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Abstract

Key message Identification of marker–trait associations and trait-associated haplotypes in breeding germplasm 
identifies regions under selection and highlights changes in haplotype diversity over decades of soybean improvement 
in Canada.
Abstract Understanding marker–trait associations using genome-wide association in soybean is typically carried out in 
diverse germplasm groups where identified loci are often not applicable to soybean breeding efforts. To address this chal-
lenge, this study focuses on defining marker–trait associations in breeding germplasm and studying the underlying haplotypes 
in these regions to assess genetic change through decades of selection. Phenotype data were generated for 175 accessions 
across multiple environments in Ontario, Canada. A set of 76,549 SNPs were used in the association analysis. A total of 23 
genomic regions were identified as significantly associated with yield (5), days to maturity (5), seed oil (3), seed protein (5) 
and 100-seed weight (5), of which 14 are novel. Each significant region was haplotyped to assess haplotype diversity of the 
underlying genomic region, identifying ten regions with trait-associated haplotypes in the breeding germplasm. The range 
of genomic length for these regions (7.2 kb to 6.8 Mb) indicates variation in regional LD for the trait-associated regions. Six 
of these regions showed changes between eras of breeding, from historical to modern and experimental soybean accessions. 
Continued selection on these regions may necessitate introgression of novel parental genetic diversity as some haplotypes 
were fixed within the breeding germplasm. This finding highlights the importance of studying associations and haplotype 
diversity at a breeding program scale to understand breeders’ selections and trends in soybean improvement over time. The 
haplotypes may also be used as a tool for selection of parental germplasm to inform breeder’s decisions on further soybean 
improvement.

Introduction

The relationships between genotype and phenotype in soy-
bean using genome-wide association (GWAS) are often 
studied in diverse germplasm panels; however, the find-
ings from these types of studies are often difficult to apply 
directly to regional crop improvement efforts. A first step in 
using data from germplasm studies for crop improvement is 
thorough characterization of germplasm in the breeding pro-
grams where selection is occurring. A second step is to apply 
the knowledge gained through specific studies to improve 
traits of high importance using all available resources. As 
most agronomic traits in soybean are inherited in a quantita-
tive fashion with effects from environment, efforts must be 
undertaken to identify genomic regions with associations to 
these traits in a breeding program environment to improve 
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breeder selections for crop improvement (Chaudhary et al. 
2015).

Genome-wide association studies have been extensively 
conducted in soybean using diverse germplasm panels to 
identify genomic regions with associations to agronomic 
traits. Sonah et al. (2015) used 139 accessions represent-
ing Canadian short-season diversity to characterize major 
agronomic traits using 17 k SNP markers, identifying a total 
of 25 genomic regions associated with multiple agronomic 
traits corresponding to known trait-associated regions from 
quantitative trait loci (QTL) studies. A comprehensive study 
of 809 soybean accessions assessed 84 agronomic traits, 
identifying 245 significant loci including many previously 
identified genomic regions (Fang et al. 2017). The largest 
GWAS study in soybean used 12,000 accessions from the 
USDA germplasm bank to identify SNPs across five chro-
mosomes with significant associations with seed protein and 
seed oil (Bandillo et al. 2015). Wild soybean has also been 
characterized using association analysis as demonstrated by 
Leamy et al. (2017), revealing novel regions associated with 
seed traits which may be useful in future breeding efforts.

Following up on their GWAS analysis, Bandillo et al. 
(2015) conducted further haplotyping of the significant 
genomic regions, identifying regional trends in haplotype 
frequency which may be attributed to historical culinary 
preferences. Other haplotyping efforts have been undertaken 
for pathway-specific genes such as the E genes controlling 
maturity in soybean (Tardivel et al. 2014; Langewisch et al. 
2014), soybean cyst nematode resistance (Liu et al. 2017) 
and salinity tolerance (Patil et al. 2017).

The comparison of genome-wide haplotypes in domesti-
cated and landrace soybeans and their wild ancestors have 
shown that, on average, linkage block size has increased 
in modern soybean cultivars while the number of linkage 
blocks in a given accession has decreased (Song et al. 2015). 
Lam et al. (2010) also identified tag SNPs using a linkage 
disequilibrium (LD)-based haplotyping approach in wild and 
cultivated soybeans to characterize genomic change related 
to domestication and selection. Haplotypes have also been 
used as input for association analysis, as the multi-allelic 
nature allows for better capture of the underlying alleles in 
the soybean genome (Contreras-Soto et al. 2017). Genome-
wide haplotyping in soybean has recently been demonstrated 
(GmHapMap), where the entire catalogue of soybean genes 
has been haplotyped, demonstrating that haplotypes can be 
used to identify the trait-associated alleles responsible for 
phenotypic differences in germplasm (Torkamaneh et al. 
2019). Understanding haplotype frequencies in breeding 
germplasm can help breeders identify important genomic 
regions for future crop improvement.

This study aims to improve the understanding of 
marker–trait associations in a single breeding program 
and assess whether selection has altered these associations 

throughout the breeding process. We hypothesize that 
marker–trait associations identified in breeding germplasm 
relate directly to the impacts of breeder selections. To under-
stand the genetic impacts of soybean breeding within a sin-
gle breeding program, this study has several objectives: (1) 
test and identify marker–trait associations in soybean breed-
ing germplasm for major soybean traits, (2) haplotype the 
genomic regions underlying marker–trait associations within 
a breeding program, (3) assess the changes in haplotype fre-
quency within these haplotyped genomic regions across dec-
ades of soybean breeding and (4) define favorable haplotypes 
for soybean improvement in regional breeding germplasm 
and identify markers associated with these haplotypes.

Materials and methods

Panel composition and genotypes

The 296 accessions studied capture the pedigree relation-
ships in a breeding program over decades of selection 
(Table S1). Modern elite cultivars were traced to histori-
cal accessions using pedigree records in the University of 
Guelph soybean breeding program (Bruce et al. 2019a). 
Additional accessions were collected from several RIL 
(recombinant inbred line) populations (ten Chinese by Cana-
dian RILs and eight Glycine max by Glycine soja RILs). 
Genotyping methods and data were described in Bruce et al. 
(2019b), with 76,549 genome-wide SNPs available for anal-
ysis in this study. In brief, the 296 accessions were geno-
typed using a genotyping-by-sequencing protocol (Elshire 
et al. 2011; Sonah et al. 2013) using multiple restriction 
enzymes across the panel (Bruce et al. 2019b), with GBS-
derived reads aligned against the soybean Williams 82 ref-
erence genome (Gmax_275_Wm82.a2.v1) (Schmutz et al. 
2010) and SNPs called using Fast-GBS (Torkamaneh et al. 
2017). A minor allele frequency (MAF) filter of 0.05 and 
heterozygous SNP filter of 0.5 were applied prior to GWAS 
and haplotyping. No missing data were present in the SNP 
dataset.

Plant and seed phenotyping

Soybean phenotype data were generated in multi-year trials 
as described and analyzed by Bruce et al. (2019a) and fur-
ther described here. In brief, 175 accessions were trialed at 
two locations (Woodstock, Ontario, and St Pauls, Ontario) in 
3 years (2015, 2016 and 2017) where major agronomic and 
seed traits (yield, oil, protein, days to maturity (DTM), 100-
seed weight (SDWT)) were measured in field trials (two rep-
licates per location). Data were first processed per location 
using a radial smoothing procedure, followed by a combined 
analysis in PROC GLIMMIX in SAS 9.4 (SAS Institute 
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2013), both previously described for this data (Bruce et al. 
2019a). A best linear unbiased estimator (BLUE) for every 
trait in each accession was generated for input in the GWAS 
procedure (Figure S1) with a final total of n = 175 observa-
tions for DTM and 100 seed weight, n = 167 observations for 
yield and n = 166 observations for oil and protein.

Broad-sense heritability  (H2) and standard error (se) of 
 H2 estimates for seed and agronomic traits for Guelph germ-
plasm were calculated on a plot-mean basis according to 
Holland et al. (2003) in SAS 9.4 using the PROC MIXED 
procedure. No fixed effects were fitted in the model, while 
the random effects were environment, block within environ-
ment, genotype and genotype by environment interaction, 
with the covariance parameters used for  H2 estimation.

Genome‑wide association analysis

GWAS analyses were performed using the rMVP package 
in R (https ://githu b.com/Xiaol eiLiu Bio/rMVP) using the 
Fixed and random model Circulating Probability Unification 
(FarmCPU) model (Liu et al. 2016). Two different matrices 
(PCA (covariate P) and fastStructure (covariate Q)) were 
used to capture population structure. Two kinship matrices 
provided estimates of the relatedness among individuals 
(covariates K = EMMA and K* = VanRaden) (Kang et al. 
2008; VanRaden 2008; Li et al. 2013). Based on the cumu-
lative distribution of p values for different traits, models that 
took into account kinship and PCA (P + K*) were found to 
provide the best fit. An adjusted p value (q value) to ensure a 
false discovery rate (FDR) < 0.05 was used to establish a sig-
nificance threshold (Wang et al. 2012), with multiple models 
shown in Figure S2. The population structure and diversity 
of the panel are previously described (Bruce et al. 2019b), 
but in brief, the population was generally homogeneous due 
to the close relationships of the breeding germplasm. Asso-
ciations were in general at moderate frequency within the 
germplasm, as shown by the concordance data of significant 
SNPs to haplotypes (Table S2).

Association analysis for the haplotypes was conducted 
in Tassel 5 (Glaubitz et al. 2014) using the mixed linear 
model (MLM) method with kinship (Zhang et al. 2010). 
Haplotypes were coded as multi-allelic SNPs (A- > AA, 
B- > TT, C- > CC,…), and significant associations of the 
haplotypes were tested at p < 0.05 using a FDR multiple 
testing correction.

Haplotyping the germplasm

Haplotypes were generated across the germplasm using the 
HaplotypeMiner (https ://githu b.com/malem ay/Haplo typeM 
iner) R package (Tardivel et al. 2019) in R 3.5.3 (R Core 
Team 2018). The location input used for haplotyping was the 
significant SNP associated with the trait of interest in each 

genomic region, defined as the “gene_center” position for 
the analysis. The analysis included kinship (centered_IBS) 
as generated in Tassel 5 (Bradbury et al. 2007) using the 
“cluster_r2_measure = r2v.” A range of parameters in Hap-
lotypeMiner was tested for each input, with final analysis 
conducted using: “max_marker_to_gene_distance = 4 Mb,” 
“max_flanking_pair_distance = 8 Mb,” “cluster_thresh-
old = 0.9,” “marker_independence_threshold = 0.7,” “min_
allele_count = 2” and no minor allele frequency (MAF) 
filtering and heterozygote filtering. The SNP dataset was 
filtered for MAF and heterozygous SNPs prior to the GWAS, 
and the same dataset was used for the HaplotypeMiner anal-
ysis. A large max_marker_to_gene_distance was chosen so 
that regional LD would define the haplotypes, resulting in 
various lengths of haplotyped regions (Table S3). The con-
cordance of haplotypes to underlying significant SNPs from 
the association analysis was checked through comparison 
of marker classes found within each haplotype (Table S2).

Haplotypes were filtered to remove haplotypes contain-
ing heterozygous markers. For the calling of haplotypes, 
any haplotype with fewer than five observations across the 
panel was not used. For analyses using trait data, accessions 
not containing phenotype data (on a per-trait basis) were 
not used. Haplotype trait data was plotted in the ggplot2 R 
package (Wickham 2016). Haplotypes were named accord-
ing to the underlying significant SNP for the region of inter-
est, with a “_hap” after the trait name for differentiation 
(Table S1).

Haplotype trends over time

Year of cultivar release was used to assess trends in hap-
lotypes within cultivars over time. Accessions were split 
into four groups: historical (n = 38), Guelph 1985–2005 
(n = 32), Guelph 2006–2016 (n = 31) and experimental 
(n = 74). Historical accessions were those released before 
1985, both Guelph groups contained released cultivars based 
on year of release, and experimental accessions included 
unreleased experimental accessions and other research 
germplasm tested at the University of Guelph (Bruce et al. 
2019a). Haplotype counts were plotted as frequencies of the 
total haplotypes within a given group. Significant differences 
among groups were tested with Fisher’s exact test in R 3.5.3 
(R Core Team 2018).

Results

Genotypes and phenotypes for the association 
analysis

In total, 175 accessions representing historical, modern and 
current experimental soybean breeding accessions at the 
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University of Guelph were used for the GWAS (Table S1). 
A singular value (BLUE) for each trait and accession was 
used as input for the association analysis, with the distribu-
tions for all traits plotted (Figure S1). For 100-seed weight, 
outliers for low seed weight were identified, though these 
were kept in the analysis as they were representative of the 
SCN RILs and natto-type soybeans in the field tests. Both 
oil and protein were normally distributed (Shapiro–Wilk, 
p < 0.05), while yield and DTM showed skewed distributions 
as a result of field conditions and panel composition. The 
SNP markers were evenly distributed genome-wide and at 
a high density (> 7 SNPs per 100 kb). A plot-mean  H2 was 
calculated for the five studied traits, where estimates ranged 
from 0.58 for yield to 0.93 for 100 seed weight (Table S4). 
Overall, the SNP and phenotypic data were of high quality 
for GWAS.

Marker–trait associations in breeding germplasm

Genome-wide association analyses identified 23 significant 
marker–trait associations within the Guelph breeding germ-
plasm for five traits: days to maturity (DTM), oil (%), protein 
(%), 100-seed weight (g) and yield (kg ha−1) (Fig. 1). For 
DTM, five regions were identified as significant including 
annotated regions comprising the E1 gene (Xia et al. 2012) 
with a 3.7-day effect on maturity, E2 (Watanabe et al. 2011) 
with a 2.9-day effect, E3 (Watanabe et al. 2009) with a 2.1-
day effect and a region putatively associated with E8 (Cober 
et al. 2010) with a 4.5-day effect. A region on chromosome 8 
identified as E10 (Samanfar et al. 2017) was identified with 
a 2.8-day effect on maturity (Table 1). In all cases except 
the putative E10 locus, the major allele was associated with 
later maturity.

For seed oil, three regions were identified as significant 
on chromosomes 2, 13 and 15 with effect magnitudes rang-
ing from 0.2 to 0.5% of oil (Table 1). Five regions were 

significantly associated with seed protein, two on chromo-
some 2 and one each on chromosomes 13, 18 and 20, with 
effect magnitudes of 0.3–1.1% of seed protein (Table 1). 
Five regions were associated with 100 seed weight on chro-
mosomes 4, 8, 10, 14 ad 19 with effect magnitudes rang-
ing from 1.1 to 3.4 g per 100 seeds (Table 1). Five regions 
were associated with yield on chromosomes 3, 6, 8, 17 and 
19, with effect magnitudes ranging from 91 to 230 kg ha−1 
(Table 1).

Haplotypes in the trait‑associated regions

Using a LD-based haplotyping method, haplotypes were 
generated to overlap the identified marker–trait associations 
in the breeding germplasm (Table S1). Of the 23 significant 
loci identified through GWAS analysis, 21 were successfully 
haplotyped (Table S1). Of these 21 haplotyped regions, two 
were identified as monomorphic for the defined haplotype 
within phenotyped germplasm due to removal of haplotypes 
with heterozygous SNPs, while the maximum number of 
haplotypes observed at a given region was five. The shortest 
identified haplotype was 7218 bp for sdwt_hap_c14_32Mb 
and the longest extended over 6.8 Mb for oil_hap_c2_35Mb, 
with an average haplotype length of 1.56 Mb (Table S3).

To confirm the association of haplotypes and the traits 
studied, violin plots were generated to assess trait distri-
bution within haplotype groups for each haplotyped region 
(Fig. 2). Then each haplotyped region was tested using a 
multi-allelic MLM association analysis with kinship, where 
haplotyped regions with significant differences between hap-
lotypes were identified (starred plots, Fig. 2). In total, 10 of 
these haplotyped regions were found to be significantly asso-
ciated (p < 0.05) with the trait originally identified through 
the GWAS.

Fig. 1  Multi-trait Manhattan plot of association mapping results for 
yield (kg ha−1) in green, seed oil (%) in yellow, seed protein (%) in 
purple, maturity (days) in dark blue and 100-seed weight (g) in pink 

within Guelph breeding germplasm using 77 k SNPs and FarmCPU 
in rMVP at FDR = 0.05
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To further understand the concordance of the SNP–trait 
associations and the haplotype–trait associations, the con-
cordance of SNP and haplotypes was assessed (Table S2). 
Significant SNP associations where the underlying SNP was 
in concordance with the haplotypes typically showed signifi-
cance when tested with a haplotype MLM association model 
including yield_hap_c3_03Mb, yield_hap_c8_47Mb, yield_
hap_c17_40Mb, oil_hap_c2_35Mb, prot_hap_c13_31Mb, 
sdwt_hap_c10_2Mb, sdwt_hap_c14_32Mb, dtm_hap_
c8_47Mb, dtm_hap_c10_44Mb, dtm_hap_c19_47Mb. 
When the defined haplotypes were not consistent with the 
genotypes of the significant SNP, no haplotype–trait asso-
ciation was identified such as for yield_hap_c6_16Mb and 
prot_hap_c2_2Mb (Table S3). Several haplotyped regions 
had only a single haplotype with phenotype data due to lack 
of phenotype data for alternate haplotypes such as for oil_
hap_c15_5Mb, sdwt_hap_c4_40Mb, dtm_hap_c4_30Mb.

Changes in haplotype frequencies through breeding

Haplotypes with significant trait association were plotted 
by group, with each group defining an era of time in the 
breeding program at the University of Guelph for a total of 
175 accessions to assess changes in haplotype frequency 
over time. A total of six regions were identified to show 
significant changes between eras of breeding in the Guelph 
accessions using Fisher’s exact test (p < 0.05) (Fig. 3).

Among the DTM-associated haplotypes, only dtm_hap_
c8_47Mb had significant differences between the eras of 
breeding, where haplotypes C and E have been removed from 
Guelph 2006–2016 accessions, and haplotype D has been 
introduced to the experimental accession group (Fig. 3). The 
remaining DTM regions did not show significant changes in 
haplotype frequency. No 100-seed weight regions showed 
significant differences for haplotype frequency between eras 
of breeding, and in all three regions, the Guelph accessions 
were fixed for the major (A) haplotype (Fig. 3). The low seed 

Table 1  Genomic regions 
with significant associations 
in Guelph breeding program 
germplasm

*Not found in Soybase.org

Peak SNP ID (Chr:position (bp)) Effect p value Reference for previous association

Maturity (DTM, days)
DTM_Chr4:29569867 4.47 4.02E−07 Putative E8 (Cober et al. 2010)
DTM_Chr6:19647232 3.71 3.45E−18 E1 (Xia et al. 2012)
DTM_Chr8:46592501 − 2.85 2.12E−07 E10 (Samanfar et al. 2017)
DTM_Chr10:43459815 2.86 2.57E−12 E2 (Watanabe et al. 2011)
DTM_Chr19:47355696 2.08 2.70E−10 E3 (Watanabe et al. 2009)
Yield (kg ha−1)
Yield_Chr3:337175 − 117.0 1.04E−09 *
Yield_Chr6:15972416 − 123.6 1.34E−09 Contreras-Soto et al. (2017)
Yield_Chr8:46592501 − 230.7 2.93E−07 *
Yield_Chr17:40326289 − 91.2 1.07E−06 *
Yield_Chr19:41925595 125.9 2.88E−09 *
Protein (%)
Prot_Chr2:1874984 − 1.00 8.90E−07 *
Prot_Chr2:23463134 − 0.34 1.06E−06 *
Prot_Chr13:30619534 0.41 7.57E−08 *
Prot_Chr18:9451863 − 1.16 4.33E−08 *
Prot_Chr20:34287472 0.42 2.22E−07 Bandillo et al. (2015)
Oil (%)
Oil_Chr2:34950242 0.22 8.04E−07 *
Oil_Chr13:16117132 0.32 1.50E−07 *
Oil_Chr15:4928727 − 0.51 2.19E−07 Zhang et al. (2018)
100-seed weight (g)
SDWT_Chr4:40454191 1.20 2.50E−08 Yan et al. (2017)
SDWT_Chr8:47377001 − 1.08 6.07E−09 *
SDWT_Chr10:1496537 2.01 3.55E−10 *
SDWT_Chr14:31655360 − 3.40 2.51E−18 *
SDWT_Chr19:49238929 1.56 8.46E−07 *
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Fig. 2  Haplotype–trait violin plots for the haplotyped regions. Starred plots indicate a significant association was identified between the haplo-
types and trait using a mixed linear model with kinship at p < 0.05

Fig. 3  Haplotype frequencies compared by group (historical (Hist), 
Guelph 1985–2005, Guelph 2006–2016 and experimental (Exp)) for 
the ten trait-associated haplotypes. Starred plots indicate significant 

differences in allele frequency between groups were identified using 
Fisher’s exact test at p < 0.05
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weight haplotype was only found in RILs resulting from 
a G.Max by G.Soja cross, though the differences were not 
significant.

Both oil (oil_hap_c2_35Mb) and protein (prot_hap_
c13_31Mb) showed significant changes in haplotype fre-
quency over the eras of breeding (Fig. 3). For oil_hap_
c2_35Mb, the historical germplasm was nearly fixed for the 
A haplotype conferring higher seed oil content, with a higher 
frequency of the minor haplotypes in the Guelph breeding 
germplasm. For prot_hap_c13_31Mb, the historical acces-
sions had the lowest frequency of the A haplotype conferring 
higher seed protein, similar frequencies in the two Guelph 
eras and the highest frequency in the experimental acces-
sions (Fig. 3).

All three yield regions showed significant changes 
between eras of accessions. The yield_hap_c3_03Mb 
region has lost the B haplotype conferring lower yields in 
the Guelph 2006–2016 group (Fig. 3). For the yield_hap_
c8_47Mb region, the Guelph 2006–2016 group has only the 
A and B haplotypes conferring high yield, where haplotype 
C was present in earlier accession groups. A mid-yielding 
haplotype E was only found in historical and experimen-
tal accessions (Fig. 3). The lower yielding E haplotype is 
found at low frequencies across the germplasm, although 
it is lowest in Guelph 2006–2016 accessions (Fig. 3). The 
yield_hap_c17_40Mb region shows increasing haplotype C 
frequency compared to historical accessions.

Discussion

Association analysis has been proven to be a robust method 
for identification of genomic regions associated with phe-
notypic traits to improve the understanding of the genetic 
architecture of many traits in crop species. Previously, 
marker–trait associations within closely related germplasm 
have been difficult to assess using association techniques due 
to methodological limitations in implementing GWAS in 
these types of populations. The FarmCPU method (Liu et al. 
2016) has worked well to identify these associations within 
breeding germplasm and allow for further characterization 
of these trait-associated regions. As a confirmation for the 
efficacy of the association analysis, identifying significant 
SNPs associated with maturity for previously characterized 
E genes (E1, E2, E3, E10 and a putative region contain-
ing E8) shows that this approach is appropriate to study 
marker–trait associations in closely related breeding acces-
sions. Additionally, other traits studied here such as protein 
show overlap between the significant region identified here 
compared to multiple QTL studies such as protein on chro-
mosome 20 (Zhao-ming et al. 2011).

As GWAS has become a routine technique for assessing 
traits in plant germplasm panels (Bandillo et al. 2015; Fang 

et al. 2017; Zhang et al. 2018), the value of the individual 
significant results has decreased as many crop genomes 
become fully annotated, necessitating the deeper study of 
these regions (Qian et al. 2017), especially in a well charac-
terized species like soybean. The approach taken here was 
to define haplotypes surrounding these single-marker asso-
ciations, as selection within breeding programs is on larger 
genomic regions rather than at the single gene scale. Study-
ing trends over time for these larger genomic regions allows 
the understanding of how breeder selections have changed 
haplotype frequencies as a direct result of selection. The 
results presented are consistent with Fu et al. (2007) who 
assessed diversity using SSR markers in Canadian and exotic 
germplasm finding changes due to breeder selections.

The availability of fast and reproducible haplotyping 
methods for SNP data (Tardivel et al. 2019) allows for the 
assessment of large haplotypes within the soybean genome 
which may contribute to the understanding of genomic 
changes due to breeding and selection in soybean which 
typically act in large genomic regions, rather than at the 
gene level due to LD within the crop. The range of sizes for 
the described haplotypes shows that there is variability in 
LD within the group of accessions used in this study, similar 
to previously observed results for soybean LD (Hyten et al. 
2007).

This work also demonstrated a repeatable approach for a 
study of haplotypes within crop germplasm panels with hun-
dreds or thousands of samples using genome-wide SNP data, 
rather than single region haplotyping, or looking at major 
and minor allele frequencies for bi-allelic SNP markers at 
significant trait-associated regions. The study of multi-allelic 
haplotypes can reveal patterns of diversity not visible using 
bi-allelic SNPs (Grainger and Rajcan 2013). From the iden-
tified haplotypes, SNP markers can be identified to use in 
marker-assisted selection of progeny or for informed selec-
tion of parents within a breeding program.

A benefit to studying haplotypes defined by significant 
marker–trait associations in dense SNP data is the ability to 
narrow the region of interest using marker LD (Qian et al. 
2017). The mapping resolution will still be limited by the 
recombination with the population; however, this is popu-
lation dependent. Defining haplotypes using SNP markers 
helps to identify functional alleles for traits of interest as 
previously demonstrated in wheat (Jiang et al. 2015), maize 
(Yang et al. 2013) and rice (Yano et al. 2016). It should be 
noted that while multiple haplotypes can be identified for 
numerous regions of the genome, this approach does not 
help to differentiate functional alleles for a given trait as it 
is impossible to determine if the underlying causative alleles 
are the same for haplotypes with the same mean trait per-
formance. While novel trait associations were identified in 
the set of breeding accessions studied, there were previous 
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associations for other traits at these regions which may be 
correlated with the traits identified here.

Based on the results presented, there is more study to be 
conducted on the pleiotropic effects of haplotypes within 
breeding germplasm. This is evidenced by the selection of 
haplotypes within the breeding program that do not appear 
to increase the trait value for traits which have been under 
improvement within the studied germplasm. A possible 
explanation is that these haplotypes have minor effects on 
other traits below the threshold of detection. A more com-
plete dissection of these regions could address this question 
in the future, including fine mapping using the boundaries 
identified through haplotyping and functional characteriza-
tion of the underlying causative genes. Some of the haplo-
types studied were not associated with the trait of interest 
as shown in the MLM analyses. Several possibilities exist 
to explain negative results including a low minor allele fre-
quency of the causative allele, the haplotypes generated do 
not represent the underlying SNPs very well, or the underly-
ing genomic region is not well characterized with the SNP 
markers used in this study. Previous usage of the Haplo-
typeMiner package has shown that not all regions could be 
properly haplotyped even when using dense, whole genome 
sequencing SNP data (Tardivel et al. 2019).

Application of a haplotyping approach within breeding 
germplasm will allow for targeted trait improvement and 
data-driven parental selection (Fig. 4). Identification of 
accessions with favorable haplotypes in a target environ-
ment will improve crossing outcomes. This approach was 
described by Qian et al. (2017) to harness haplotype data for 
crop improvement. Studying and assessing these haplotypes 
in routine breeding efforts will help breeders make informed 
decisions about their germplasm and allow for understanding 
of the trends within their breeding programs. While major-
effect haplotypes are easily selected for, this study has shown 
that these regions are already under selection pressure in a 

breeding context, and continued selection will require novel 
sources of diversity for future crop improvement.

An important consideration for the use of these haplo-
types in breeding is that the erosion of diversity in these 
regions may be due to breeders having selected against 
unfavorable haplotypes. A remaining question about these 
regions is whether the absolute best haplotype has been 
selected for, or the best of which was available in the germ-
plasm under selection. Further crossing, testing and study 
using diverse accessions will help to identify trends in wider 
germplasm collections, rather than local trends within single 
breeding programs. This may be exemplified by looking at 
the SDWT results, where the novel haplotypes identified 
were within G. soja by G. max RILs, while no haplotypes 
were identified to have changed within standard breeding 
germplasm.

Future extension of this research could be to conduct 
haplotype analyses within the United States Department of 
Agriculture (USDA) soybean germplasm collection data 
available through Soybase (Grant et al. 2010). Identifica-
tion of breeding-related haplotypes would allow for screen-
ing of the USDA germplasm collection to identify novel 
haplotypes for introgression to a breeding program while 
minimizing the linkage drag of the wide-crosses conducted 
in germplasm improvement efforts. Additionally, character-
izing haplotypes to understand haplotype by environment 
interactions will inform breeders on the best deployment of 
specific haplotypes for a given geographical region. The data 
from haplotype–trait associations combined with regional 
LD patterns provide valuable information for data-driven 
parental selection in a breeding program. For example, using 
a target of high seed protein, a breeder could identify parents 
containing high protein haplotypes prior to crossing, ensur-
ing that progeny contain desired haplotypes for the trait of 
interest.

Fig. 4  A model for parental selection using haplotypes in a breeding 
program. In this example, the haplotypes are combined to select for 
high protein, high oil and short days to maturity (preferred haplo-
types highlighted in green with unwanted haplotypes shown in red). 
The two example parental accessions show partial overlap with the 

ideal haplotypes for early maturity, high protein and high oil. A cross 
between these two accessions combined with marker-assisted selec-
tion could produce the ideal cultivar. This approach for assessing 
haplotypes in breeding germplasm can be used to select parents with 
beneficial haplotypes in targeted crosses and progeny screening
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Conclusion

This work has identified genomic regions controlling 
major agronomic and seed traits within breeding program 
germplasm at the University of Guelph soybean breeding 
program. Haplotype analysis revealed significant haplo-
type–trait associations within this germplasm, and further 
uncovered changes in haplotype frequencies over time 
within the breeding germplasm as a result of breeders’ 
crossing and selection. Continued selection on these hap-
lotypes could erode genetic diversity at major-effect loci, 
requiring the addition of novel genetic diversity to continue 
crop improvement. Our work demonstrates the importance 
of studying these trends in soybean breeding germplasm 
as it serves as the gene pool from which new cultivars are 
developed.
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