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Abstract
Key message Two key barley genes independently control anthesis and senescence timing, enabling the manipulation 
of grain fill duration, grain size/plumpness, and grain protein concentration.
Abstract Plant developmental processes such as flowering and senescence have direct effects on cereal yield and quality. 
Previous work highlighted the importance of two tightly linked genes encoding a glycine-rich RNA-binding protein (HvGR-
RBP1) and a NAC transcription factor (HvNAM1), controlling barley anthesis timing, senescence, and percent grain protein. 
Varieties that differ in HvGR-RBP1 expression, ‘Karl’(low) and ‘Lewis’(high), also differ in sequence 1 KB upstream of trans-
lation start site, including an ~ 400 bp G rich insertion in the 5′-flanking region of the ‘Karl’ allele, which could disrupt gene 
expression. To improve malt quality, the (low-grain protein, delayed-senescence) ‘Karl’ HvNAM1 allele was introgressed into 
Montana germplasm. After several seasons of selection, the resulting germplasm was screened for the allelic combinations 
of HvGR-RBP1 and HvNAM1, finding lines combining ‘Karl’ alleles for both genes (−/−), lines combining ‘Lewis’ (func-
tional, expressed) HvGR-RBP1 with ‘Karl’ HvNAM1 alleles ( ±), and lines combining ‘Lewis’ alleles for both genes (+ / +). 
Field experiments indicate that the functional (‘Lewis,’  +) HvGR-RBP1 allele is associated with earlier anthesis and with 
slightly shorter plants, while the ‘Karl’ (−) HvNAM1 allele delays maturation. Genotypes carrying the ± allele combination 
therefore had a significantly (3 days) extended grain fill duration, leading to a higher percentage of plump kernels, slightly 
enhanced test weight, and lower grain protein concentration when compared to the other allele combinations. Overall, our 
data suggest an important function for HvGR-RBP1 in the control of barley reproductive development and set the stage for 
a more detailed functional analysis of this gene.
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Introduction

Plant developmental processes such as flowering transi-
tion and whole plant senescence impact crop yield and 
quality. Fine-tuning flowering control can affect biomass 
production during vegetative growth, thereby substan-
tially improving grain yield and its components (Alqudah 
and Schnurbusch 2017; Blümel et al. 2015; Mathan et al. 
2016). A better understanding of senescence regulation has 
the potential for advancing the nutritional quality of cereal 
grains (Distelfeld et al. 2014; Gregersen 2011) and reduc-
ing fertilizer use (Yang and Udvardi 2018), thus reducing 
environmental impacts (Omara et al. 2019). Considering 
the food production needs of the twenty-first century, 
research has focused on determining the genetic control 
of flowering transition and whole-plant senescence. Inte-
grated studies combining classical breeding, association 
mapping, and -omics techniques have improved our under-
standing of mechanisms controlling flowering and senes-
cence in both model species and crops (Borràs-Gelonch 
et al. 2012; Greenup et al. 2009; Ibrahim et al. 2018; Kim 
et al. 2018; Rangan et al. 2017; Woo et al. 2013).

NAC genes, a large, plant-specific family of transcrip-
tion factors, are among the genes identified that regulate 
senescence in different species. Several NAC genes induce 
leaf senescence so that nutrients are remobilized to seeds 
or grains. In Arabidopsis thaliana, T-DNA insertions in 
the AtNAP gene lead to significantly delayed leaf senes-
cence, while overexpression of this gene causes precocious 
senescence (Guo and Gan 2006). In wheat, presence of an 
allele coding for a functional NAC protein (TtNAM-B1) on 
chromosome arm 6BS leads to faster leaf and whole-plant 
senescence and more efficient nutrient remobilization to 
developing kernels, increasing grain protein, iron, and zinc 
contents (Uauy et al. 2006; Waters et al. 2009). Reducing 
the transcript levels of all NAM copies in hexaploid wheat 
using RNA interference leads to a strong stay-green phe-
notype (delayed senescence) accompanied by a 30% reduc-
tion in percent grain protein (Uauy et al. 2006). A barley 
gene orthologous to TtNAM-B1, HvNAM1, is located in 
a co-linear (with wheat chromosome arm 6BS) region of 
chromosome six (Distelfeld et al. 2008). Alleles of this 
gene (GenBank accessions EU368851 and EU368852) 
found in two varieties (‘Lewis’ and ‘Karl,’ respectively) 
(Burger et al. 1979; Hockett et al. 1985; Wesenberg et al. 
1976) code for proteins that differ in three positions 
(W78C, A102P, A357T). Previous work from our labora-
tory, comparing near-isogenic germplasm carrying either 
the ‘Lewis’ or ‘Karl’ HvNAM1 alleles, demonstrated that 
the ‘Karl’ allele is associated with delayed senescence and 
lower percent grain protein, suggesting that its function is 
impaired (Heidlebaugh et al. 2008; Jukanti et al. 2008).

Our laboratory has previously derived near-isogenic 
lines varying in the allelic state of HvNAM1 from a ‘Lewis’ 
x’Karl’ mapping population (See et al. 2002; Mickelson 
et al. 2003). Transcriptomic comparison of flag leaves from 
variety ‘Karl’ and near-isogenic line ‘10_11′ (containing 
the ‘Lewis’ HvNAM1 allele) identified an AtGRP7 ortholog 
(HvGR-RBP1) as one of the most strongly upregulated (in 
line ‘10_11’ vs. ‘Karl’) genes. For all time points from 7 
to 28 days past anthesis, more than 100-fold differences in 
HvGR-RBP1 expression also were observed (Jukanti et al. 
2008). Similar differences in expression were found in leaves 
of younger (pre-anthesis) plants (Lacerenza et al. 2010) 
with HvGR-RBP1 expressed at very low levels (detect-
able by quantitative real-time RT-PCR), in variety ‘Karl.’ 
Intriguingly, comparison of plant development in ‘Karl’ and 
‘10_11’ indicated that, in addition to differences in leaf and 
whole-plant senescence (faster in line ‘10_11,’ attributed 
to the ‘Lewis’ HvNAM1 allele), pre-anthesis plant devel-
opment was different as well. Starting with leaf eight, and 
throughout the rest of plant development, leaf development 
was significantly delayed in ‘Karl.’ A majority of ‘Karl’ and 
‘10_11’ shoots had 13 leaves (i.e., leaf 13 was the flag leaf), 
but production of a 14th leaf was about twice as frequent 
in ‘Karl’ as in ‘10_11’ and only (very few) ‘Karl’ plants 
developed 15 leaves on their main shoots, emphasizing their 
slower development. This behavior was explained by slower 
development of the shoot apex and led to delayed anthesis 
(~ 5 days) in ‘Karl’ (Lacerenza et al. 2010). The relationship 
between HvNAM-1 and HvGR-RBP1 is unclear; however, 
recent barley genome information (Mascher et al. 2017) 
indicates that both are located on chromosome six, with a 
genetic distance of ~ 5 cM.

Glycine-rich RNA-binding proteins (GR-RBPs) are 
small (molecular weight < 20 kD) proteins with an N-ter-
minal RNA-binding domain (~ 90 amino acids; also known 
as an RNA Recognition Motif or RRM) and a C-terminal 
glycine-rich domain (~ 70 amino acids) which is intrinsi-
cally disordered in the free protein (Ciuzan et al. 2015; 
Tripet et  al. 2014). They comprise a subgroup of the 
large family of glycine-rich proteins, designated as sub-
family IVa (Czolpinska and Rurek 2018; Mangeon et al. 
2010). The best-understood plant GR-RBP is Arabidopsis 
thaliana glycine-rich RNA-binding protein 7 (AtGRP7). 
This protein binds both RNA and DNA, with a prefer-
ence for single-stranded nucleic acids (Schüttpelz et al. 
2008). AtGRP7 affects plant stress tolerance under high 
salt and dehydration conditions; the protein is involved 
in the regulation of stomata and also confers tolerance 
to low temperatures, most likely through its RNA chap-
erone activity (Cao et al. 2006; Hecht et al. 2005; Kim 
et al. 2008; Yang et al. 2014). AtGRP7 is a component of 
the flowering autonomous (or earliness per se) pathway 
which promotes floral transition, as demonstrated by the 
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late-flowering phenotype of knockout mutants (Steffen 
et al. 2019; Streitner et al. 2008). Individual nucleotide 
resolution cross-linking and immunoprecipitation (iCLIP) 
has identified several hundred potential AtGRP7 RNA tar-
gets, besides its own pre-mRNA, suggesting its involve-
ment in numerous functions besides flowering time control 
(Meyer et al. 2017).

Information outlined above suggests that developmental 
differences observed between variety ‘Karl’ and its near-
isogenic line ‘10_11’ are due to both HvNAM1 and HvGR-
RBP1 function, with HvNAM-1 regulating senescence and 
HvGR-RBP1 influencing pre-anthesis development and 
anthesis date. Using a wild barley nested association map-
ping population, Maurer et al. (2016) identified a quanti-
tative trait locus (QTL) influencing flowering in the same 
region of chromosome six, closely linked to HvNAM1, and 
have suggested HvGR-RBP1 as a candidate gene. In this 
context, the purpose of research presented here was to (1) 
characterize differences in HvGR-RBP1 function between 
‘Karl’ and ‘Lewis’; (2) use this information for the devel-
opment of a molecular marker; and (3) apply this marker 
and previously developed markers for HvNAM1 (Distelfeld 
et al. 2008) to malt barley breeding germplasm, in order to 
dissect the effects of these genes on plant development and 
agronomic parameters.

Materials and methods

Sequence analysis, molecular marker design 
and genotyping

DNA isolation

Tissue from young barley leaves (~ 0.5 to 1 g) was finely 
ground in liquid nitrogen, using mortar and pestle, and 
mixed with 750 µl of extraction buffer containing 0.1 M 
Tris/HCl (pH 7.5), 50 mM EDTA, and 1.25% SDS (pre-
heated to 65 °C). After incubation at 65 °C for 30 min, sam-
ples were cooled on ice and 300 µl of cold (4 °C) 6 mM 
ammonium acetate was added. Samples were incubated for 
15 min at 4 °C, followed by centrifugation at 13,300 × g 
for 15 min. The supernatant was transferred to a new tube 
and mixed gently with 2 volumes of cold isopropanol. After 
incubation at 4 °C for 5 min, samples were centrifuged at 
17,500 × g for 15 min to pellet the DNA. The pellet was 
washed twice with 75% ethanol, dried and suspended in 
20 µl of  H2O. Subsequently, DNA quantification was per-
formed using a NanoDrop ND-2000c spectrophotometer 
(Thermo Fisher Scientific, Waltham, MA, USA). Quanti-
fied DNA was diluted to 100 ng/µl for genotyping via PCR 
and restriction digest assays.

Primer design

To dissect the allelic state of HvGR-RBP1 in different barley 
genotypes, we designed a versatile molecular marker. The 
HvGR-RBP1 sequence was obtained from NCBI (https ://
www.ncbi.nlm.nih.gov/) (ID: JX126694.1) and BLASTed 
against the reference barley genome (variety ‘Morex’) 
(Mascher et al. 2017), identifying HORVU6Hr1G055440. 
Subsequently, primers (listed in Table S1) were designed, 
allowing amplification of an approximately 5 kb region 
encompassing the HvGR-RBP1 coding, flanking 5′- and 
flanking 3′-regions. PCR amplification of HvGR-RBP1 was 
performed using genomic DNA from barley varieties ‘Karl’ 
(Burger et al. 1979; Wesenberg et al. 1976) and ‘Lewis’ 
(Hockett et al. 1985). PCR reactions were performed using 
GoTaq DNA polymerase (Promega, Madison, WI, USA) fol-
lowing the manufacturer’s guidelines. An Eppendorf Master-
cycler 5333 PCR Thermal Cycler (Eppendorf, Hauppauge, 
NY, USA) was used for PCR with the following cycling 
profile: 94 °C for initial denaturation, 30 cycles of 94 °C for 
1 min,  Tm for 1 min (Table S1), 72 °C for 1 min per kb, and 
7 min of final elongation at 72 °C. PCR products were then 
visualized on 1% agarose gels, and Sanger sequencing was 
performed by Genewiz (South Plainfield, NJ, USA) with 
PCR samples cleaned using a ZR-96 DNA Clean-Up Kit 
(Zymo Research, Irvine, CA, USA).

Sequence analysis

Differences in the sequence of HvGR-RBP1 between barley 
varieties ‘Karl,’ ‘Lewis,’ and ‘Morex’ (reference genome) 
(Mascher et al. 2017) were analyzed using NCBI BLAST 
(https ://blast .ncbi.nlm.nih.gov/Blast .cgi), and pairwise and 
multiple sequence alignment tools from EBI (https ://www.
ebi.ac.uk/Tools /psa/, https ://www.ebi.ac.uk/Tools /msa/), and 
Ensembl Plant (https ://plant s.ensem bl.org/index .html/) with 
default settings. Single nucleotide polymorphisms (SNPs) 
between varieties were detected manually. PCR amplifica-
tion and sequencing results identified differences between 
‘Karl’ and ‘Lewis’ in the promoter region of the HvGR-
RBP1; hence, this region was inspected in more detail. Two 
kb upstream of the HvGR-RBP1 start codon were scanned 
for potential transcription factor binding motifs via an online 
tool, PlantPAN 3.0 (Chow et al. 2019) (https ://plant pan.itps.
ncku.edu.tw/index .html) using the reference sequence from 
variety ‘Morex.’ The analysis was performed with default 
settings chosen for Brachypodium distachyon, and transcrip-
tion factor motifs with a similarity score of 1 were selected 
as potential candidates.

Analysis of the allelic state of HvNAM1 was performed 
using the molecular markers described by Distelfeld et al. 
(2008). Two marker sequences (UHB6 and UHB7) were 
amplified with previously described PCR reactions. PCR 

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.ebi.ac.uk/Tools/psa/
https://www.ebi.ac.uk/Tools/psa/
https://www.ebi.ac.uk/Tools/msa/
https://plants.ensembl.org/index.html/
https://plantpan.itps.ncku.edu.tw/index.html
https://plantpan.itps.ncku.edu.tw/index.html
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products were digested with MwoI (for UHB6; New England 
Biolabs, Ipswich, MA, USA) and HpyCH4III (for UHB7; 
New England Biolabs) (Distelfeld et al. 2008). For a few 
barley lines, restriction enzyme cleavage analysis of ampli-
fied sequences was complemented with Sanger sequencing 
to confirm HvNAM1 allelic state.

In silico mapping

To determine genetic distance between HvNAM1 and HvGR-
RBP1, the HvNAM1 sequence was obtained from NCBI 
(https ://www.ncbi.nlm.nih.gov/) (ID: DQ869678). The 
sequence was BLASTed against the reference barley genome 
(Mascher et al. 2017) using the EnsemblPlant tool (Bolser 
et al. 2015) (https ://plant s.ensem bl.org/Horde um_vulga re/
Tools /Blast ), identifying HORVU6Hr1G019380 as a per-
fect match. Both HvGR-RBP1/HORVU6Hr1G055440 (see 
materials and methods, ‘primer design’) and HvNAM1/HOR-
VU6Hr1G019380 were further characterized using the BAR-
LEX Barley Genome Explorer (https ://apex.ipk-gater slebe 
n.de/apex/f?p=284:10::::::) (Colmsee et al. 2015) ‘gene list’ 
function. This allowed location of HORVU6Hr1G055440 
on cluster 130, and of HORVU6Hr1G019380 on cluster 926 
within the barley reference genome (Mascher et al. 2013, 
2017; Beier et al. 2017). The BARLEX ‘cluster list’ function 
positions cluster 130 at 49.6 cM and cluster 926 at 55.0 cM 
on chromosome six, indicating a genetic distance of ~ 5 cM 
between the two genes.

Plant material, field studies and phenotypic data 
collection

To understand the impact of different HvGR-RBP1 and 
HvNAM1 alleles, we genotyped a subset (95 lines) of the 
material described as the ‘Malt Panel’ by Pauli et al. (2015), 
resulting from a set of crosses aimed at introgressing the 
‘Karl’ HvNAM1 allele into malt barley breeding germplasm 
(Table 1; see Table S2 for pedigrees). Subsequent to geno-
typing, we re-analyzed agronomic traits that had been col-
lected as described in Pauli et al. (2015) and results from 
the re-assessment are listed as experiment 1 throughout 

this manuscript. In order to test the interaction of HvGR-
RBP1 and HvNAM1 allelic states with nitrogen fertilization 
and irrigation, we also performed a smaller experiment (13 
varieties and lines; Tables 1 and S2) which is referred to as 
experiment 2 throughout this manuscript. Experiment 2 was 
grown for three different location-years, namely Bozeman 
2016, Bozeman 2017 (Arthur Post Research Farm, Boze-
man, MT, USA; 45°40′40.78 N, 111°09′07.14 W), and 
Conrad 2017 (Western Triangle Agricultural Research Sta-
tion, Conrad, MT, USA; 48°18′26.05 N, 111°55′29.24 W), 
with three replicates for each location-year and treatment. 
For each location-year, plant material was grown under two 
water treatments in separate but adjacent blocks. Post Farm 
plots received 119 mm of rainfall from May to July during 
the 2016 season and 124.5 mm during 2017, while rainfall 
(2017) amounted to 89.9 mm for the Western Triangle loca-
tion. All plots had adequate pre-season rainfall to reach field 
capacity. Approximately 150 mm water was added to the 
irrigated plots over three events throughout the season to 
ensure that plots did not dry below the barley wilting point; 
irrigation was stopped in the first week of July. Each loca-
tion-year and water treatment also consisted of two nitro-
gen treatments in a split-plot randomized complete block 
design where the main plots were nitrogen treatment and 
the subplots were the genotypes. Prior to treatment, field 
soil samples were analyzed for total nitrogen content by 
AGVISE Laboratories (Benson, MN, USA) on a field level 
in 2016 and a replication level in 2017. This information 
was used to adjust the field nitrogen to the desired level in 
each individual split-plot, which was calculated by using 
the Montana Barley Production Guide (McVay et al. 2017) 
for malting barley nitrogen application (61.77 g nitrogen * 
expected yield in kg  ha−1). The exact amount of nitrogen 
(applied as urea) used in this experiment for each location 
and treatment is listed in Table S3.

Taking advantage of the smaller experiment size, we col-
lected more data from experiment 2, particularly for devel-
opmental parameters. Plants from this experiment were 
analyzed for developmental traits including plant height, 
anthesis date, maturity date, grain fill duration, and tiller 
numbers. Agronomic traits included percentage of plump 

Table 1  Description of 
experiments

Experiment 1: re-analysis of Pauli 
et al. (2015) data with new markers

Experiment 2: detailed agronomic analysis

Description Subset of an association mapping 
population described in Pauli et al. 
(2015)

Five varieties and eight lines; partial 
overlap with experiment 1 (Table S3 for 
details)

Number of screened 
lines and varieties

95 lines 13 varieties and lines

Experimental design Randomized incomplete block design Randomized complete block design
Replication Two location-years Three location-years
Treatments Irrigation Irrigation and nitrogen

https://www.ncbi.nlm.nih.gov/
https://plants.ensembl.org/Hordeum_vulgare/Tools/Blast
https://plants.ensembl.org/Hordeum_vulgare/Tools/Blast
https://apex.ipk-gatersleben.de/apex/f?p=284:10
https://apex.ipk-gatersleben.de/apex/f?p=284:10
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kernels, test weight, grain protein concentration, yield, 
and harvest index. Grain protein concentration and kernel 
plumpness were measured and reported in the same way 
as experiment 1 (Pauli et al. 2015). Plant height was meas-
ured at maturity and was determined by extending the tip 
of the barley ear upward in order to record the maximum 
height including awns. Two measurements per plot were 
performed and the averages were recorded. Tiller count was 
measured at maturity by counting the number of productive 
tillers per 30.5 cm of row length. Again, two measurements 
were performed per plot (replicate), and the average was 
recorded. Anthesis date was recorded when approximately 
50% of plants in each plot had reached Zadoks growth 
stage 49 (‘awn tipping’) (Alqudah and Schnurbusch 2017; 
Zadoks et al. 1974). Maturity dates were recorded only at the 
Post Farm (2016, 2017) location-years as the date at which 
approximately 50% of barley ears had reached Zadoks stage 
92. The grain filling period was estimated by subtracting 
anthesis from maturity dates for each plot/replicate. Har-
vest index was calculated as grain weight divided by total 
row biomass weight (only for Post Farm location-years). 
Test weights were determined using a GAC2500-UGMA 
(Dickey-john Corporation, Auburn, IL, USA) and reported 
as kg  hL−1.

Screening of HvGR‑RBP1 allelic state in the USDA 
barley core collection

The USDA Barley Core Collection is a genetically diverse 
group of 2465 6-row and 2-row lines consisting of advanced 
breeding lines, cultivars, and landraces collected from differ-
ent geographical locations around the world (Muñoz-Ama-
triaín et al. 2014). PCA analysis of 2-row genotypes con-
sisting of 6906 polymorphic markers from a 9 K Infinium 
SNP chip (https ://triti ceaet oolbo x.org/) was used to select a 
subset of 138 lines representing the genetic diversity of the 
population. To determine the frequency of the nonfunctional 
(‘Karl’) allele in a more genetically diverse population than 
the breeding population, the allelic state of HvGR-RPB1 
was analyzed in 138 accessions using the molecular marker 
described in Fig. 2.

Data analysis

In this study, R software (v.3.5.3) was used to investigate the 
statistical significance of collected agronomic and develop-
mental data (R Core Team 2018). Experiment 1 was treated as 
a randomized incomplete block design with a 2-level irrigation 
treatment (Pauli et al. 2015) (Table S4). Experiment 2 was 
treated as a randomized complete block design with 2-level 
irrigation and 2-level fertilizer treatments (Table S5). In both 
experiments, due to the non-independence of the barley lines 
with shared pedigrees, the genetic relatedness of lines used 

in the study was taken into consideration during statistical 
analysis. For this purpose, we performed analysis of variance 
(ANOVA) with the R package lme4qtl. This package considers 
the genetic relatedness of individual lines as a random fac-
tor (Ziyatdinov et al. 2018).

For experiment 1, a relationship matrix was con-
structed from the SNP genotypes (Table S6) consisting 
of 333 markers obtained by Pauli et al. (2015). Method-
of-moments estimators were used to construct a kinship 
matrix, Gn × n where n is the number of genotypes and the 
kinship estimate between the most distant subpopulations 
is zero on average using the R package popkin (Ochoa and 
Storey 2019). The following linear mixed model was fit to 
these data

where Yijk is a single phenotypic observation, � is the grand 
mean, alleleCombinationi is a dummy variable capturing 
the effect of the allele combinations at the HvNAM1 and 
HvGR-RBP1 loci, irrigationj is the effect of the jth irrigation 
treatment, (alleleCombination × irrigation)ij is the effect of 
the interaction between the ith alleleCombination and the 
jth irrigation treatment, genotypek is the effect of the kth 
genotype following N (0,Gn × n), and �ijk is the random error 
following N (0,�2 ). The model terms allelic combination and 
irrigation were modeled as fixed effects, and the other terms 
were modeled as random effects.

In experiment 2, the pedigree of the 13 utilized varie-
ties and lines was obtained from T3/Barley (https ://triti 
ceaet oolbo x.org/barle y/) with manual extraction until there 
was an ‘unknown’ ancestor for the variety (Table S7). The 
genetic relatedness matrix Gn × n where n is the number of 
genotypes was then built using this information with the 
R package synbreed with the kin function (Wimmer et al. 
2012). The following linear mixed model was fit to these 
data

where Yijk is a single phenotypic observation, � is the grand 
mean, alleleCombinationi is a dummy variable capturing 
the effect of the allele combinations at the HvNAM1 and 
HvGR-RBP1 loci, irrigationj is the effect of the jth irrigation 
treatment, (alleleCombination × irrigation)ij is the effect of 

Yijk = � + alleleCombinationi + irrigationj

+ (alleleCombination × irrigation)ij

+ genotypek + �ijk,

Yijkl = � + alleleCombinationi + irrigationj + nitrogenk

+ (alleleCombination × irrigation)ij

+ (alleleCombination × nitrogen)ik

+ (irrigation × nitrogen)kj

+ (alleleCombination × irrigation × nitrogen)ijk

+ genotypel + �ijkl,

https://triticeaetoolbox.org/
https://triticeaetoolbox.org/barley/
https://triticeaetoolbox.org/barley/
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the interaction between the ith alleleCombination and the 
jth irrigation treatment, genotypek is the effect of the kth 
genotype following N (0,Gn × n), and �ijk is the random error 
following N (0,�2).

The model terms allelic combination and irrigation were 
modeled as fixed effects, and the other terms were modeled 
as random effects. The normality of model residuals was 
tested with the R package ‘fitdistrplus’ (Delignette-Muller 
and Dutang 2015), and datasets that did not fit a normal dis-
tribution were normalized via the R package ‘bestNormal-
ize’ (Peterson and Cavanaugh 2019). Comparisons between 
different allelic groups and treatments were made with the 
Wilcoxon test, with the significance cutoff value p < 0.05; 
since no multiple testing corrections were made, p values 
are recorded in Supplemental Table S13.

Results

A G‑rich insertion in the promoter region disrupts 
HvGR‑RBP function in barley variety ‘Karl’

Previous studies from our laboratory have indicated that 
HvGR-RBP1 is expressed at a very low level in barley 
variety ‘Karl’ (see introduction). In order to discover the 
reason for this finding, a ~ 5 kb region, including ~ 2 kb of 
5′ UTR, the 500 bp coding region and ~ 3 kb of 3′ UTR, 
was amplified from genomic DNA of varieties ‘Karl’ and 

‘Lewis’ (with high HvGR-RBP1 expression) and sequenced 
(Fig. 1a). The primer combinations PM, P1, and P2 ampli-
fied the 5′ UTR, while P5 and P6 amplified the 3′ UTR 
(Fig. 1a, Table S1). The coding region is captured by P3 and 
P4, with P4 including both part of the coding region and 3′ 
UTR. A gene model, which is based on previous information 
about this gene (Tripet et al. 2014), the reference barley (var. 
‘Morex’) genome (Mascher et al. 2017), and novel sequence 
information from this study, is presented in Fig. 1b. Gel elec-
trophoretic analysis of PCR products showed a prominent 
difference in the DNA sequence amplified with the PM 
primer combination, with the fragment from ‘Karl’ ~ 400 bp 
longer than the ‘Lewis’ fragment (Fig. 2a). Sanger sequenc-
ing of this PCR amplicon identified a G-rich insertion in 
‘Karl,’ which is absent in the reference genome, and in vari-
ety ‘Lewis’ (Supplementary File 1). This insertion may be 
responsible for the low gene transcription that was reported 
in var. ‘Karl’ (Jukanti et al. 2008; Lacerenza et al. 2010). In 
addition to the insertion, sequencing identified three single 
nucleotide differences that resulted in three amino acid sub-
stitutions, asparagine to serine at the 59th position, alanine 
to glycine at the 114th position, and tyrosine to histidine at 
the 115th position, between ‘Lewis’ and ‘Karl’ (Fig. 1b).

The promoter region of HvGR-RBP1 was scanned for 
potential transcription factor binding motifs. Our analy-
sis indicated that this region is almost identical in varie-
ties ‘Lewis’ and ‘Morex’; hence, the ‘Morex’ (reference) 
sequence was used for this part of the study. Several 

(a)
 PM     P1     P2     P3     P4       P5    P6 

1000- 
750- 

500- 

300- 

(b)

Fig. 1  Amplification of HvGR-RBP1 and potential gene model. a 
The amplified PCR products of HvGR-RPB1 from variety ‘Lewis’ are 
shown on %1 agarose gel. PM is the amplicon from ‘Lewis’ that var-
ied for the insertion with ‘Karl.’ b A potential gene model for HvGR-
RBP1 is represented. The promoter region of the gene possesses sev-
eral potential transcription factor binding motifs. The G-rich insertion 
in ‘Karl’ may disrupt gene expression. HvGR-RPB1 consist of two 

exons and an intron, which are highly similar between ‘Karl’ and 
‘Lewis’ with only three single nucleotide polymorphisms (A261G, 
C426G, T428C) that are located in Exon-2 and result in missense 
mutations Aspargine to Serine at 59th, Alanine to Glycine at 114th 
and Tyrosine to Histidine at 115th positions in ‘Karl.’ The locations 
for forward and reverse primers used for amplification of PCR prod-
ucts from Fig. 1a are also shown as PM, P1-P6 
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transcription factor binding motifs were identified using the 
PlantPAN (v. 3.0) tool (https ://plant pan.itps.ncku.edu.tw/) 
(Chow et al. 2019). Motifs included those which may be 
recognized by members of the MADF, WRKY, Myb/SANT, 
and NAC families, suggesting roles for HvGR-RBP1 in 
plant developmental and stress response processes (Fig. 1b, 
Table S8).

Screening for HvGR‑RBP1 allelic state in breeding 
germplasm suggests a phenotypic selection 
for the functional allele

To understand the allelic effect of HvGR-RBP1 on agro-
nomic traits in malt barley, we screened germplasm from 
the Montana State University malt barley breeding program 
included in experiments 1 and 2. The molecular marker 
exploited the amplicon length difference in the 5′ UTR of 
HvGR-RBP1, enabling easy differentiation of homozygous 
and heterozygous genotypes (Fig.  2a). The germplasm 
screened represents efforts to control grain protein con-
centration by introgressing the ‘Karl’ (low grain protein; 
delayed senescence) HvNAM1 allele; lines were advanced 
and phenotypically selected for yield, low grain protein, 
and a high percentage of plump kernels. As expected, the 
‘Karl’ HvNAM1 allele was present in a majority of tested 
lines. Interestingly, the functional (high gene expression; 
‘Lewis’) HvGR-RBP1 allele was present in a considerably 

larger percentage of lines than expected based on genetic 
distance between the two genes (~ 5 cM; Fig. 2c) (Table 1, 
Fig. 2b, Table S2). Phenotypic selection may have favored 
lines carrying the functional HvGR-RBP1 allele.

Barley plants carrying a functional HvGR‑RBP1 allele 
head earlier and are slightly reduced in height

To understand whether the combination of the functional 
‘Lewis’ allele of HvGR-RBP1 and a ‘Karl’ HvNAM1 allele 
was due to phenotypic selection during breeding, we com-
pared agronomic traits in lines with different allele combi-
nations. Lines carrying a ‘Karl’ allele of HvGR-RBP1 and 
a ‘Lewis’ allele of HvNAM1 were rare after selection and 
have therefore not been included in our analyses. Data from 
experiment 1 (re-analysis of agronomic data from Pauli et al. 
(2015) based on new molecular marker analyses) indicate 
that germplasm homozygous for the functional (‘Lewis’) 
HvGR-RBP1 allele reaches the heading stage 0.5  days 
earlier (Table 2). The effect was stronger in experiment 2, 
with 1.2 days of difference in anthesis date (Table 3), with 
measured differences significant in both experiments. Lines 
combining functional (‘Lewis’) HvGR-RBP1 with ‘Karl’ 
HvNAM1 alleles had the earliest heading or anthesis dates 
(Tables 2 and 3). Lines with this allele combination were 
also reduced in height; separate analysis of HvGR-RBP1 and 
HvNAM1 effects suggests a small but consistent effect of 

(a)

(c)

(b)

Chr6H

0 150 cM30 12060 90

HvNAM1 
49.6

55.0
HvGR-RBP1 

1000- 
750- 

500- 

300- 

       Karl        Lewis     MT124017    10-11

-/-
42%

+/-
36%

+/+
22%

Fig. 2  HvGR-RBP1 Marker Development and Genotyping. a The 
G-rich insertion in variety ‘Karl’ is used as a marker for genotyping 
of HvGR-RBP1 gene. Here, four different varieties are represented: 
Karl, Lewis, MT124017, and 10_11. The difference in amplification 
length in the marker region is ~ 300 to 400  bp differentiates ‘Karl’ 
and ‘Lewis’ genotypes, as well as the heterozygote ‘MT124017.’ b 
A pie chart representing the distribution of each allelic group in the 
screened MSU breeding population. + / + indicating functioning 

alleles for both HvGR-RPB1 and HvNAM1. −/− indicating non-func-
tioning alleles for both genes. ± indicating functional ‘Lewis’ allele 
for HvGR-RBP1 and non-functioning ‘Karl’ allele for HvNAM1. 
−/ + indicating non-functioning ‘Karl’ allele for HvGR-RBP1 and 
functional ‘Lewis’ allele for HvNAM1 were not observed in this sub-
set that were advanced from the original larger population. 2c. A fig-
ure representing the genetic map distance between HvGR-RBP1 and 
HvNAM-1 gene. Two genes are 5.4 cM apart, resulting in linkage

https://plantpan.itps.ncku.edu.tw/
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HvGR-RBP1 on height, while the influence of HvNAM1 was 
not consistent between the two experiments (Tables 2 and 3). 

Experiment 2 also analyzed maturity dates. Based on 
these, plants carrying the ‘Karl’ HvNAM1 allele matured 
2 days later (Table 3). This finding agrees with previous 
research from our laboratory comparing barley lines with 
‘Lewis’ vs. ‘Karl’ HvNAM1 alleles (Heidlebaugh et al. 
2008; Jukanti and Fischer 2008; Jukanti et al. 2008; Lac-
erenza et al. 2010), and with the recent literature regard-
ing the function of NAC genes in senescence regulation 
(Distelfeld et  al. 2014; Podzimska-Sroka et  al. 2015). 
Interestingly, as the functional (‘Lewis’) HvGR-RBP1 
allele accelerates flowering and heading while the ‘Karl’ 
HvNAM1 allele delays plant maturity, the combination of 

these two alleles (± group in Table 3) resulted in a signifi-
cantly increased (~ 3 days longer) grain fill duration.

Experiments also analyzed the effect of irrigation and 
N fertilizer treatments on flowering/heading dates, maturity 
dates, and plant height (Tables 2, 3 and S5). The statistical 
model used indicates that both genes contribute significantly 
to the control of grain fill duration. The model also sug-
gests that the effects of HvGR-RBP1 alleles are independ-
ent of the environmental conditions tested, while HvNAM1 
allelic effects are slightly affected by irrigation treatments. 
As expected, both irrigation and N treatments had significant 
effects on plant height, with irrigated plants ~ 20 cm taller in 
experiment 1 and ~ 13 cm taller in experiment 2 (Table S9). 
Significant interactions between allele combinations and 

Table 2  Influence of HvNAM1 and HvGR-RBP1 allelic states on agronomic and physiological traits in experiment 1 (with 95 lines)

Data represent mean values and standard deviations averaged across both location-years and treatments. Two-sided differences between the 
means of different alleles/allele combinations were calculated using the Wilcoxon test (P value < 0.05, P values reported in Table S13) and are 
represented with superscript letters. For allele combinations, the plus ( +) symbol represents the wild-type (functional, ‘Lewis’) allele, while the 
minus (–) symbol denotes the ‘Karl’ allele of both HvGR-RBP1 and HvNAM1. For ANOVA analyses, P values are represented by a dot (.) for 
P < 0.1, one star (*) for P < 0.05, two stars (**) for P < 0.01, or three stars (***) for P < 0.001

Single gene effect Number of 
lines

Heading (Julian 
days)

Height (cm) Plump kernels (%) Test weight (kg 
 hL−1)

Grain protein (%) Yield (kg  ha−1)

Separate analysis of HvGR-RBP1 and HvNAM1 effects
 HvGR-RBP1+ 53 187.9 ± 2.1b 66.6 ± 10.8a 69.8 ± 15.1a 67.4 ± 1.8a 12.6 ± 0.8a 5834 ± 1829a

 HvGR-RBP1− 42 188.4 ± 1.9a 68.4 ± 12.0a 61.7 ± 14.2b 66.5 ± 1.7b 12.6 ± 0.6a 5775 ± 1706a

 HvNAM1+ 18 188.3 ± 1.9a 69.1 ± 11.7a 66.9 ± 15.0a 67.2 ± 1.9a 13.4 ± 0.7a 6107 ± 1786a

 HvNAM1− 77 188.1 ± 2.1a 67.0 ± 11.3a 66.0 ± 15.3a 66.9 ± 1.8a 12.4 ± 0.6b 5738 ± 1765b

Allele combina-
tions (HvGR-
RBP1/HvNAM1)

Number of 
lines

Heading (Julian 
days)

Height (cm) Plump kernels (%) Test weight (kg 
 hL−1)

Grain protein (%) Yield (kg  ha−1)

Analysis of allele combinations
  + / + 18 188.3 ± 1.9a,b 69.1 ± 11.7a 66.9 ± 15.0b 67.2 ± 1.9a 13.4 ± 0.7a 6107 ± 1786a

  ± 35 187.7 ± 2.2b 65.3 ± 10.1b 71.3 ± 15.0a 67.4 ± 1.7a 12.2 ± 0.6c 5693 ± 1841b

 −/− 42 188.4 ± 1.9a 68.4 ± 12.0a 61.8 ± 14.2c 66.5 ± 1.7b 12.6 ± 0.6b 5775 ± 1706a,b

Fixed effects Heading 
(Julian days)

Height (cm) Plump ker-
nels (%)

Test weight (kg 
 hL−1)

Grain protein (%) Yield (kg  ha−1)

Analysis of variance for fixed effects
 HvNAM1 allele * *** ** *** ***
 HvGR-RBP1 allele ** *** *** *** *** *
 Irrigation *** *** ** *** *** ***
 HvNAM1- HvGR-

RBP1 alleles
** *** *** *** *** ***

 HvNAM1 
allele*irrigation

* *

 HvGR-RPB1 
allele*irrigation

*

 HvNAM1- HvGR-
RBP1 alleles 
*irrigation

*

 Transformation None None None None None None
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irrigation treatments occurred in both experiments (Tables 2 
and 3). In contrast to heading, maturity, and grain fill dura-
tion, tillering (i.e., numbers of tillers per meter) was not 
influenced by the genes studied here (Table 3), while both 
nitrogen fertilization and irrigation significantly influenced 
this parameter (Table S9).

Germplasm combining functional (‘Lewis’) 
HvGR‑RBP1 with ‘Karl’ HvNAM1 alleles has a lower 
grain protein concentration and a higher 
percentage of plump kernels

The agronomic traits most important to malt quality, grain 
protein, and percentage of plump kernels, were also exam-
ined to determine their regulation by HvGR-RBP1 and 
HvNAM1 allelic states. In both experiments, germplasm 
homozygous for ‘Lewis’ HvGR-RBP1 and ‘Karl’ HvNAM1 
alleles presented a strongly enhanced percentage of plump 
kernels when compared to the other allele combinations 
(Tables 2 and 3). The statistical model indicates that, in both 
experiments, the influence of alleles and allele combina-
tions on this trait are highly significant (Tables 2 and 3). 
Lines with this allele combination also had the lowest grain 
protein concentrations (Tables 2 and 3), with the influence 
of HvNAM1 consistent between the two experiments. The 
‘Karl’ HvNAM1 allele lowered grain protein from 13.4 to 
12.4% in experiment 1 and from 13.1 to 11.8% in experiment 
2, confirming previous studies in barley and wheat (Heidle-
baugh et al. 2008; Jukanti et al. 2008; Uauy et al. 2006).

Irrigation treatments applied in this study significantly 
enhanced the percentage of plump kernels and lowered per-
cent grain protein in experiment 1, while applied N fertili-
zation (experiment 2) slightly enhanced grain protein con-
centration (Fig. 3, Table S9). Germplasm homozygous for 
‘Lewis’ HvGR-RBP1 and ‘Karl’ HvNAM1 alleles had the 
highest percentage of plump kernels and the lowest grain 
protein concentration, irrespective of irrigation treatment, in 
both experiments 1 (Fig. 3) and 2 (Tables S10 and S11). This 
allele combination also maintained its advantage for malt 
barley production under the two N levels tested in experi-
ment 2 (Table S11), suggesting that observed effects are 
robust under a range of growing conditions.

Germplasm combining functional (‘Lewis’) 
HvGR‑RBP1 with ‘Karl’ HvNAM1 alleles has slightly 
enhanced test weight, but yield is not increased

Based on data presented in Tables 2 and 3, lines homozy-
gous for the functional (‘Lewis’) HvGR-RBP1 and ‘Karl’ 
HvNAM1 alleles have slightly enhanced test weight; this 
effect can be mostly attributed to the functional HvGR-RBP1 
allele. In experiment 1, this allele combination appears asso-
ciated with a slight yield penalty, while essentially no yield D
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effects associated with alleles and allele combinations were 
observed in experiment 2.

As expected, tested environmental parameters had a sig-
nificant influence on test weight and yield in both experi-
ments. Irrigation increased test weight by 1–3 kg  hL−1 and 
yield by 2000 to 3000 kg ha−1 (Fig. 3, Tables S6 and S7), 
while higher N levels were associated with slightly (but not 
significantly) enhanced yield in experiment 2 (Table S11). 
The statistical model confirms that effects of irrigation on 
test weight and yield were significant in both experiments 
(Tables 2 and 3), while no significant effect of applied N 
treatments was observed in experiment 2 (Table 3). Some 
combinations between studied genes/alleles and irrigation 
affected test weight, but not yield (Table 3).

The HvGR‑RBP1 promoter insertion is not unique 
to variety ‘Karl’

In our analysis, we studied the influence of the functional 
(‘Lewis’) vs. nonfunctional (‘Karl’) HvGR-RBP1 alleles on 
plant developmental and agronomic parameters. To deter-
mine if the nonfunctional HvGR-RBP1 allele is unique to 
‘Karl,’ we used the newly developed marker (Fig. 2a) to 
screen a subset (138 accessions) from the USDA Barley 
Core Collection (Muñoz-Amatriaín et al. 2014). Based on 
this analysis (Table S12), 22 accessions (15.9%) possessed 
an upstream insertion identical or similar to the one found 
in var. ‘Karl.’ Thirteen (13) of the accessions carrying the 
insertion were landraces, three were breeding lines, and two 
were cultivars, while the status of the remaining four acces-
sions is unclear (Table S12). The presence of the upstream 
insertion in landraces with a geographically diverse origin 
(including Asia, Africa, and South America) indicates that 

Fig. 3  Changes in agronomic traits under irrigation treatment in re-
analysis of Pauli et  al (2015). Data collected on lines segregating 
for HvGR-RBP1 and HvNAM1 and for traits from dry and irrigated 
conditions. Lines intersect data from the two treatments at the mean 
value for each trait for each allelic combination. Agronomic traits are 

represented as (a) kernel plumpness (%), (b) grain protein (%) (c) test 
weight (kg/L), (d) yield (kg/ha). Note that change in mean between 
dry and irrigated is less for allelic combo ± except for in the case of 
yield
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this variation is not particularly rare. However, it stands as 
an intriguing question whether the functional vs. nonfunc-
tional allele provides a different selective advantage depend-
ing on the environment.

Discussion

Flowering and senescence are important phases of a plant’s 
life cycle, particularly in annual species with monocarpic 
senescence. They define adaptation to a particular environ-
ment; in annual crops including cereals, timing of flower-
ing and senescence control yield and quality (Distelfeld 
et al. 2014; Hill and Li 2016; Woo et al. 2018). Interac-
tions between flowering and senescence control appear par-
ticularly relevant, and both flowering time-dependent and 
-independent inputs into the control of senescence have been 
identified (Bogard et al. 2011; Hensel et al. 1993; Kim et al. 
2004; Miryeganeh et al. 2018; Parrott et al. 2012; Wingler 
et al. 2010; Wu et al. 2008).

Through sequencing of HvGR-RBP1, an amplicon size 
difference was identified that is directly applicable as a 
molecular marker, which has been utilized here to screen 
malt barley breeding germplasm (Table S2) and a geographi-
cally diverse subset of the USDA Barley Core Collection, 
finding that lines with the insertion are not rare (Table S12) 
(Muñoz-Amatriaín et al. 2014). Data shown in Tables 1 
and 2 indicate that germplasm with a strongly expressed 
HvGR-RBP1 allele reaches anthesis earlier and is slightly 
reduced in height when compared with germplasm carry-
ing the ‘Karl’ allele, which is very weakly expressed. These 
findings fit with previous analyses comparing variety ‘Karl’ 
with a near-isogenic line (‘10_11’) carrying the functional 
allele from variety ‘Lewis’ (Lacerenza et al. 2010; Parrott 
et al. 2012). Furthermore, a homologous gene in A. thali-
ana (AtGRP7) is important for the autonomous (or earli-
ness per se) flowering pathway; knockout mutants exhibit 
substantially delayed flowering (Steffen et al. 2019; Streit-
ner et al. 2008). Together, these data indicate that AtGRP7 
and HvGR-RBP1 have similar or identical functions in A. 
thaliana and barley flowering time control. Although, at this 
point, we cannot exclude the possibility that allelic differ-
ences in genes linked to HvNAM1 and HvGR-RBP1 contrib-
ute to the observed phenotype. Future research will focus on 
dissecting the molecular interactions through which HvGR-
RBP1 modulates barley flowering, considering known dif-
ferences between flowering time control in A. thaliana and 
cereals (Blümel et al. 2015; Greenup et al. 2009). The fact 
that vernalization treatments eliminate developmental dif-
ferences between germplasm differing in GR-RBP function 
(Parrott et al. 2012; Streitner et al. 2008) may be helpful in 
this context.

The ‘Lewis’ allele of HvNAM1 leads to plants reaching 
maturity 2 days earlier than the ‘Karl’ allele in experiment 
2 (Table 3). This finding from field experiments agrees 
with our previous (greenhouse) based comparison of flag 
leaf senescence in near-isogenic germplasm varying in 
HvNAM1 allelic state (Heidlebaugh et al. 2008; Jukanti 
et al. 2008; Mason et al. 2016). Importantly, based on 
experiment 2, effects of HvGR-RBP1 and HvNAM1 are 
additive; genotypes combining functional (‘Lewis’) 
HvGR-RBP1 with ‘Karl’ HvNAM1 alleles have a grain fill 
duration that is ~ 3 days longer. While this difference may 
not appear large, it corresponds to an ~ 9% extension of 
this developmental phase. This extension in grain fill dura-
tion may explain the substantial and significant increase 
in the percentage of plump kernels, and the slight (but 
significant) increase in test weight and decrease in grain 
protein concentration seen in germplasm with this allele 
combination (Table 3). While maturity was not measured 
in experiment 1, the same effects on kernel plumpness, test 
weight, and grain protein as in experiment 2 were observed 
when comparing lines combining functional (‘Lewis’) 
HvGR-RBP1 with ‘Karl’ HvNAM1 alleles with the other 
allele combinations (Table 2), confirming conclusions 
drawn from experiment 2. Analysis of seed samples from 
the Bozeman 2017 (non-irrigated) location indicates that 
enhanced kernel plumpness is associated with a slight 
(~ 3%) increase in kernel diameter, an ~ 10% increase in 
single kernel weight, but no change in seed length (data 
not shown).

Maltsters can reject barley for malt if grain protein is too 
high and/or the percentage of plump kernels too low, reduc-
ing the farmer’s profit by half. A variety of conditions can 
increase grain protein and reduce plump seed, including too 
much soil nitrogen, lack of rainfall, and heat during grain fill. 
In the current study, the positive effects on kernel plumpness 
and protein content contributed by the combination of the 
‘Lewis’ HvGR-RBP1 and the ‘Karl’ HvNAM1 alleles were 
stable under the different environments (irrigation, nitrogen) 
tested (Fig. 3, Tables S6 and S7). Weston et al. (1993) found 
that low grain protein lines from ‘Karl’ had lower protein 
across nitrogen treatments when compared with types not 
carrying low protein gene. However, the low protein types 
also had lower plumps and kernel weight across treatments, 
making them undesirable. Our data suggest that this is due 
to linkage between the ‘Karl’ HvGR-RBP1 and HvNAM1 
alleles. Recombinants between the genes studied here satisfy 
a breeding goal that benefits growers and end-users—varie-
ties with stable low protein and high plumps.

It might be expected that a genotype with increased grain 
fill duration leads to a yield increase. Extended grain fill 
duration (known as a ‘stay-green phenotype’ if maturation is 
delayed) has been extensively discussed in the literature and 
is often suggested to increase yield (Distelfeld et al. 2014; 
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Thomas and Howarth 2000; Thomas and Ougham 2014), 
yet no significant yield increase was seen in our experi-
ments when considering lines carrying the ‘Karl’ HvNAM1 
allele (delayed maturity) combined with either the ‘Lewis’ 
or ‘Karl’ HvGR-RBP1 alleles (Tables 2, 3). Significantly 
increased kernel plumpness and test weight, combined with 
no or marginal yield effects, suggest that lines combining 
functional (‘Lewis’) HvGR-RBP1 with ‘Karl’ HvNAM1 
alleles produce fewer but larger kernels. While this is still 
desirable in malting barley, the system may be sink-limited. 
As tillering is not affected (Table 3), one possible explana-
tion is that the early-flowering (‘Lewis’ allele for HvGR-
RBP1) genotype is associated with the production of fewer 
fertile spikelets, i.e., faster exhaustion of the meristem, and/
or enhanced seed abortion. This is clearly an issue that war-
rants further analysis.

The observation that HvGR-RBP1 expression is strongly 
reduced in barley variety ‘Karl’ (Jukanti et al. 2008; Lac-
erenza et al. 2010) could be due to changes in the 5′ flank-
ing sequence about 1 kb upstream of the translation start 
site, which includes an ~ 400 bp G-rich insertion (Fig. 2a). 
Efforts to determine differences in HvGR-RBP1 protein lev-
els between ‘Karl’ and ‘Lewis’ types have so far been unsuc-
cessful, and effects of the identified amino acid sequence 
differences remain unexplored. The insertion could disrupt 
transcription for a variety of reasons, including disruption 
of enhancers, or attraction of silencers. The fact that the 
insertion includes repeated G sequence could be important 
as such sequences are known to interact with interfering 
RNA (Pernitzsch et al. 2014) or form secondary structures 
that impede expression (Yang et al. 2018). A more detailed 
analysis of HvGR-RBP1 sequence and function will allow 
discrimination between these possibilities.

Overall, data presented here combined with past work 
suggest an important function for HvGR-RBP1 in the con-
trol of barley reproductive development, similar or identi-
cal to AtGRP7 function in Arabidopsis development. This 
research sets the stage for a detailed functional analysis of 
HvGR-RBP1; furthermore, our data indicate that screening 
for the allelic state of HvGR-RBP1, particularly in combina-
tion with HvNAM1, is of high practical value in malt barley 
breeding.
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