 

Fig. 2  Cytological and molecular detection of S. sylvestre accessions. 
a ND-FISH analysis of mitotic metaphase chromosomes of six Secale 
accessions using oligo probes Oligo-pSc119.2–1 (green) and (AAC)6 

(red). Chromosomes were counterstained with DAPI (blue). Scale 
bar: 10 μm. b Phylogenetic tree based on the partial sequences of the 
Adh1 gene. GenBank accession numbers are shown in brackets
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genotype 345  F2 individuals derived from the cross SESY-
01/SESY-11. PmSESY was closely flanked by markers 
Xss06 and Xss09 with the corresponding genetic distances 
of 0.87 cM and 1.01 cM, respectively. In addition, two mark-
ers Xss07 and Xss08 were confirmed to co-segregate with 
PmSESY (Fig. 5a).

Comparative mapping of PmSESY 
among the genomes of S. sylvestre, rye and wheat

Fifteen gene-derived markers, Xss01–Xss15, were used 
to carry out comparative genomics analysis among the 
genomes of S. sylvestre, rye cv. Lo7 and wheat cv. Chinese 
Spring. All the 15 markers were mapped to chromosome 
1RL of the rye genome assembly. Furthermore, except the 
corresponding gene of marker Xss13, which could not be 
found on wheat 1AL, the corresponding genes of all the 
other markers could be well assigned to wheat chromosomes 
1AL, 1BL, and 1DL (Fig. 5b–d). These results indicated that 
there is a good collinearity relationship among the tested 
genomic regions of S. sylvestre 1RL, rye 1RL, wheat 1AL, 
1BL, and 1DL.

In the rye cv. Lo7 genome, the corresponding genes 
of f lanking markers Xss06 and Xss09 were SEC-
CE1Rv1G0061930 (Chr1R: 717,893,790–717,896,874) 
a n d  S E C C E 1 R v 1 G 0 0 6 2 9 2 0  ( C h r 1 R : 
721,703,553–721,707,206), respectively. Hence, PmSESY 
could be narrowed to a 3.81-Mb genomic region in the ter-
minus of rye chromosome 1RL, where 98 genes (excluding 
SECCE1Rv1G0061930 and SECCE1Rv1G0062920) exist. 
Among them, 30 genes were involved in plant disease 
defense according to the annotation of rye genome, includ-
ing five nucleotide-binding leucine-rich-repeat receptor 
(NLR)-type disease resistance genes, three kinase family 
protein genes, three leucine-rich repeat receptor-like pro-
tein kinase genes, three E3 ubiquitin-protein ligase genes, 
nine F-box protein genes, two zinc finger BED domain-
containing protein genes, as well as one pathogen-related 
protein gene, lectin receptor kinase gene, calmodulin 
gene, calcium-binding protein gene, and flavin-containing 
monooxygenase gene each (Table 4). It was suggested that 
the PmSESY locus lies in a genomic region enriched with 
disease resistance-related genes.

Fig. 3  BSR-Seq analysis of PmSESY. a Distribution of SNPs and InDels on different rye chromosomes. b Number of polymorphic SNPs on dif-
ferent rye chromosomes. The number of InDels in each chromosome is shown in bracket

Fig. 4  Polymorphic patterns 
of five representative markers 
(Xss02, Xss06, Xss09, Xss14, 
and Xss15). M, DL2000 DNA 
marker. 1–5, homozygous 
resistant  F2 plants. 6–10, het-
erozygous resistant  F2 plants. 
11–15, homozygous susceptible 
 F2 plants. 16, resistant accession 
SESY-01. 17, susceptible acces-
sion SESY-11. The polymorphic 
DNA bands are pointed by 
arrows
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Discussion

Blumeria graminis is a fungal pathogen that attacks spe-
cies of the grass family, Poaceae. This pathogen is thought 
to be a single species but it can be classified into different 
forma speciales (f.sp.) according to host specialization. 
In general, one forma specialis infects only one specific 
host species (Troch et al. 2014; Menardo et al. 2017). For 
instance, B. graminis f. sp. tritici (B.g. tritici, Bgt) can 
infect wheat but not rye, whereas B. graminis f. sp. secalis 
(B.g. secalis, Bgs) can infect rye but not wheat. Recently, 
Menardo et al. (2016) reported that a forma specialis B.g. 

triticale can colonize on wheat, rye, and triticale, which 
originated from the hybridization between Bgt and Bgs 
in Europe where rye and triticale are widely planted. In 
China, both rye and triticale are small crops only planted 
in certain northern regions. As a result, B.g. triticale 
would not be prevailing in China. In this study, we found 
that S. sylvestre accession SESY-11 is highly susceptible to 
all the tested Bgt isolates collected from different wheat-
producing regions of China. It was suggested that the sus-
ceptibility of SESY-11 is caused by losing resistance gene 
rather than by emergence of the new forma specialis B.g. 
triticale. We also found that most accessions of S. syl-
vestre examined are completely susceptible to Bgt isolate 
BgtYZ01. This is the first report that a species of the genus 

Table 3  Molecular markers used for genetic mapping of PmSESY 

Marker Type Enzyme Forward primer Reverse primer Rye gene for primer designing

Xss01 InDel – AGG ATG AAA GAG AGA AGC CACGT CGC TGG GCC TTA GTC GGT SECCE1Rv1G0058490
Xss02 InDel – GAG GAG GTC GAA GCG CTT G TCT CGC TGT TCG CGC AGC A SECCE1Rv1G0060750
Xss03 SNP Sma I CGG CTC TGC GCA GTG TGA ACCCG CTA CAG CGA CAA CGG AAC AA SECCE1Rv1G0060900
Xss04 SNP BamHI TTC TTC ACC TTC TAC CTG GGATC CCA TGA TCT CGT AGG CCA CT SECCE1Rv1G0061550
Xss05 SNP Mlu I TCT TGC AGA AGA TCA TCG ACGCG TGG TGT GGA CTA TGG TGG TG SECCE1Rv1G0061800
Xss06 SNP Sma I GGC GCA GAT GGT GTG ATC CCCGG CCC CCG CAA AAG ATA AAA AT SECCE1Rv1G0061930
Xss07 SNP Kpn I TCA GTC TCT TGA GCG TGG CGGTA TTG TGT GAC AAC GGC GTA TT SECCE1Rv1G0062310
Xss08 SNP Mlu I GAA CTC CGG GGT TTA TGT AAACG AGT CAC CAG CAA CTC CGA CT SECCE1Rv1G0062320
Xss09 SNP Sma I TGC AAC CAT GGT TTC TGC GTCCC GCC ATC ACC TGA TCC AAG AT SECCE1Rv1G0062920
Xss10 SNP Pst I CTC GCA GAA TTC CTG AGA GGCTC AAA AGG TGG TAC CTT CGG CT SECCE1Rv1G0062970
Xss11 SNP Xho I CTC GCA GAA TTC CTG AGA GGCTC AAA AGG TGG TAC CTT CGG CT SECCE1Rv1G0062980
Xss12 SNP Nhe I ATA CAT TTC CTG TAC GTC GCTAG TTG TGC AGA GGA ATG ACA GC SECCE1Rv1G0063000
Xss13 SNP Pvu II GCT AGG TGC TAG GCA GGG CAGCT CCC CTT CCC TTG TTA CGA TT SECCE1Rv1G0063040
Xss14 SNP EcoR I CCC ATT TCC GCA CCG CTT GAATT CAT CGT ACA GCG ACA ACA CC SECCE1Rv1G0063260
Xss15 InDel – AAG TTC TCC AGC TCC AAC GTGA CAC CTG GAA CAC ATG GCG AGT SECCE1Rv1G0063490

Fig. 5  Genetic and comparative mapping of PmSESY. a Genetic map 
of PmSESY using the  F2 population derived from the cross between 
the resistant accession SESY-01 and the susceptible accession SESY-

11. b–d Comparative maps of the PmSESY locus corresponding to 
the orthologous regions on 1RL of rye cv. Lo7, and 1AL, 1BL and 
1DL of wheat cv. Chinese Spring, respectively
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Secale can be colonized by wheat Bgt. Genetic analysis 
revealed that the resistance in S. sylvestre accession SESY-
01 is controlled by a single dominant gene, PmSESY. Com-
bining BSR-Seq analysis with genetic mapping, PmSESY 
was narrowed to a 1.88-cM genetic interval in the terminal 
region of the long arm of chromosome 1R (1RL), where 
no other powdery mildew resistance gene has been found 
before. Therefore, it was concluded that PmSESY is a novel 
gene conferring resistance against wheat powdery mildew.

The PmSESY locus corresponded to a 3.81-Mb region 
in rye cv. Lo7 genome, in which, 98 genes have been anno-
tated (Rabanus-Wallace et al. 2019). Among them, 30 genes, 
such as NLR-type disease resistance genes and leucine-rich 
repeat receptor-like protein kinase genes, may serve as 
candidates involving in PmSESY resistance. Comparative 
analyses of the differences in sequences and transcriptional 
level of these genes between resistant SESY-01 and sus-
ceptible SESY-11 and then performing virus-induced gene 
silencing of differential genes in SESY-01 would allow to 

narrow down the PmSESY candidate(s). Further develop-
ment of more high-density molecular markers according to 
precise reference genome of rye and larger population would 
contribute to fine genetic mapping of PmSESY. Moreover, 
using more markers in the target region carrying PmSESY to 
carry out association analysis on all resistant and susceptible 
accessions of S. sylvestre would also benefit to finding the 
PmSESY candidate(s).

The reference genome of rye cv. Lo7 may contribute 
to isolating PmSESY from S. sylvestre. However, it is not 
excluded that in the orthologous regions of the PmSESY 
locus, there may be different genomic structures and gene 
organizations between S. sylvestre and cultivated rye because 
the two species have diverged greatly during evolution (Tang 
et al. 2011). Recently, multiple cloning strategies have been 
used successfully to clone genes from wheat and barley. 
For example, through combination of mutagenesis with 
sequence capture, MutRenSeq has been adopted to identify 
wheat stem rust resistance genes Sr22 and Sr45 (Steuernagel 

Table 4  Potential disease 
resistance-related genes in the 
PmSESY locus on chromosome 
1RL of rye cv. Lo7

Gene Physical location (bp) Predicted protein 

SECCE1Rv1G0061940 717,952,187–717,953,380 F-box protein
SECCE1Rv1G0061970 718,098,036–718,098,374 BED zinc finger family protein
SECCE1Rv1G0061980 718,098,548–718,098,990 Zinc finger BED domain-containing protein
SECCE1Rv1G0061990 718,099,823–718,101,393 F-box domain containing protein
SECCE1Rv1G0062010 718,226,761–718,227,500 F-box family protein
SECCE1Rv1G0062180 718,540,909–718,545,469 E3 ubiquitin-protein ligase MARCH6
SECCE1Rv1G0062210 718,631,797–718,632,006 Flavin-containing monooxygenase
SECCE1Rv1G0062230 718,641,406–718,647,922 E3 ubiquitin-protein ligase MARCH6
SECCE1Rv1G0062240 718,649,195–718,650,681 F-box family protein
SECCE1Rv1G0062250 719,003,349–719,008,332 E3 ubiquitin-protein ligase MARCH6
SECCE1Rv1G0062270 719,129,615–719,130,612 Pathogen-related protein
SECCE1Rv1G0062300 719,215,450–719,219,656 NLR-type disease resistance protein
SECCE1Rv1G0062310 719,291,889–719,293,532 Leucine-rich repeat receptor-like protein kinase
SECCE1Rv1G0062340 719,399,788–719,404,203 Lectin receptor kinase
SECCE1Rv1G0062490 719,681,439–719,685,431 Kinase family protein
SECCE1Rv1G0062550 720,280,940–720,285,001 Protein kinase family protein
SECCE1Rv1G0062560 720,415,309–720,415,620 NLR-type disease resistance protein
SECCE1Rv1G0062570 720,423,721–720,426,778 Leucine-rich repeat receptor-like protein kinase
SECCE1Rv1G0062580 720,436,434–720,444,242 NLR-type disease resistance protein
SECCE1Rv1G0062600 720,449,544–720,453,693 Leucine-rich repeat receptor-like protein kinase
SECCE1Rv1G0062700 720,935,452–720,936,576 F-box protein
SECCE1Rv1G0062720 720,993,859–720,994,419 Calmodulin
SECCE1Rv1G0062740 721,010,502–721,011,062 Calcium-binding protein
SECCE1Rv1G0062750 721,021,612–721,023,278 Kinase family protein
SECCE1Rv1G0062840 721,488,561–721,489,987 F-box family protein
SECCE1Rv1G0062850 721,500,325–721,501,038 F-box family protein
SECCE1Rv1G0062860 721,505,687–721,507,609 NLR-type disease resistance protein
SECCE1Rv1G0062890 721,626,733–721,630,125 NLR-type disease resistance protein
SECCE1Rv1G0062900 721,699,654–721,700,163 FBD-associated F-box protein
SECCE1Rv1G0062910 721,700,483–721,701,673 F-box/RNI/FBD domains-containing protein
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et al. 2016). Based on mutagenesis, chromosome sorting, 
and next-generation sequencing, MutChromSeq has been 
used to clone the wheat powdery mildew resistance gene 
Pm2 (Sánchez-Martín et al. 2016) and barley leaf rust resist-
ance gene Rph1 (Dracatos et al. 2019). These methods are 
independent of genetic analysis and positional cloning, 
even independent of reference genome. Therefore, creating 
susceptible mutants of S. sylvestre accession SESY-01 and 
using the above new methods may provide alternative ways 
to clone PmSESY.

The five S. sylvestre accessions were shown to be effec-
tively resistant to all the tested Bgt isolates. It was suggested 
that PmSESY might possess broad-spectrum resistance to 
wheat powdery mildew and has great value for wheat breed-
ing. Traditional method for utilization of genes originated 
from wild relatives is transferring them into common wheat 
through interspecific hybridization (Li et al. 2019b). In the 
past, S. sylvestre was crossed with Ae. tauschii and an amphi-
ploid was obtained, suggesting that it is possible to transfer 
S. sylvestre genes to wheat (Yang et al. 2001). Since many 
wheat-rye addition lines and substitution lines involving 
chromosome 1R have been developed (Li et al. 2016), cross-
ing S. sylvestre accession SESY-01 with such lines would 
allow the recombination between chromosomes 1R derived 
from different rye species, which may contribute to develop-
ing genetic stocks containing PmSESY. Recently, transgenic 
techniques for wheat have been fast developing and Agrobac-
terium tumefaciens-mediated transformation has been more 
stable and highly efficient (Zhang et al. 2018a, b), which will 
contribute to speeding up breeding application of PmSESY 
once it is cloned from S. sylvestre.
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