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Abstract
Key message  GWAS identified 36 potentially new loci for wheat stem water-soluble carbohydrate (WSC) contents 
and 13 pleiotropic loci affecting WSC and thousand-kernel weight. Five KASP markers were developed and validated.
Abstract  Water-soluble carbohydrates (WSC) reserved in stems contribute significantly to grain yield (GY) in wheat. How-
ever, knowledge of the genetic architecture underlying stem WSC content (SWSCC) is limited. In the present study, 166 
diverse wheat accessions from the Yellow and Huai Valleys Winter Wheat Zone of China and five other countries were grown 
in four well-watered environments. SWSCC at 10 days post-anthesis (10DPA), 20DPA and 30DPA, referred as WSC10, 
WSC20 and WSC30, respectively, and thousand-kernel weight (TKW) were assessed. Correlation analysis showed that TKW 
was significantly and positively correlated with WSC10 and WSC20. Genome-wide association study was performed on 
SWSCC and TKW with 373,106 markers from the wheat 660 K and 90 K SNP arrays. Totally, 62 stable loci were detected 
for SWSCC, with 36, 24 and 19 loci for WSC10, WSC20 and WSC30, respectively; among these, 36 are potentially new, 16 
affected SWSCC at two or three time-points, and 13 showed pleiotropic effects on both SWSCC and TKW. Linear regression 
showed clear cumulative effects of favorable alleles for increasing SWSCC and TKW. Genetic gain analyses indicated that 
pyramiding favorable alleles of SWSCC had simultaneously improved TKW. Kompetitive allele-specific PCR markers for 
five pleiotropic loci associated with both SWSCC and TKW were developed and validated. This study provided a genome-
wide landscape of the genetic architecture of SWSCC, gave a perspective for understanding the relationship between WSC 
and GY and explored the theoretical basis for co-improvement of WSC and GY. It also provided valuable loci and markers 
for future breeding.
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PIC	� Polymorphism information content
QTL	� Quantitative trait locus/loci
SWSCC	� Stem water-soluble carbohydrate content
TKW	� Thousand-kernel weight
WSC	� Water-soluble carbohydrate
WSC10	� Stem WSC content at 10 days post-anthesis
WSC20	� Stem WSC content at 20 days post-anthesis
WSC30	� Stem WSC content at 30 days post-anthesis
YHVWWZ	� Yellow and Huai Valleys Winter Wheat 

Zone

Introduction

Bread wheat (Triticum aestivum L.) is among the most 
important food crops worldwide. It was estimated that a 
genetic gain of 50% in yield, or an annual gain of ~ 2%, is 
essential to meet predicted global requirements over the next 
20 years (Lopes et al. 2012). However, annual gains in yield 
were only 0.6–0.7% in past decades (Sharma et al. 2012; 
Gao et al. 2017), mainly achieved by conventional breeding. 
Therefore, it is urgent to improve grain yield (GY) potential 
with better dissecting the genetic basis of yield and related 
traits in wheat.

Grain filling in wheat relies on two major carbon sources, 
namely direct photosynthetic assimilation from green leaves 
and reserved carbohydrates in stems and leaf sheaths (Ehdaie 
et al. 2008). When the photosynthetic source is depressed 
either by leaf senescence or by drought/heat stresses, grain 
filling becomes more dependent on mobilized resources 
(Bidinger et al. 1977; Kobata et al. 1992; Blum et al. 1994). 
Water-soluble carbohydrates (WSC) are stored in stems 
and leaf sheaths during vegetative and early reproductive 
stages, and they are remobilized and transported to grains at 
the later grain filling stages (Pheloung and Siddique 1991; 
Wardlaw and Willenbrink 2000). Stem-reserved WSC could 
account for 10–20% and 30–50% of the wheat GY under 
well-watered and terminal drought conditions, respectively 
(Aggarwal and Sinha 1984; Wardlaw and Willenbrink 
2000; Foulkes et al. 2010; Ovenden et al. 2017). There-
fore, improvement in SWSCC can be a valuable approach 
to improve GY (Shearman et al. 2005; Ruuska et al. 2008; 
Sadras and Lawson 2011; Xiao et al. 2012; Gao et al. 2017).

In addition to improving GY, WSC also play important 
roles in coping with abiotic stresses caused by water defi-
ciency and/or high temperature (Livingston et al. 2009). 
SWSCC are higher in drought-tolerant cultivars than in sen-
sitive ones (Foulkes et al. 2002; Goggin and Setter 2004), 
and increasing the genetic capacity for WSC accumulation 
was considered an approach to improve drought tolerance in 
wheat (Ovenden et al. 2017). In addition, the components 
of WSC, e.g., fructose, glucose and sucrose, are involved 
in plant immunity as signaling molecules for regulation of 

defense genes on biotic stress (Bolouri-Moghaddam and van 
den Ende 2013; Trouvelot et al. 2014). It is obvious that 
WSC are involved in a complex system of plant growth, 
development and diverse biotic and abiotic stress responses 
(Rolland et al. 2006; Trouvelot et al. 2014). And researchers 
indicated selection for higher SWSCC has potential in breed-
ing for improved adaptation across a range of environmental 
stresses (Rebetzke et al. 2008).

Many studies have shown that genotypic differences in 
SWSCC are repeatable across diverse environments with 
high broad-sense heritability (H2) of 0.7–0.9 (Zhang et al. 
2014; Dong et al. 2016a, b). This indicates that variation in 
SWSCC is largely genetically determined; however, SWSCC 
is also significantly affected by environmental factors like 
drought and heat stresses (Ovenden et al. 2017). Quantitative 
trait loci (QTL) mapping researches of SWSCC have been 
reported in barley (Teulat et al. 2001), rice (Nagata et al. 
2002; Wang et al. 2017; Phung et al. 2019), maize (Thévenot 
et al. 2005; Bian et al. 2015), perennial ryegrass (Turner 
et al. 2006), and sorghum (Brenton et al. 2016). In wheat, 
diverse bi-parental populations were used in identification 
of QTL or genomic regions associated with SWSCC (Snape 
et al. 2007; Yang et al. 2007; Rebetzke et al. 2008; Dong 
et al. 2016b). Nevertheless, these studies didn’t provide a 
genome-wide landscape of the complex genetic architecture, 
as family-based genetic populations have limited diversity. 
In addition, the amount of recombination places a limit on 
mapping resolution in family-based QTL mapping (Korte 
and Farlow 2013). It is also possible that QTL with moder-
ate or small effects may be missed in QTL mapping, and the 
Beavis effect can cause a biased estimation of QTL effects 
especially when the population size is small (Xu 2003). 
Moreover, the relatively long genetic distances between 
linked markers and causal genes limit their use in marker-
assisted selection (MAS, Platten et al. 2019).

Genome-wide association studies (GWAS) on SWSCC 
were performed at flowering, mid-grain filling and maturity 
stages (Zhang et al. 2014; Li et al. 2015), but the detailed 
genetic architecture was not revealed due to use of only 
209 SSR markers. Dong et al. (2016a) conducted GWAS 
on SWSCC at 14 days post-anthesis (DPA) using 18,207 
markers from the wheat 90 K SNP array (Wang et al. 2014), 
but there were still large gaps in the genetic map, and marker 
coverage for the D genome was particularly sparse (Liu et al. 
2017). Therefore, it is necessary for a more precise dissec-
tion of the genetic architecture underlying the complexity of 
stem carbohydrate metabolism. In addition, genes control-
ling SWSCC express dynamically at different growth stages 
(Veenstra et al. 2017; Yáñez et al. 2017; Hou et al. 2018), 
and knowledge of basis of SWSCC over time would provide 
more valuable information for breeding. In maize, QTL anal-
yses of stalk sugar contents at different growth stages were 
conducted by Bian et al. (2015). Although QTL mapping 
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works on wheat SWSCC have been performed at different 
stages (Snape et al. 2007; Yang et al. 2007; Rebetzke et al. 
2008; Zhang et al. 2014; Li et al. 2015; Dong et al. 2016a, 
b) knowledge of the dynamic expression patterns of genes 
associated with WSC remains limited. It is therefore impor-
tant to gain deep insights into the genetic expression patterns 
related to wheat SWSCC at different stages.

In the present study, a diversity panel of 166 winter wheat 
accessions was planted in four well-watered environments, 
and SWSCC at three time-points at the grain filling stage and 
thousand-kernel weight (TKW) were investigated. GWAS 
was performed on SWSCC and TKW using a high-density 
physical map constructed with the markers from wheat 
660 K and 90 K SNP arrays. The objectives were to (1) eval-
uate the relationship between SWSCC and TKW, (2) identify 
loci and candidate genes associated with SWSCC and TKW, 
providing insights into the genetic basis of SWSCC in wheat 
and (3) develop high-throughput kompetitive allele-specific 
PCR (KASP) markers for MAS targeting WSC and TKW 
improvement.

Materials and methods

Plant materials and field trials

A diversity panel of 166 representative wheat accessions 
chosen from more than 400 cultivars was used for GWAS 
on SWSCC and TKW, including 144 accessions collected 
from the Yellow and Huai Valleys Winter Wheat Zone 
(YHVWWZ) of China, and 22 from five other countries 
(Liu et al. 2017; Zhai et al. 2018; Li et al. 2019; Table S1). 
Among them, 130 Chinese wheat cultivars released from 
1947 to 2016 (Table S1) were used to investigate the genetic 
progress in improvement in SWSCC and TKW. These culti-
vars were divided into five groups, i.e., 9 cultivars released 
during 1947–1979, 13 in the 1980s, 36 in the 1990s, 59 
in the 2000s and 13 released in the 2010s. Furthermore, 
cultivars released after 1990 from five main wheat produc-
ing provinces in China, i.e., Anhui (9 cultivars), Hebei (13), 
Henan (44), Shandong (21) and Shaanxi (17), were used to 
investigate inter-province differences of SWSCC and TKW 
(Table S1).

All accessions were grown in four environments includ-
ing Dezhou (37° 27′ N, 116° 18′ E; Shandong Province) and 
Gaoyi (37° 37′ N, 114° 34′ E; Hebei Province) during the 
2016–2017 cropping season, and Luohe (33° 36′ N, 113° 
58′ E; Henan Province) and Xinxiang (35° 18′ N, 113° 51′ 
E; Henan Province) during 2017–2018. These environments 
were designated as 17DZ, 17GY, 18LH and 18XX, respec-
tively. The field trials at each location were carried out under 
well-watered conditions with two flood irrigations during 
jointing and flowering stages. All locations experienced 

warm temperatures during the later grain filling stage (Fig. 
S1). The cultivars were planted in randomized complete 
blocks with three replications. Each plot contained two 2-m 
rows spaced 20 cm apart, with about 50 seeds sown per row. 
Field managements followed local practices and fungicide 
applications were made to control diseases (powdery mil-
dew, stripe rust and leaf rust). All accessions are available 
from the National Gene Bank of China, Chinese Academy 
of Agricultural Sciences.

Phenotypic evaluation

SWSCC was assayed at 10DPA, 20DPA and 30DPA using a 
near-infrared spectroscopy (NIRS) method following Wang 
et al. (2011), and the corresponding phenotypic data are 
referred to as WSC10, WSC20 and WSC30, respectively. 
About ten main culms were randomly taken from each plot, 
the leaf blades were removed, and the spikes were cut off 
at the spike collars. Fresh samples from each plot were put 
into a labeled paper bag and exposed to 105 °C for 30 min 
and then oven-dried at 80 °C for 24 h. The dried samples 
were cut into 3–5 mm lengths. Before NIRS assays, the cut 
samples were re-dried at 80 °C until a constant weight, and 
brought to room temperature in vacuum bags. The detailed 
procedure for NIRS assay was reported in Dong et  al. 
(2016b), and SWSCC was reported as a percentage on a 
dry weight basis. Three technically independent assays were 
performed for each sample at 10DPA and 20DPA, and five 
assays were made for samples at 30DPA. The mean values 
for each sample with extreme outliers discarded were used 
in subsequent statistical analyses. TKW of wheat acces-
sions were obtained using an automatic seed character ana-
lyzer with the SC-G V2.1.2.3 software (Wanshen Detection 
Technology Co., Ltd., Hangzhou, China, http://www.wseen​
.com/).

Statistical analysis

Analysis of variance (ANOVA) was performed using SAS 
9.2 software (SAS Institute Inc., Cary, NC, USA). Mean 
squares of each source of variation were used to estimate the 
variance components for genotypes ( �2

G
 ), genotype × envi-

ronment interaction ( �2

GE
 ) and residual error ( �2

�
 ), respec-

tively, and heritabilities were estimated using the formula 
H

2 = �2

G
/(�2

G
 + �2

GE
/e + �2

�
 /(re)), in which e and r were the 

numbers of environments and replicates per environment, 
respectively (Holland et al. 2003; Yin et al. 2015). Best 
linear unbiased estimations (BLUE) for phenotypic data 
across environments were extracted using the linear model 
described in Yin et al. (2015) which had been implemented 
in the ANOVA function in QTL IciMapping v4.1 software 
(Li et al. 2007). Correlation analyses and t-tests were per-
formed using SAS 9.2.

http://www.wseen.com/
http://www.wseen.com/
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Genotyping and physical map construction

Genomic DNA was extracted from young leaves using a 
modified CTAB method (Murray and Thompson 1980). 
All accessions were genotyped using the Affymetrix 660 K 
wheat SNP array (containing 630,517 SNPs, Cui et al. 2017) 
and the Illumina 90 K wheat SNP array (containing 81,587 
SNPs, Wang et al. 2014) by CapitalBio Technology Co., 
Ltd. (http://www.capit​albio​tech.com/). Minor allele fre-
quency (MAF), polymorphism information content (PIC) 
and genetic diversity were computed by PowerMarker v3.25 
(Liu and Muse 2005, http://statg​en.ncsu.edu/power​marke​r/). 
The heterozygous genotypes were considered as missing 
data; markers with MAF < 5% and missing data > 20% were 
excluded to avoid spurious marker-trait associations (MTAs) 
in subsequent association mapping. Flanking sequences of 
SNP markers were used to blast against the Chinese Spring 
(CS) reference genome in IWGSC (RefSeq v1.0, http://www.
wheat​genom​e.org/; IWGSC 2018), and corresponding physi-
cal positions were determined according to the best blast 
hit results. The positions of 1212 markers with multiple hit 
positions on different chromosomes were assigned according 
to the consensus 660 K-SNP (Cui et al. 2017) and 90 K-SNP 
(Wang et al. 2014) genetic linkage maps. High-quality mark-
ers from the two SNP arrays were integrated into a common 
physical map for association study.

Linkage disequilibrium and population structure

Linkage disequilibrium (LD) and population structure of 
the 166 accessions were analyzed in a previous study using 
the same population (Liu et al. 2017). Briefly, 12,324 SNPs 
evenly distributing on 21 wheat chromosomes were used to 
calculate LD using a full matrix and sliding window method 
implemented in Tassel v5.0 (Bradbury et al. 2007). It showed 
that the average LD decay distance for the whole genome 
was about 8 Mb; and LD decays were 6, 4 and 11 Mb for the 
A, B and D genomes, respectively (Fig. S2; Liu et al. 2017). 
A total of 2000 evenly distributed polymorphic SNPs were 
chosen to analyze the population structure and estimate the 
Q matrix by the software Structure v2.3.4 (Pritchard et al. 
2000). A neighbor-joining tree was constructed and prin-
cipal components analysis was performed by Tassel v5.0 
to verify the population stratification. Obvious population 
stratification was observed and the entire panel comprised 
three subgroups (Fig. S3, Table S1; Liu et al. 2017).

Genome‑wide association study

The mean values of three replicates in each environment 
and the BLUE values across environments for each trait 
were used for GWAS. To control background variation 

and eliminate spurious MTAs, associations between mark-
ers and traits were estimated using a Q + K mixed linear 
model (MLM, Yu et al. 2006; Zhang et al. 2010) which 
was implemented in software TASSEL v5.0 (Bradbury 
et al. 2007). The Q matrix estimated by Structure v2.3.4 
(Pritchard et al. 2000), defining the population structure 
was considered a fixed-effect factor. The kinship matrix 
(K matrix) computed by TASSEL v5.0, reflecting relation-
ships among individuals, was incorporated as the vari-
ance–covariance structure of the random effect for indi-
viduals (Zhang et al. 2010). As the Q + K MLM may also 
compromise true positives in some cases when it controls 
false positives, the fixed and random model circulating 
probability unification (FarmCPU) method, which was 
demonstrated to have a more improved statistical power 
than MLM (Liu et al. 2016), was also used to perform 
GWAS on SWSCC by R software (R Version 3.5.1, https​
://www.r-proje​ct.org/; FarmCPU package at http://zzlab​
.net/FarmC​PU/FarmC​PU_funct​ions.txt).

Different methods for multiple testing corrections were 
tried, including the Bonferroni-Holm correction method 
(Holm 1979) and the Benjamini and Hochberg’s false 
discovery rate (FDR) procedure (Benjamini and Hoch-
berg 1995), but few SNPs could be declared significant in 
some of the trait-by-environment conditions in the present 
study which may due to the higher extent of LD in wheat 
(Chao et al. 2010; Hao et al. 2011; Chen et al. 2012; Liu 
et al. 2017) and/or the complex underlying genetic archi-
tecture for WSC. Finally, a threshold of P = 1.0 × 10−3 
(– log10(P) = 3.0) was adopted for calling significant 
MTAs. This threshold was also used in some other asso-
ciation studies on complex traits in hexaploid wheat (Liu 
et al. 2017; Muqaddasi et al. 2019; Rahimi et al. 2019).

The adjacent associated markers were grouped together 
as one locus if the inter-marker distance is smaller than 
the average LD decay for specific chromosome, which 
was reported in Liu et al. (2017). The most significant 
marker across environments for each locus was consid-
ered the representative, and the corresponding effect and 
R2 (phenotypic variance explained) were estimated and 
outputted by TASSEL v5.0 (Bradbury et al. 2007). To 
further control the FDR of WSC-associated loci, those 
detected in at least two environments by either MLM or 
FarmCPU were considered to be stable. The genome-wide 
MTAs were visualized by Manhattan plots with –log10(P) 
for each SNP displayed on the Y-axis and the correspond-
ing genomic coordinates displayed along the X-axis. The 
quantile–quantile (Q–Q) plots (observed versus expected 
–log10(P) values) were used to assess the association map-
ping models. Manhattan plots and Q–Q plots of the GWAS 
results were drawn using the CMplot code (https​://githu​
b.com/YinLi​Lin/R-CMplo​t) in R software (Version 3.5.1).

http://www.capitalbiotech.com/
http://statgen.ncsu.edu/powermarker/
http://www.wheatgenome.org/
http://www.wheatgenome.org/
https://www.r-project.org/
https://www.r-project.org/
http://zzlab.net/FarmCPU/FarmCPU_functions.txt
http://zzlab.net/FarmCPU/FarmCPU_functions.txt
https://github.com/YinLiLin/R-CMplot
https://github.com/YinLiLin/R-CMplot
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Analyses of allele frequencies and effects 
of identified QTL in subgroups

Allele frequencies and effects of the identified QTL were 
analyzed in three subgroups (Table S1) of the population 
based on representative markers of each locus, and the aver-
aged BLUE values for two genotypes at each locus were 
used to compare the effects among subgroups by t-test.

Comparison of two models for GWAS

To compare the GWAS performance of MLM and Farm-
CPU, the linear model (LM) fitting analysis was performed 
using representative markers for the identified QTL, where 
markers were fitted as independent variables and observed 
phenotypes as dependent variables. The coefficients of deter-
mination from the LM were then calculated using the LM 
function in R 3.5.1 (https​://stat.ethz.ch/R-manua​l/R-patch​
ed/libra​ry/stats​/html/lm.html). Dot plots with the observed 
phenotypes on the X-axis and predicted values on the Y-axis 
were drawn to show the LM fitting results.

Comparison of identified WSC loci with reported 
QTL or genes

The WSC loci detected in this study were compared with 
WSC- and GY-related QTL or genes that were searched from 
the literature based on the physical positions (CS RefSeq 
v1.0; IWGSC 2018) of their flanking or associated markers. 
If the physical distances between two QTL were smaller than 
the average LD decay for a specific chromosome (Liu et al. 
2017), they were considered to be at the same locus.

Putative candidate gene analyses

The genes located in the physical intervals of WSC-asso-
ciated loci were screened based on the annotations in the 
wheat reference genome (CS RefSeq v1.0; IWGSC 2018), 
and those related to sugar metabolism or transportation were 
regarded as candidate genes. In addition, the sequences and 
corresponding physical positions of some known genes 
involved in WSC synthesis, degradation, and remobiliza-
tion were obtained from the NCBI (https​://www.ncbi.nlm.
nih.gov/) and IWGSC (http://www.wheat​genom​e.org/). The 
positions of the known genes and their homoeologs were 
compared with the WSC loci, and some candidates were 
identified.

KASP marker development

High-throughput KASP markers for potentially important 
loci were developed based on corresponding representative 
SNPs. Flanking sequences of SNPs were used as queries to 

blast against the wheat reference genome in IWGSC (CS 
RefSeq v1.0; IWGSC 2018), and chromosome-specific 
KASP primers were developed based on alignment of 
homologous sequences. Allele-specific primers carrying 
FAM (5′ GAA​GGT​GAC​CAA​GTT​CAT​GCT 3′) and HEX (5′ 
GAA​GGT​CGG​AGT​CAA​CGG​ATT 3′) tails were designed 
with the targeted SNP at the 3′ end, and common reverse 
primer was designed for a chromosome-specific amplifica-
tion with less than 200 bp of amplified sequence. The KASP 
assay mixture was prepared with 40 µL of common primer 
(100 µM), 16 µL of each tailed primer (100 µM), and 60 
µL of ddH2O. Each reaction mixture comprised 2.5 µL of 
2 × KASP master mixture (LGC Genomics, https​://www.
biose​archt​ech.com/), 0.056 µL of the assay mixture, and 2.5 
µL of DNA (30–50 ng/µL). PCR were performed in a 384-
well plate as follows: denaturation at 95 °C for 15 min, fol-
lowed by 9 touchdown cycles (95 °C for 20 s; touchdown at 
65 °C initially then decreasing by 1 °C per cycle for 1 min), 
and 32 additional cycles of denaturing, annealing and exten-
sion (95 °C for 10 s; 57 °C for 1 min). Consistency between 
KASP genotyping results and the original chip-based geno-
types was investigated, and t-tests were conducted to confirm 
the effectiveness of the KASP markers.

Results

Phenotypic variation

Continuous variations among the 166 wheat accessions were 
observed for WSC10, WSC20, WSC30 and TKW (Table S1, 
Fig. S4). The resulting BLUE values for WSC10, WSC20, 
WSC30 and TKW across the four environments were 
9.41–18.81% (mean, 14.71%), 8.49–17.87% (mean, 13.62%), 
1.04–9.71% (mean, 4.14%) and 26.9–56.6 g (mean, 43.1 g), 
respectively (Tables S1, S2). Correlations among environ-
ments for WSC10, WSC20, WSC30 and TKW showed 
ranges of 0.56–0.75, 0.51–0.71, 0.50–0.60 and 0.66–0.87 
with P < 0.0001, respectively (Table S3). ANOVA revealed 
that genotypes, environments and genotype × environment 
interactions had significant effects on SWSCC at all three 
time-points (Table 1). The H2 of WSC10, WSC20, WSC30 
and TKW across four environments were 0.90, 0.87, 0.85 
and 0.93, respectively (Table 1), suggesting that most of 
the phenotypic variation was determined by genetic factors.

Correlation analyses showed that WSC10 was signifi-
cantly correlated with WSC20 with correlation coefficients 
(r) ranging from 0.27 (P < 0.001) to 0.61 (P < 0.0001) in dif-
ferent environments and in BLUE; WSC20 was significantly 
correlated with WSC30, with r = 0.43–0.61 (P < 0.0001), 
whereas the correlations between WSC10 and WSC30 
were much lower, ranging from 0.04 (not significant) to 
0.31 (P < 0.001) (Table 2). Correlations between WSC10 

https://stat.ethz.ch/R-manual/R-patched/library/stats/html/lm.html
https://stat.ethz.ch/R-manual/R-patched/library/stats/html/lm.html
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
http://www.wheatgenome.org/
https://www.biosearchtech.com/
https://www.biosearchtech.com/
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and TKW (r = 0.33–0.63, P < 0.0001) were similar to those 
between WSC20 and TKW (r = 0.32–0.59, P < 0.0001), 
whereas r between WSC30 and TKW ranged from 0.15 (not 
significant) to 0.42 (P < 0.0001) (Table 2).

Marker coverage and genetic diversity

A total of 373,106 high-quality SNPs with 359,760 (96.42%) 
and 13,346 (3.58%) from the 660 K and 90 K SNP arrays, 
respectively, were used in GWAS (Table S4). The A, B 
and D genomes were represented by 39.8, 49.3 and 10.8% 
of the markers, respectively. Chromosome 3B possessed 
the most markers (46,708), whereas chromosome 4D had 

the least (2375). The markers covered the whole genome 
(14,061.15 Mb) with an average density of 0.038 Mb per 
marker, and for respective chromosomes, the marker densi-
ties ranged from 0.018 (3B) to 0.214 (4D). The B genome 
showed the highest marker density (0.028 Mb per marker), 
genetic diversity (0.367) and PIC (0.293) compared with 
the A (0.033, 0.357 and 0.286) and D (0.098, 0.334 and 
0.270) genomes. The detailed information of marker num-
ber, marker density, genetic diversity and PIC is provided 
in Table S4, in addition to a density map showing marker 
distribution along chromosomes (Fig. S5).

Marker‑trait associations and stable WSC‑associated 
loci

Significant MTAs for WSC10, WSC20 and WSC30 analyzed 
using the MLM and FarmCPU methods are listed in Tables 
S5–S10. In total, 1095, 652 and 597 significant markers cor-
responding to 168, 93 and 14 loci were detected for WSC10, 
WSC20 and WSC30, respectively, using MLM in TASSEL; 
and 813, 1344 and 1415 significant markers corresponding 
to 134, 112 and 23 loci were identified for the three traits 
using FarmCPU. Manhattan plots for WSC contents ana-
lyzed by MLM and FarmCPU using BLUE values are shown 
in Fig. 1, and Manhattan and Q–Q plots for each trait in each 
environment analyzed by both methods are shown in Figs. 
S6 and S7.

The WSC loci detected in at least three out of the four 
environments by either MLM or FarmCPU are summarized 
in Table 3. Furthermore, all stable WSC loci that detected 
in at least two environments by either MLM or FarmCPU 
are reported in Table S11. The numbers of stable loci for 
WSC10, WSC20 and WSC30 were 36, 24 and 19, respec-
tively (Table S11). Overall, 62 stable loci for SWSCC across 
the three developmental time-points were detected on all 21 
chromosomes except 5D, and 16 of these loci were associ-
ated with SWSCC at two or more time-points (Table S11, 
Fig. 2). In terms of the stable loci, 6 (17%), 7 (29%) and 8 
(42%) for WSC10, WSC20 and WSC30, respectively, were 
detected by both MLM and FarmCPU.

Table 1   Analysis of variance 
for stem WSC contents and 
thousand-kernel weight in the 
166 wheat accessions

a WSC10, WSC20 and WSC30 indicate stem WSC contents at 10 days post-anthesis (10DPA), 20DPA and 
30DPA, respectively. TKW, thousand-kernel weight
b Mean square values from the analysis of variance are reported. ***P < 0.0001

Traita Analysis of varianceb Broad-sense 
heritability

Genotype (G) Environment (E) G × E interaction Replicate Error

WSC10 42.09*** 341.64*** 4.59*** 6.78*** 1.17 0.90
WSC20 41.35*** 340.88*** 6.02*** 3.90*** 1.51 0.87
WSC30 33.84*** 408.22*** 5.88*** 6.29*** 1.40 0.85
TKW 268.55*** 6701.84*** 18.48*** 94.10*** 3.64 0.93

Table 2   Correlation analyses for stem WSC contents and thousand-
kernel weight of the 166 wheat accessions in different environments

a 17DZ and 17GY, Dezhou and Gaoyi locations, respectively, 2016–
2017; 18LH and 18XX, Luohe and Xinxiang locations, respectively, 
2017–2018; BLUE, best linear unbiased estimation across environ-
ments for each trait
b WSC10, WSC20 and WSC30 indicate stem WSC contents at 
10  days post-anthesis (10DPA), 20DPA and 30DPA, respectively. 
TKW, thousand-kernel weight
***P < 0.0001; **P < 0.001; *P < 0.01

Environmenta Traitb WSC10 WSC20 WSC30

17DZ WSC20 0.27**
WSC30 0.04 0.57***
TKW 0.45*** 0.32*** 0.15

17GY WSC20 0.44***
WSC30 0.16* 0.61***
TKW 0.33*** 0.53*** 0.42***

18LH WSC20 0.55***
WSC30 0.19* 0.43***
TKW 0.51*** 0.50*** 0.20*

18XX WSC20 0.61***
WSC30 0.31*** 0.52***
TKW 0.63*** 0.59*** 0.34***

BLUE WSC20 0.57***
WSC30 0.20** 0.52***
TKW 0.56*** 0.51*** 0.34***
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Allele frequencies and QTL effects in subgroups

For each WSC QTL, the allele frequencies and effects 
in three subgroups of the population were investigated 
(Table S12). For most of the loci, similar allele frequencies 
and effects were observed among subgroups. But some large 
inter-subgroup variations of frequencies and effects were 
detected in a few loci. For instance, the allele frequency 
of a WSC10 locus on chromosome 5B (692.45 Mb, AX-
111100349) were 0.37 for the entire panel, while the fre-
quencies were 0.11, 0.57 and 0.49 in subgroups 1, 2 and 3, 
respectively (Table S12). The effect of a WSC10 locus on 
1B (681.04 Mb, AX-110000934) was 0.57% for the entire 
population, whereas the effects were 2.48, 0.28 and 0.05% 
in subgroups 1, 2 and 3, respectively (Table S12). These 
indicated that the allele frequencies and effects of a few loci 
might be significantly affected by the population stratifica-
tion, and we need to further confirm their effects in future 
studies.

Pleiotropic loci for SWSCC and TKW

By comparing the physical positions of significant markers, 
13 stable loci associated with TKW were co-localized with 
the WSC loci on chromosomes 1A, 1B (2), 1D, 2A, 2B, 
3A (2), 4A, 4B, 5B and 6B (2), explaining 7.69–16.38% 

and 8.17–15.53% of the phenotypic variations for TKW and 
SWSCC, respectively (Tables 4, S11). Because high TKW 
is a main objective in wheat breeding, the alleles associated 
with increased TKW and SWSCC were considered favora-
ble. The frequencies of favorable alleles at five loci on 1A, 
1B, 2B and 3A (2) were 0.86–0.93 (Table 4), indicating that 
the favorable alleles at these loci had already been widely 
selected in traditional breeding programs, whereas the other 
eight loci exhibited favorable allele frequencies (FAF) of 
0.45–0.70 (Table 4), indicating more potential possibilities 
for selection in future breeding.

Cumulative effect of increasing‑effect alleles 
on SWSCC and TKW

To further investigate the effects of combined alleles on 
SWSCC, the number of increasing-effect alleles in each 
accession was investigated. The number of WSC-increas-
ing alleles possessed by each accession had ranges of 6–32, 
5–22 and 2–16 for WSC10, WSC20 and WSC30, respec-
tively (Table S1, Fig. S8). Significant correlations were 
observed between SWSCC and number of WSC-increasing 
alleles with r = 0.84, 0.68 and 0.63 (P < 0.001) for WSC10, 
WSC20 and WSC30, respectively. Linear regressions 
using the BLUE values were determined to further inves-
tigate the relationships between SWSCC and the number 

1A 1B 1D 2A 2B 2D 3A 3B 3D 4A 4B 4D 5A 5B 5D 6A 6B 6D 7A 7B 7D 1A 1B 1D 2A 2B 2D 3A 3B 3D 4A 4B 4D 5A 5B 5D 6A 6B 6D 7A 7B 7D

1A 1B 1D 2A 2B 2D 3A 3B 3D 4A 4B 4D 5A 5B 5D 6A 6B 6D 7A 7B 7D 1A 1B 1D 2A 2B 2D 3A 3B 3D 4A 4B 4D 5A 5B 5D 6A 6B 6D 7A 7B 7D

1A 1B 1D 2A 2B 2D 3A 3B 3D 4A 4B 4D 5A 5B 5D 6A 6B 6D 7A 7B 7D 1A 1B 1D 2A 2B 2D 3A 3B 3D 4A 4B 4D 5A 5B 5D 6A 6B 6D 7A 7B 7D

WSC10-BLUE-MLM

WSC20-BLUE-MLM

WSC30-BLUE-MLM

WSC10-BLUE-FarmCPU

WSC20-BLUE-FarmCPU

WSC30-BLUE-FarmCPU

Chromosome Chromosome

Fig. 1   Manhattan plots for stem WSC contents analyzed by Q + K 
mixed linear model (MLM) and FarmCPU. The threshold of 
P = 1.0 × 10−3 (– log10(P) = 3.0) was used for calling significant 
marker-trait associations (MTAs). WSC10, WSC20 and WSC30 indi-

cate stem WSC contents at 10  days post-anthesis (10DPA), 20DPA 
and 30DPA, respectively. BLUE indicates the best linear unbiased 
estimations for each trait across four environments in this study



2904	 Theoretical and Applied Genetics (2020) 133:2897–2914

1 3

Ta
bl

e 
3  

W
SC

-a
ss

oc
ia

te
d 

lo
ci

 d
et

ec
te

d 
in

 a
t l

ea
st 

th
re

e 
en

vi
ro

nm
en

ts
 b

y 
ei

th
er

 M
LM

 o
r F

ar
m

C
PU

a  W
SC

10
, W

SC
20

 a
nd

 W
SC

30
 in

di
ca

te
 st

em
 W

SC
 c

on
te

nt
s a

t 1
0 

da
ys

 p
os

t-a
nt

he
si

s (
10

D
PA

), 
20

D
PA

 a
nd

 3
0D

PA
, r

es
pe

ct
iv

el
y

b  En
vi

ro
nm

en
ts

 o
f t

he
 c

or
re

sp
on

di
ng

 lo
cu

s h
av

e 
be

en
 d

et
ec

te
d 

by
 m

ix
ed

 li
ne

ar
 m

od
el

 (M
LM

) o
r F

ar
m

C
PU

; 1
, 2

, 3
 a

nd
 4

 in
di

ca
te

 D
ez

ho
u,

 G
ao

yi
, L

uo
he

 a
nd

 X
in

xi
an

g 
lo

ca
tio

ns
, a

nd
 B

 in
di

ca
te

s 
th

e 
be

st 
lin

ea
r u

nb
ia

se
d 

es
tim

at
io

n 
ac

ro
ss

 fo
ur

 e
nv

iro
nm

en
ts

; “
–”

 in
di

ca
te

s t
he

 lo
cu

s h
as

 n
ot

 b
ee

n 
de

te
ct

ed
 b

y 
th

e 
co

rr
es

po
nd

in
g 

G
W

A
S 

m
od

el
c  Th

e 
ch

ro
m

os
om

e 
of

 th
e 

co
rr

es
po

nd
in

g 
lo

cu
s l

oc
at

ed
 o

n
d  Ph

ys
ic

al
 p

os
iti

on
s o

f S
N

P 
m

ar
ke

rs
 w

er
e 

ba
se

d 
on

 th
e 

C
hi

ne
se

 S
pr

in
g 

re
fe

re
nc

e 
ge

no
m

e 
in

 IW
G

SC
 (R

ef
Se

q 
v1

.0
, h

ttp
://

w
w

w.
w

he
at

​ge
no

m
​e.

or
g/

)
e  Th

e 
m

os
t s

ig
ni

fic
an

t S
N

P 
ac

ro
ss

 e
nv

iro
nm

en
ts

 fo
r t

he
 c

or
re

sp
on

di
ng

 lo
cu

s w
as

 re
po

rte
d 

as
 a

 re
pr

es
en

ta
tiv

e
f  Th

e 
in

fo
rm

at
io

n 
in

 c
or

re
sp

on
di

ng
 c

ol
um

ns
 a

re
 b

as
ed

 o
n 

th
e 

re
pr

es
en

ta
tiv

e 
SN

P
g  M

A
F 

in
di

ca
te

s t
he

 m
in

or
 a

lle
le

 fr
eq

ue
nc

y
h  R2  in

di
ca

te
s t

he
 p

er
ce

nt
ag

e 
of

 p
he

no
ty

pi
c 

va
ria

nc
e 

ex
pl

ai
ne

d 
by

 th
e 

SN
P 

m
ar

ke
r; 

th
e 

da
ta

 w
er

e 
no

t p
ro

vi
de

d 
if 

a 
lo

cu
s w

as
 d

et
ec

te
d 

on
ly

 b
y 

Fa
rm

C
PU

Tr
ai

ta
En

vi
ro

nm
en

t-M
LM

b
En

vi
ro

nm
en

t–
Fa

rm
C

PU
b

C
hr

c
M

ar
ke

r i
nt

er
va

l (
M

b)
d

Re
pr

es
en

ta
tiv

e 
SN

Pe
M

aj
or

/M
in

or
 

al
le

le
f

M
A

Ff,g
P 

va
lu

ef
R2  (%

)f,h
Eff

ec
tf

W
SC

10
2

1,
 2

, 4
, B

1A
44

5.
51

–4
61

.5
2

AX
-1

09
98

96
56

C
/T

0.
22

2.
72

E−
04

8.
86

1.
80

1,
 2

, 4
1

1A
51

3.
74

–5
22

.1
5

AX
-1

09
29

34
26

T/
C

0.
12

2.
29

E−
05

12
.9

8
2.

68
2,

 3
2,

 3
, 4

, B
1B

39
.6

0–
41

.6
4

AX
-1

11
64

84
40

C
/T

0.
24

1.
09

E−
05

13
.6

8
1.

89
2,

 3
, 4

, B
–

1D
4.

25
–8

.6
2

AX
-9

48
11

88
7

C
/A

0.
06

2.
09

E−
04

10
.3

8
2.

99
–

1,
 3

, 4
2A

70
1.

48
–7

09
.0

3
BS

00
09

84
23

_5
1

C
/A

0.
14

3.
38

E−
06

1.
21

1,
 3

, 4
, B

–
4A

73
5.

30
–7

37
.5

8
AX

-1
10

01
09

63
C

/T
0.

08
2.

52
E−

04
10

.1
6

2.
42

2,
 3

, 4
2,

 4
6B

0.
49

–1
4.

26
AX

-1
08

95
92

47
A

/T
0.

37
8.

86
E−

05
12

.3
3

1.
58

1,
 2

, B
1,

 2
, 4

, B
7D

60
.5

8–
78

.2
6

AX
-1

10
51

44
80

T/
G

0.
24

5.
50

E−
06

15
.4

3
2.

19
W

SC
20

1,
 2

, 4
, B

1,
 3

, 4
1B

4.
35

–9
.5

6
AX

-1
11

66
89

35
G

/A
0.

27
1.

21
E−

04
12

.0
7

2.
22

4
1,

 3
, 4

, B
1D

41
4.

59
–4

20
.7

4
AX

-1
11

64
02

20
C

/T
0.

16
4.

07
E−

04
9.

85
2.

12
3

1,
 2

, 3
, B

2A
27

.5
1–

32
.4

0
AX

-1
11

55
25

71
T/

C
0.

16
2.

06
E−

05
14

.5
8

2.
70

1,
 3

, 4
1,

 3
2B

74
7.

81
–7

52
.4

9
AX

-1
08

72
96

10
T/

C
0.

45
1.

37
E−

04
11

.2
4

1.
67

–
1,

 2
, 3

, B
3A

73
7.

44
–7

44
.2

9
AX

-9
48

29
13

7
A

/G
0.

2
7.

37
E−

04
1.

61
2,

 3
, 4

, B
2,

 3
, 4

, B
5A

68
8.

14
–6

90
.4

1
AX

-1
11

03
13

97
A

/G
0.

06
1.

55
E−

05
13

.8
3.

56
2

1,
 2

, 3
, 4

, B
6B

67
4.

84
–6

77
.4

8
AX

-1
11

27
49

03
A

/G
0.

42
8.

97
E−

04
8.

17
1.

31
W

SC
30

2,
 3

, 4
, B

2,
 3

, 4
, B

1A
57

2.
25

–5
81

.7
5

Bo
bW

hi
te

_c
39

66
8_

14
3

G
/A

0.
21

1.
57

E−
04

11
.7

7
1.

89
1,

 2
1,

 2
, 3

, B
2A

76
3.

02
–7

69
.5

1
AX

-1
10

02
85

49
C

/G
0.

49
2.

52
E−

05
17

.4
4

1.
78

–
1,

 2
, 3

, B
7A

38
.3

3–
46

.9
0

AX
-1

08
78

45
64

G
/A

0.
07

9.
48

E−
04

2.
49

2,
 B

1,
 2

, 4
, B

7A
81

.8
8–

90
.6

3
AX

-1
08

97
26

18
T/

C
0.

36
1.

32
E−

04
11

.5
9

1.
23

http://www.wheatgenome.org/


2905Theoretical and Applied Genetics (2020) 133:2897–2914	

1 3

of WSC-increasing alleles, and it showed significant linear 
associations between SWSCC and number of alleles with 
regression slopes of 0.31 (coefficient of determination 
(r2) = 0.95), 0.44 (r2 = 0.95) and 0.40 (r2 = 0.95) for WSC10, 
WSC20 and WSC30, respectively (Fig. 3).

The accessions contained 0–13 increasing-effect alleles at 
the 13 pleiotropic loci for both SWSCC and TKW (Table S1, 
Fig. S8). There were clear cumulative effects on WSC10, 
WSC20, WSC30 and TKW, with cumulative number of 
increasing-effect pleiotropic alleles (Fig. 4). Linear regres-
sion slopes for WSC10, WSC20, WSC30 and TKW versus 
corresponding numbers of increasing-effect alleles were 
0.51 (r2 = 0.88), 0.49 (r2 = 0.91), 0.30 (r2 = 0.82) and 1.56 
(r2 = 0.96), respectively.

Pyramiding WSC‑increasing alleles improved SWSCC 
and TKW over past decades

To explore the roles of WSC-associated loci in improv-
ing GY, the genetic progresses of SWSCC and TKW have 
been investigated. The results showed that WSC10, WSC20 
and WSC30 had increased on average from 13.02%, 
12.55% and 3.45% before 1980 (9 cultivars) to 16.27%, 
15.41% and 4.63% after 2010 (13 cultivars), respectively 
(Fig. 5a–c); accompanied by increased TKW from 41.1 to 
46.4 g (Fig. 5d) and increased numbers of increasing-effect 

Fig. 2   The Venn diagram of stable loci associated with stem WSC 
contents. Loci detected in at least two environments by either 
mixed linear model (MLM) or FarmCPU were considered stable 
(Table  S11). WSC10, WSC20 and WSC30 indicate the stem WSC 
contents at 10  days post-anthesis (10DPA), 20DPA and 30DPA, 
respectively

Table 4   Thirteen TKW-associated loci simultaneously associated with stem WSC contents

a SNP markers indicated with † were converted to KASP markers (Tables S12, S13; Figs. 7, S10)
b Physical positions of SNP markers were based on the Chinese Spring reference genome in IWGSC (RefSeq v1.0, http://www.wheat​genom​
e.org/)
c R2, percentage of the phenotypic variance explained by the QTL
d The underlined allele indicates the favorable allele that showed increasing-effects on thousand-kernel weight and stem WSC content
e E1, Dezhou 2016–2017; E2, Gaoyi 2016–2017; E3, Luohe 2017–2018; E4, Xinxiang 2017–2018; BLUE, best linear unbiased estimation

Representative 
markera

Chromosome Physical interval 
(Mb)b

P value R2 (%)c Effect (g) Alleled Frequency 
of favorable 
allele

Environmente

AX-110587308 1AL 587.83–587.84 3.22E−04 8.50 5.29 G/A 0.86 E3, E4
BS00023084_51 1BS 7.48 1.49E−04 9.44 3.41 A/G 0.68 E1, E2, BLUE
AX-109463291 1BL 580.63–581.21 1.72E−04 9.56 5.90 T/C 0.91 E1, E2, E3, E4, BLUE
AX-111496323 1DS 8.01–11.49 2.87E−04 8.51 3.86 C/G 0.70 E1, E3, BLUE
AX-109293110† 2AS 27.33–31.96 2.44E−04 8.89 3.89 T/C 0.51 E2, E4, BLUE
wsnp_Ex_

c163_320858
2BS 41.96–46.88 3.92E−05 11.55 5.31 G/A 0.89 E1, E2, E3, E4, BLUE

Kukri_c7087_896 3AL 594.00–595.44 3.06E−04 8.45 5.81 A/G 0.93 E2, E4
AX-109483618 3AL 714.36–716.25 2.56E−04 8.76 5.72 G/C 0.93 E2, E4, BLUE
AX-109832317† 4AL 738.89–742.84 3.49E−04 9.55 3.63 C/T 0.45 E1, E2
AX-110974144† 4B 298.11–302.17 1.63E−04 11.37 4.60 A/G 0.50 E3, E4, BLUE
AX-111044647† 5BL 694.03–697.61 3.00E−04 8.33 3.56 A/G 0.67 E1, E3, BLUE
AX-94910312 6BS 30.01–32.33 5.57E−04 7.69 3.62 G/T 0.69 E1, E3
AX-111494281† 6BL 670.21–678.06 1.35E−06 16.38 4.51 T/C 0.50 E1, E2, E3, E4, BLUE

http://www.wheatgenome.org/
http://www.wheatgenome.org/
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alleles from 15, 14, 7 and 7 to 26, 18, 10 and 11 for WSC10, 
WSC20, WSC30 and TKW, respectively (Fig. 5e–h).

In addition, we investigated the frequency-changes in 
favorable alleles for the 13 pleiotropic loci (Table 4). It 
showed that FAFs for all these loci increased in recent dec-
ades except the one on 4AL with a representative marker 

AX-109832317 (Fig. 6). Furthermore, differences of SWSCC 
and TKW among five main wheat producing provinces in 
China have been investigated. The results showed that culti-
vars in Henan, which is the top wheat producing province in 
China, had the most WSC10 and TKW, as well as the most 
numbers of increasing-effect WSC alleles (Fig. S9).

KASP marker development

Among the 13 pleiotropic loci showing effects on both 
WSC and TKW, the alleles at loci on 1AL, 1BL, 2BS and 
3AL (2) were almost fixed in this panel of wheat acces-
sions with FAF of 0.86–0.93, whereas the FAF of 0.45–0.70 
were found in the other eight loci leaving more values for 
MAS, and these have been focused to develop KASP mark-
ers (Table 4). Finally, five KASP markers were successfully 
developed for representative SNP markers of pleiotropic loci 
on chromosomes 2A (physical interval 27.51–34.67 Mb), 
4A (728.51–739.58  Mb), 4B (298.15–299.53  Mb), 5B 
(689.91–696.19 Mb) and 6B (674.84–677.48 Mb) (Table 4; 
Fig. 7). The primers and information for the corresponding 
loci are listed in Table S13. Comparison between the KASP 
genotyping results and the chip-based genotypes showed 
consistencies of 0.96–0.98. T-tests in different environments 
confirmed the effectiveness of the KASP markers (Fig. S10).

Discussion

Comparison of GWAS results by MLM and FarmCPU

In the present study, 19 and 20 stable WSC loci identi-
fied by MLM and FarmCPU, respectively, were located 
at similar positions with reported WSC-related QTL or 
genes (Table S11); 6, 7 and 8 loci for WSC10, WSC20 and 
WSC30, respectively, were detected by both MLM and 
FarmCPU (Table S11). All these indicated the reliability 
of GWAS results from both models. Some different results 
were also observed in two models. The WSC20 loci on chro-
mosomes 1D (414.59–420.74 Mb), 3A (737.44–744.29 Mb) 
and 6B (674.84–677.48 Mb) were detected by FarmCPU 
in three or more environments but not stably identified by 
MLM, whereas the WSC10 loci on 1B (236.96–237.38 Mb) 
and 4A (735.30–737.58 Mb) were specifically detected by 
MLM (Table S11).

Liu et al. (2016) indicated that the Q + K MLM may 
lead to false negatives in some cases, although it generally 
performs well in controlling false positives, while Farm-
CPU could control false positives and simultaneously avoid 
model over-fitting by using fixed and random effect models 
iteratively. In the present study, the Q–Q plots showed that 
the population structure and kinship were over-corrected 
by MLM in some environments, especially for WSC20 and 
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Fig. 3   Cumulative effects of increasing-effect alleles on stem WSC 
contents. WSC10, WSC20 and WSC30 indicate stem WSC con-
tents at 10, 20 and 30  days post-anthesis, respectively. “n”, number 
of increasing-effect alleles. Dots and bars represent the mean values 
and standard deviations, respectively. Linear regressions were per-
formed to investigate the relationships between stem WSC contents 
and number of increasing-effect alleles in the 166 wheat accessions. 
Calculations were based on representative markers of the 36, 24 and 
19 stable loci associated with WSC10, WSC20 and WSC30, respec-
tively (Table S11). Best linear unbiased estimations (BLUE) for each 
trait across four environments were used
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WSC30 (Figs. S6, S7), indicating that there might be some 
false negatives for MLM. In addition, when we focused on 
the WSC loci detected in at least three environments, more 
loci were observed by FarmCPU (Table 3).

To further compare the results from MLM and Farm-
CPU, LM fitting analysis was conducted based on repre-
sentative markers identified by each model. For WSC10, 
the GWAS performance of MLM and FarmCPU was simi-
lar with coefficients of determination (r2) of 0.76 and 0.72, 
respectively (Fig. S11). While for WSC20 and WSC30, 
FarmCPU performs better with r2 = 0.56 and 0.58, respec-
tively, than MLM with r2 values of 0.43 and 0.34, respec-
tively (Fig. S11). In addition, LM fitting analyses using all 

the identified representative markers from MLM and Farm-
CPU (Table S11) gave the best results with r2 = 0.86, 0.62 
and 0.58 or WSC10, WSC20 and WSC30, respectively (Fig. 
S11). All these indicated that the detection powers of MLM 
and FarmCPU may vary according to different traits, and the 
two models are complementary in detecting QTL.

Additionally, although many loci were detected by both 
FarmCPU and MLM (Table S11), it seems that the Manhat-
tan plots corresponding to the two models are quite different 
(Figs. S6, S7). Some single significant SNPs hang on the 
plots for FarmCPU results, while strings of SNPs clustered 
as peaks in the plots for MLM. This may be attributed to dif-
ferent methodologies for the two methods (Liu et al. 2016).

Fig. 4   Cumulative effects of 
increasing-effect alleles on stem 
WSC contents and thousand-
kernel weight based on the 13 
pleiotropic loci. Calculations 
were based on representative 
markers for the 13 pleiotropic 
loci simultaneously affecting 
stem WSC contents and TKW 
(Table 4). Best linear unbiased 
estimations (BLUE) for pheno-
typic data across four environ-
ments were used. WSC10, 
WSC20 and WSC30 indicate 
stem WSC contents at 10, 20 
and 30 days post-anthesis, 
respectively. TKW, thousand-
kernel weight

30

32

34

36

38

40

42

44

46

48

50

0

2

4

6

8

10

12

14

16

18

4 5 6 7 8 9 10 11 12 13

T
K

W
 (g

)

St
em

 W
SC

 c
on

te
nt

 (%
)

Number of increasing-effect alleles

TKW
WSC10
WSC20
WSC30

W
SC

 c
on

te
nt

 (%
)

10
12
14
16
18
20

P1 P2 P3 P4 P5

WSC10(a)

W
SC

 c
on

te
nt

 (%
)

8
10
12
14
16
18

P1 P2 P3 P4 P5

WSC20

W
SC

 c
on

te
nt

 (%
)

0
2
4
6
8

10

P1 P2 P3 P4 P5

WSC30

TK
W

 (g
)

30
35
40
45
50
55

P1 P2 P3 P4 P5

TKW

N
FA

10

15

20

25

30

P1 P2 P3 P4 P5

N
FA

N
FA

P1 P2 P3 P4 P5

4
6
8

10
12
14
16

N
FA

P1 P2 P3 P4 P5
4
6
8

10
12

(b) (c) (d)

(e) (f) (g) (h)

P1 P2 P3 P4 P5

10
12
14
16
18
20

Fig. 5   Genetic progresses of stem WSC contents and thousand-ker-
nel weight over past decades. Genetic progress was based on five 
groups from a panel of 130 Chinese wheat cultivars released from 
1947 to 2016 (Table S1). WSC10, WSC20 and WSC30 indicate the 
stem WSC contents at 10  days post-anthesis (10DPA), 20DPA and 
30DPA, respectively. TKW, thousand-kernel weight. P1, P2, P3, P4 
and P5 indicate 1947–1979, the 1980s, the 1990s, the 2000s and 
2010–2016, respectively. Violin plots a to d, phenotypic changes in 

WSC10, WSC20, WSC30 and TKW, respectively; e to h, changes 
in numbers of increasing-effect alleles for WSC10, WSC20, WSC30 
and TKW, respectively. Each violin plot shows the median (indicated 
by the small, white dot), first through third interquartile range (black, 
thick, solid vertical band), and estimator of the density (thin vertical 
curves) of the corresponding observations. NFA indicates the number 
of increasing-effect alleles contained in a cultivar
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Comparison of identified WSC loci with reported 
QTL or genes

Based on the physical positions (CS RefSeq v1.0; IWGSC 
2018) of markers or genes, the WSC loci identified in this 
study were compared with reported QTL or genes. Of the 
62 WSC loci, 26 were located at similar positions to pre-
viously reported WSC-related QTL or genes (Table S11), 
including 15 (41.7%), 9 (37.5%) and 8 (42.1%) stable loci for 
WSC10, WSC20 and WSC30, respectively. This indicated 
the importance of these loci, reflecting the reliability of our 
findings. The remaining 36 new WSC loci, comprising 21, 
15 and 11 loci for WSC10, WSC20 and WSC30, respectively 
(Table S11), provided us a basis to more comprehensively 
understand the complex genetic architecture underlying 
SWSCC.

It should be mentioned that some loci might be related 
to WSC content in different parts of stem, and some were 

associated with SWSCC under diverse conditions. For 
instance, a locus on 2DS (Xcfd53, 23.02 Mb) was associ-
ated with WSC in the uppermost internode at 14DPA under 
drought stress conditions (Zhang et al. 2014), whereas in 
the present study, a similar locus (29.17 Mb) was associ-
ated with WSC content of the whole stem (Table S11). A 
locus on 3AL (Xbarc314, 712.49 Mb) was associated with 
WSC in the lower internodes at the grain filling stage under 
simulated terminal drought stress conditions (Zhang et al. 
2014), in agreement with the WSC10- and WSC20-asso-
ciated locus (711.30–726.13 Mb) identified in the present 
study (Table S11).

Although diverse bi-parental and natural populations 
were used across the world, many WSC-associated loci 
identified in this study were located at similar positions to 
the previously reported ones based on the physical positions 
(CS RefSeq v1.0; IWGSC 2018) of QTL-flanking or asso-
ciated markers (Table S11). This indicated that (a) linkage 
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Fig. 6   Frequency changes in increasing-effect alleles in past decades 
based on representative markers of the 13 pleiotropic loci. The 13 
pleiotropic loci were associated with both WSC and thousand-kernel 
weight (Table 4). The analysis was based on 130 wheat cultivars in 

five groups released from 1947 to 2016 (Table  S1). P1, P2, P3, P4 
and P5 indicate 1947–1979, the 1980s, the 1990s, the 2000s and 
2010–2016, respectively. The name of each representative marker is 
indicated in the corresponding chart
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mapping and GWAS are complementary in identifying 
genes, and (b) many major genes controlling carbohydrate 
metabolism might be common in different wheat production 
regions. Considering the high marker density in the present 
study and consistency of many loci between the present 
and past researches, the loci and associated SNP markers 
detected here appear to be reliable and hence valuable for 
further genetic research on WSC metabolism and for MAS 
in breeding.

Putative candidate genes related to stem WSC 
content

Fructans are major components of WSC (Ruuska et  al. 
2006), and genes involved in fructan metabolism play 
important roles in controlling SWSCC. In regions adjacent 
to the WSC loci on chromosomes 2A (763.02–769.51 Mb), 
4A (735.30–737.58 Mb) and 7D (2.23–17.34 Mb), some 
known genes involved in fructan synthesis and hydrolysis 
were identified, including 1-SST, 6-SFT, 1-FFT and 6-FEH 
(Table S11; McIntyre et al. 2011). SWSCC was significantly 
associated with 1-FFT-A1 (Yue et al. 2017) and 1-SST-D1 
(Dong et al. 2016b), and the corresponding gene-specific 
markers had been reported. In addition to the genes directly 
involved in carbohydrate metabolism, transcription factors 
also play important roles in modulating metabolic path-
ways. TaMYB13 was identified as a transcriptional activa-
tor of fructosyltransferase genes, and expression levels of 
TaMYB13 were positively correlated with the mRNA levels 

of 1-SST and 6-SFT in wheat stems (Xue et al. 2011; Koo-
iker et al. 2013). Based on the genomic DNA sequences, 
we found that TaMYB13-1 (ID: TraesCS3A02G535100, 
746.63  Mb) was located near the WSC20 locus on 3A 
(737.44–744.29 Mb).

Stem reserved WSC can be remobilized and transported 
to sink organs such as seeds and roots, and sugar transport-
ers are critical in these processes (Halford et al. 2011). 
Sucrose transporters (SUT) and hexose and sucrose trans-
porters are major sugar transporter families (Eom et al. 
2015). TaSUT1 genes on homoeologous group 4 chromo-
somes were the predominant sucrose transporter group in 
wheat stems and leaf sheaths, and significantly positive 
correlations were observed between TKW and expres-
sion level of TaSUT1 genes (Ahmed et al. 2018). A TaSUT 
gene (TraesCS2A02G505000, 733.56 Mb) was identified 
in the vicinity of the WSC30 locus on chromosome 2A 
(734.16–734.26 Mb) (Table S11). In addition, two poten-
tially new sugar transporter genes (TraesCS6B01G421500, 
692.23 Mb; TraesCS7D01G521400, 618.68 Mb) belonging 
to the hexose and sucrose transporters family were identified 
in the intervals of WSC loci on 6B (692.03–702.39 Mb) and 
7D (616.95–621.14 Mb) (Table S11), indicating that these 
genes might have important roles in WSC remobilization.

Sucrose synthase (SUS) controls carbon flow in starch 
biosynthesis, and dry matter accumulation of plants is 
positively correlated with SUS activity (Kato 1995), and 
TaSus2-2B was significantly associated with TKW (Jiang 
et al. 2011). Based on gene sequences, TaSus2 (171.03 Mb) 

Fig. 7   Genotype calling screen-
shots of five KASP markers. 
The KASP markers were devel-
oped based on representative 
SNP markers for five pleiotropic 
loci on both stem WSC contents 
(SWSCC) and thousand-kernel 
weight (TKW) (Tables 4, S11). 
Corresponding names for the 
KASP markers are presented on 
screenshots. Two homozygous 
genotypes are indicated beside 
the corresponding dots, and 
favorable genotypes showed 
increasing-effects on SWSCC 
and TKW (Fig. S10) are shown 
in red font (color figure online)
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was located in a WSC30 locus on 2B (168.78–184.77 Mb) 
(Table S11). A diverse family of glycosyltransferases par-
ticipates in glycan and glycoside biosynthesis during plant 
development and growth (Lao et al. 2014), and glycoside 
hydrolases are involved in hydrolysis of complex sugars 
(Bourne and Henrissat 2001). In the present study, six poten-
tially new glycosyltransferase candidate genes were located 
in the intervals of WSC loci on chromosomes 4B, 5B, 6D, 
7A, 7B and 7D, and two glycoside hydrolase genes were in 
the intervals of WSC loci on 6B and 7A (Table S11). These 
candidate genes provide a basis for further exploration of the 
genetic mechanism of WSC metabolism, and might be useful 
in breeding programs targeting increased TKW.

Relationship between WSC and GY

In the present study, TKW was significantly and posi-
tively correlated with SWSCC, especially with WSC10 
and WSC20 (Table 2). This was consistent with previous 
findings about relationship of WSC and TKW (Zhang et al. 
2015; del Pozo et al. 2016). In addition, there were evi-
dences that cultivars carrying favorable WSC alleles had 
higher TKW than those without favorable alleles in both 
well-watered and drought and heat stress conditions (Zhang 
et al. 2014). Similar findings were also observed in the pre-
sent study that 13 pleiotropic loci simultaneously affecting 
SWSCC and TKW (Table 4) showed clear cumulative effects 
on both SWSCC and TKW (Fig. 4). Besides the 13 pleio-
tropic loci, other 20 WSC loci also located at similar posi-
tions to reported GY-related QTL, including 12, 5, 2 and 1 
related to TKW, spike number, GY and grain filling rate, 
respectively (Table S11). All these indicated the positive 
contributions of WSC to TKW.

In many studies, significant and positive correlations 
(r = 0.47–0.80) were observed between SWSCC and GY 
under diverse conditions (Foulkes et al. 2007; Snape et al. 
2007; Xue et al. 2008; Gao et al. 2017), whereas in some 
other researches, low or non-significant correlations between 
SWSCC and GY were observed (Ruuska et al. 2006; Zhang 
et al. 2015; del Pozo et al. 2016). Using 384 wheat cul-
tivars, del Pozo et al. (2016) found that WSC content at 
anthesis was negatively correlated with spikes per square 
meter, but positively correlated with kernels per spike and 
TKW under water stress and full irrigation conditions; con-
sequently, the correlation between WSC with GY were low 
or not significant.

By comparing the WSC QTL and reported GY-related 
QTL, we found some clues that might genetically explain 
the complicated relationship between WSC and GY. A pleio-
tropic locus simultaneously affecting WSC20, WSC30 and 
TKW was identified on chromosome 2AS (27.33–34.67 Mb) 
in this study (Table S11). At a similar position, a QTL for 
TKW and grain filling rate (Xgwm359, 28.20 Mb; Wang 

et al. 2009) and a QTL for GY (30.3–31.9 Mb; Li et al. 2019) 
were reported. These indicate that the underlying gene (or 
genes) might control grain filling rate by affecting WSC con-
tent in stems, and finally affect the TKW and GY.

Plant density and flowering date could also affect SWSCC 
(Rebetzke et al. 2008; del Pozo et al. 2016). In the present 
study, five WSC loci were located at similar positions with 
reported plant density-related QTL (Table S11), indicating 
that SWSCC might be affected by plant density, and this also 
explains the complex relationship between SWSCC and GY. 
At the WSC10-associated locus on 5A (697.77–699.48 Mb), 
a vernalization gene Vrn2-5A (698.2 Mb) had been reported 
(Yan et al. 2004). To further investigate the potential impact 
of vernalization on stem WSC, we conducted GWAS by con-
trolling the Vrn2-5A (using its genotypic data) as a fixed-
effect in the Q + K MLM. The results showed that 66.7% 
(24 out of 36) of the loci could still be detected (Table S14), 
including the WSC locus that collocated with Vrn2-5A. It 
seems that the effect of this WSC locus is independent from 
Vrn2-5A.

Pyramiding WSC‑increasing alleles by MAS could 
improve GY

Significant and positive correlations between SWSCC 
and TKW (Table 2) were consistent with previous reports 
(Ehdaie et  al. 2008; Li et  al. 2015; Gao et  al. 2017). 
Increased SWSCC has contributed to genetic gains in GY in 
the UK, Australia and China (Shearman et al. 2005; Sadras 
and Lawson 2011; Xiao et al. 2012; Gao et al. 2017). Similar 
results were evident in the present study that improvements 
in TKW from pre-1980 to post-2010 were accompanied by 
increased WSC10, WSC20 and WSC30 (Fig. 5a–d), demon-
strated by increased numbers of favorable alleles (Fig. 5e–h). 
Linear regressions also showed that pyramiding favorable 
alleles was effective for improving both SWSCC and TKW 
(Fig. 4). Furthermore, cultivars from Henan and Shandong, 
two high-yield wheat producing provinces in China, also had 
higher SWSCC and more favorable WSC alleles (Fig. S9). 
All these indicated that improvement in stem WSC content 
is a promising way to improve GY.

In addition, representative markers for pleiotropic 
loci on chromosomes 1BS (BS00023084_51), 2AS (AX-
109293110), 4BS (AX-110974144), 5BL (AX-111044647), 
6BS (AX-94910312) and 6BL (AX-111494281) exhibited 
FAF of 0.67–0.92 for cultivars in the 2010s (Fig. 6). These 
indicate that there are still opportunities for further improve-
ment of SWSCC and TKW by pyramiding more increas-
ing-effect alleles. High-throughput KASP markers for five 
pleiotropic loci were developed and validated in different 
environments (Fig. S10). These markers should be useful 
for MAS targeting improved SWSCC and TKW. Addition-
ally, considering the important role of WSC in coping with 
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diverse stresses (Rebetzke et al. 2008; Livingston et al. 2009; 
Trouvelot et al. 2014; Ovenden et al. 2017), these markers 
may also have potential values in developing stress-resistant 
cultivars by MAS.

The present study was conducted in well-watered field 
conditions with the same field management as used in 
YHVWWZ of China, and the findings would be useful for 
wheat breeding in this area and similar environments. Culti-
vars Luyuan 502, Huaimai 20, Jinmai 61, Luomai 21, Yumai 
13, Zhongmai 875, Zhongmai 895, Zhou 8425B, Zhoumai 
22, Zhoumai 30, Zhoumai 31, Zhoumai 32 and Zimai 12 
possess high SWSCC (WSC10 and WSC20) and TKW 
with high numbers of increasing-effect alleles (Tables 5, 
S11). These cultivars could be used as elite germplasms for 
improving WSC and TKW.

Advantages and disadvantages of this study

In the present study, GWAS was conducted to identify QTL 
associated with SWSCC based on a high density of SNP 
markers. The high marker density has significant impact 
on the number of haplotypes within trait-associated loci 
by change in LD pattern and would result in discovering 
marker-trait associations in low-recombination regions on 
chromosomes (Kim and Yoo 2016; Andrade et al. 2019). 
Previously, Dong et  al. (2016a) performed GWAS on 
SWSCC with 18,207 markers from the 90 K SNP array 
using the same panel of wheat accessions as that used in the 
present study, but only 11 significant MTAs were identified 

at two or more environments due to the presence of large 
gaps, particularly in the D genome (Liu et al. 2017). To 
resolve this problem, the present GWAS for WSC content 
was performed using 373,106 SNPs from the 660 K and 
90 K SNP arrays. The integrated physical map showed a sig-
nificantly improved marker density of 0.038 Mb per marker 
for the whole genome compared with 0.772 Mb per marker 
(14,061 Mb/18,207 markers) of the 90 K genetic map in 
Dong et al. (2016a). Consequently, 36, 24 and 19 stable loci 
were detected for WSC10, WSC20 and WSC30, respectively 
(Table S11). This indicated that the high-density physi-
cal map constructed here gave a significant advantage for 
GWAS on complex traits like SWSCC.

A relatively small population in this study might be the 
reason why a stringent threshold like Bonferroni correction 
(Holm 1979) could not be used for GWAS. Nevertheless, the 
166 wheat accessions employed in this study were chosen from 
more than 400 cultivars, and they are good representatives of 
wheat germplasms from YHVWWZ of China. This population 
was previously used for GWAS on yield and quality-related 
traits, and many important loci were identified and validated 
(Liu et al. 2017; Zhai et al. 2018; Li et al. 2019). In the pre-
sent study, 26 out of 62 WSC loci were identified at similar 
positions to previously reported QTL or genes (Table S11), 
also indicating the reliability of the results. Furthermore, based 
on the identified WSC loci, we observed a clear pyramiding 
effect of favorable WSC alleles in wheat accessions released 
in past decades, which was consistent with the improvement 
in SWSCC and TKW (Fig. 5). Therefore, the population is 

Table 5   Elite germplasms for 
improving stem WSC contents 
and grain yield

a WSC10 and WSC20 indicate stem WSC contents at 10 and 20  days post-anthesis, respectively. TKW, 
thousand-kernel weight. The best linear unbiased estimations across four environments for WSC10, 
WSC20 and TKW are reported here. The ranges for WSC10, WSC20 and TKW were 9.41–18.81%, 8.49–
17.87% and 26.9–56.6 g, respectively, in the 166 accessions (Table S1)
b Ranges for number of favorable alleles of WSC10, WSC20 and TKW were 6–32, 5–22 and 0–13, respec-
tively, in the 166 accessions (Table S1, Figs. S5, S8). And the potential numbers of favorable alleles in an 
accession were 36 and 24 for WSC10 and WSC20, respectively (Table S11), and 13 for TKW based on the 
13 pleiotropic loci in Table 4

Cultivar Stem WSC content and TKWa Number of favorable allelesa,b

WSC10 (%) WSC20 (%) TKW (g) WSC10 WSC20 TKW

Huaimai 20 17.59 16.91 45.6 32 18 10
Jinmai 61 17.83 16.06 47.6 29 19 10
Luomai 21 16.70 15.18 49.9 29 19 12
Luyuan 502 16.73 15.83 50.5 26 18 11
Yumai 13 17.72 16.53 46.8 30 18 10
Zhongmai 875 16.69 16.74 54.5 30 21 12
Zhongmai 895 17.04 15.49 46.8 26 19 10
Zhoumai 22 17.20 16.31 51.3 32 20 12
Zhoumai 30 16.69 17.38 48.2 26 20 12
Zhoumai 31 16.47 15.91 47.2 26 20 10
Zhoumai 32 18.28 17.87 47.4 30 19 12
Zimai 12 17.92 17.03 45.6 27 21 10
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suitable for GWAS of complex traits. In addition, the present 
study was conducted under well-watered conditions follow-
ing the local practices in YHVWWZ, so the findings would 
be useful for breeding in this zone and similar environments.

Conclusion

TKW was significantly correlated with WSC10 and WSC20, 
indicating the important contribution of WSC to GY. We iden-
tified 62 stable loci for WSC at three grain filling time-points, 
with 36, 24 and 19 loci for WSC10, WSC20 and WSC30, 
respectively. Of these loci, 36 are potentially new, 16 affected 
SWSCC at two or more time-points, and 13 showed pleiotropic 
effects on both WSC and TKW. Linear regression analyses 
showed clear cumulative effects of increasing-effect alleles 
on SWSCC and TKW. In past decades, SWSCC and TKW of 
wheat cultivars in the YHVWWZ of China were significantly 
improved due to the pyramiding of WSC-increasing alleles. 
The present study showed a genome-wide genetic landscape 
of WSC, providing a perspective for understanding the rela-
tionship between WSC and GY. The identified WSC loci, 
especially the 13 pleiotropic loci for both WSC and TKW, 
are valuable targets for further dissection of the genetic basis 
underlying SWSCC and TKW. The five WSC- and TKW-asso-
ciated KASP markers would be valuable tools for improving 
WSC and GY by MAS.
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