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Abstract
Genome-wide association studies (GWAS), genetic surveys of the whole genome to detect variants associated with a trait in 
natural populations, are a powerful approach for dissecting complex traits. This genetic mapping approach has been applied 
in rice over the last 10 years. During the last decade, GWAS was used to identify the loci underlying tens of rice traits, and 
several important genes were detected in GWAS and further confirmed in follow-up functional experiments. In this review, 
we present an overview of the whole process in a typical GWAS, including population design, genotyping, phenotyping and 
analysis methods. Recent advances in rice GWAS are also provided, including several examples of the functional characteri-
zation of candidate genes. The possible breakthroughs of rice GWAS in the next decade are discussed with regard to their 
application in breeding, the consideration of epistatic interactions and in-depth functional annotations of DNA elements and 
genetic variants throughout the rice genome.

Introduction

Genome-wide association studies (GWAS) are a relatively 
new way for rice geneticists to investigate the genetic archi-
tecture of complex traits among diverse varieties and iden-
tify the causative loci (or even the causative genes) underly-
ing these traits. GWAS uses statistical methods to search for 
associations between sequence polymorphisms in the rice 
genome and phenotypic variation in rice varieties. Com-
pared with conventional biparental populations, GWAS has 
two advantages: (1) the rice varieties used in GWAS popu-
lations contain much more genetic diversity than the two 
parental lines used in segregation populations, and (2) most 
GWAS can result in a relatively high mapping resolution 
due to the existence of numerous historical recombination 
events (Takeda and Matsuoka 2008). Owing to the advent 

of second-generation sequencing (especially the wide appli-
cations of the Illumina sequencing platform, Huang et al. 
2009; Elshire et al. 2011) and the development of efficient 
statistical algorithms suitable for plant populations (mainly 
the mixed model, Yu et al. 2006; Kang et al. 2008; Zhang 
et al. 2010; Kang et al. 2010; Lippert et al. 2011; Zhou and 
Stephens 2012; Listgarten et al. 2012; Wang et al. 2014), 
the GWAS platform was developed in rice several years ago 
and has since been applied in the genetic dissection of many 
complex traits (Huang and Han 2014; McCouch et al. 2016). 
Despite many remaining challenges, tens of GWAS carried 
out in rice during the last 10 years have enabled the identi-
fication of hundreds of associated loci.

In this review, we explain the experiments and critical 
factors necessary for a successful GWAS, including the 
generation of a GWAS population, genotyping, phenotyping 
and a software pipeline. We also summarize the major find-
ings of recent GWAS in rice and the functional evaluations 
of candidate genes from GWAS. These studies performed 
over recent years extended our genetic mapping ability and 
our understanding of the genetic control of many important 
traits in rice. The perspective for future GWAS, the technical 
improvements in GWAS follow-up studies and the potential 
applications in breeding are also discussed.

Communicated by Qifa Zhang.

 * Xuehui Huang 
 xhhuang@shnu.edu.cn

1 Shanghai Key Laboratory of Plant Molecular Sciences, 
College of Life Sciences, Shanghai Normal University, 
Shanghai 200234, China

2 National Center for Gene Research, CAS Center 
for Excellence of Molecular Plant Sciences, Institute of Plant 
Physiology and Ecology, Shanghai Institutes for Biological 
Sciences, Chinese Academy of Sciences, Shanghai 200233, 
China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00122-019-03473-3&domain=pdf


1416 Theoretical and Applied Genetics (2020) 133:1415–1425

1 3

Experimental design

The first large-scale GWAS was developed for humans 
more than 10 years ago (Burton et al. 2007). When applied 
in medical genetics, GWAS compares genome-wide poly-
morphisms of people with a disease (e.g., diabetes melli-
tus) to those of similar people without the disease (healthy 
samples with similar genetic backgrounds are best). 
Because the people are first classified by their phenotypes 
and then added to the GWAS panel according to their phe-
notypic data, this approach (also known as the case–con-
trol design) is called the phenotype-first design. In contrast 
to the phenotype-first design, the GWAS in plants mostly 
adopts a genotype-first approach, in which the selection 
of samples for the GWAS panel is mainly based on their 
genotypic diversity, without the special consideration of 
one trait (Nordborg and Weigel 2008; Atwell et al. 2010). 
For a typical GWAS in crops, the population’s genetic data 
are used for statistical analysis to screen the associations 
between genotypes and multiple phenotypes, for which 
the population is usually a germplasm resource covering 
a large geographic distribution and with diverse phylo-
genetic relationships. Consequently, population genetics 
is often involved in the selections of the GWAS panel, 
and in most cases, the main criteria for the selection are 
a high level of genetic diversity and a low level of popu-
lation structure. A high level of genetic diversity means 
that more loci associated with more phenotypic diversity 
may be captured through a GWAS, while a low level of 
population structure results in fewer false positives in the 
associations. Moreover, seed purification (selfing for 1–2 
generations) is a necessary process for generating a suc-
cessful GWAS population because many accessions in the 
seed banks are not homozygous.

As one of the world’s major crops, rice (Oryza sativa) 
has a very broad geographical distribution and is adapted 
to many ecological and agronomic conditions. Cor-
respondingly, the genetic diversity in rice is very rich. 
According to an analysis of a pan-genomic dataset in rice 
(Zhao et al. 2018), each rice gene contains an average of 
~ 16 coding variants in multiple haplotypes and many 
more variants in noncoding regions (including the pro-
moter regions) with potential effects on the regulation of 
gene expression. This rich diversity is very beneficial for 
GWAS. However, as a self-pollinated crop, rice exhibits 
very strong population structure. The genetic differen-
tiation between the indica/Xian rice subspecies and the 
japonica/Geng rice subspecies, using the Fst index as one 
measure, is very high (~ 0.55). When further subdivided, 
cultivated rice may include multiple subpopulations—
indica/Xian (widely distributed in East Asia), temperate 
japonica/Geng (widely distributed in East Asia), aus rice 

(mostly in South Asia), tropical japonica/Geng (mostly 
in Southeast Asia and the USA), and Basmati-type rice 
(mostly in South Asia). To avoid the influence of strong 
population structure, a GWAS must be performed sepa-
rately for each subpopulation.

Designs using the existing rice accessions, however, lead 
to a problem—the nearly fixed alleles or rare alleles within 
one subpopulation (e.g., 99% “A” allele in one subpopulation 
and 99% “C” allele in another subpopulation) are difficult 
to identify in a GWAS (Fig. 1a), even when large sample 
sizes and statistical corrections for population structure 
are used (Marouli et al. 2017). One method for addressing 
these problems is to construct multiple recombinant popula-
tions, including nested association mapping (NAM) popula-
tions (Fig. 1b), multiparent advanced generation intercross 
(MAGIC) populations (Bandillo et al. 2013; Dell’Acqua 
et al. 2015; Huang et al. 2015a; Ogawa et al. 2018) and 
multiple chromosome segment substitution line (mCSSL) 
populations. NAM is a new approach for the genetic map-
ping of complex traits with the advantages of both linkage 
mapping and association mapping (McMullen et al. 2009). 
In maize, a total of 25 diverse varieties were crossed with 
the reference line B73, generating 25 sets of recombinant 
inbred line (RIL) populations, with ~ 200 lines for each set. 
A total of 5000 NAM RILs were combined for genotyping 
and phenotyping, resulting in high mapping power (Buck-
ler et al. 2009). In these newly developed populations, both 
the allelic frequencies and the genotypic combinations were 
completely changed, making the detection of the QTLs with 
rare alleles within subpopulations or highly differentiated 
alleles between subpopulations easier. In rice, several sets 
of MAGIC populations have been developed using diverse 
accessions (Bandillo et al. 2013). For example, the indica 
MAGIC population was developed by multiple intercrosses 
among eight diverse indica lines, followed by several gen-
erations of selfing by single-seed descent (SSD). The indica 
MAGIC population finally comprised 1328 lines, and a 
GWAS was performed using these lines, which revealed 
several QTLs, including Sub1 for submergence tolerance 
and Xa4/Xa5 underlying disease resistance.

Another issue in conventional GWAS is how to accom-
modate multiple alleles of the same gene that are abundant 
within the rice germplasm population. For example, the 
waxy gene controlling rice grain starch synthesis contains 
at least seven alleles with different effects (the ancestral 
allele; four alleles, each with one missense mutation in the 
coding region; one 23-bp indel in exon 2 and one muta-
tion in the exon1–intron1 junction site), causing the amyl-
ose content to range from 2.2 to 27.8% among diverse rice 
accessions (Zhang et al. 2019). In one GWAS using ~ 1000 
worldwide accessions, only the variant with the largest phe-
notypic effect (a 23-bp indel causing a coding frameshift in 
the waxy gene) was found to be significantly associated with 
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a large change in amylose content (sticky rice and nonsticky 
rice). In another GWAS using ~ 1500 rice hybrids (nearly all 
belonging to nonsticky rice), variation in the exon1–intron1 
junction was found to be associated with a modest change 
in amylose content. Possible solutions for dealing with 
such genetic loci with multiple alleles may include: (1) the 
improvement of statistical methods used in GWAS (e.g., 
gene-based associations); (2) performing a GWAS with 

different accessions (e.g., wild rice, landraces and modern 
cultivars) spanning more subpopulations (e.g., aus-type rice 
and basmati-type rice); (3) the generation of populations of 
NAM/MAGIC lines; and (4) phenotyping the GWAS popu-
lation in multiple environments (a powerful way to mine 
more genes and a possible way to solve the issue of multiple 
alleles). These improvements may extend our understanding 
of the genetic controls of complex traits by multiple alleles.

Fig. 1  Comparison between 
natural population using 
germplasm resources and nested 
association mapping population 
by multiple crosses in rice for 
GWAS. Diverse haplotypes are 
indicated by different colors
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Sample size (note: accessions with missing genotypes and 
phenotypes should be excluded) is very important for ensur-
ing enough statistical power in GWAS. The mapping power 
may be too low when the sample size of one GWAS in rice 
is too small (e.g., n < 200), and the cost may be too high if a 
very large number accessions are collected (e.g., n > 5000). 
Consequently, the sample sizes that are able to yield signifi-
cant associations in rice GWAS mostly range from 200 to 
3000. There are several factors to be considered in determin-
ing the sample size. The sample size must be very large for 
GWAS of complex composite traits, that is, traits controlled 
by many genes, each with modest genetic effects (e.g., yield 
per plant), while only a small size is needed for GWAS of 
qualitative traits controlled by 1–2 major genes (e.g., leaf 
coloration). For GWAS of complex traits that are difficult to 
evaluate precisely (e.g., drought tolerance), both the sam-
ple size and the replicates within each sample need to be 
increased. Moreover, when the traits are probably controlled 
by genes with low-frequency alleles, the experimental 
design used for the GWAS must be improved based on the 
sample size and the sample diversity. For example, the fre-
quency of the resistant allele for blast disease (e.g., Pi2/Pi9, 
Pib, and Pigm) is often very low (typically < 5%), and the 
GWAS population must be large unless the rice accessions 
with blast disease-resistant phenotypes are enriched in the 
collected populations.

Genotyping of whole‑genome variants

Once the rice accessions for a GWAS are available, the 
genotyping process begins. Rice has a relatively modest 
extent of linkage disequilibrium, with an average resolution 
of ~ 100 kb in indica and ~ 200 kb in japonica, meaning 
that at least thousands of segregating markers throughout 
the rice genome are needed. Before the wide application of 
high-throughput sequencing technology, a single nucleotide 
polymorphism (SNP) genotyping array is used to perform a 
GWAS in rice. By using a custom genotyping chip, 44,100 
SNP variants were genotyped for 413 diverse rice acces-
sions collected from 82 countries (Zhao et al. 2011). The 
high genotyping resolution using chips identified numerous 
common variants underlying 34 complex traits.

Second-generation sequencing is a new approach for 
high-throughput genotyping in rice GWAS (Huang et al. 
2010; Xie et al. 2015; Wang et al. 2016, 2018b). Using 
this approach, ~ 500 rice accessions were sequenced with 
~ 1 × coverage (Huang et al. 2010). For each rice accession, 
the raw sequence reads covered less than half of the rice 
genome, indicating a large amount of missing genotypic 
data, which is not suitable for a subsequent GWAS. Due 
to linkage disequilibrium among polymorphisms of local 
regions in rice, the missing data could be imputed through 

statistical methods (Wang et al. 2018a). The K-nearest-
neighbors algorithm was applied to perform the imputations 
of the sequence-based genotypic data, which worked very 
well for the rice accessions. During the past 10 years, the 
throughput of second-generation sequencing has increased 
by a large amount (from ~ 1 Gb to 1 Tb per run), with the 
cost decreasing rapidly. At present, the cost for library con-
struction and whole-genome sequencing is below $30 for 
each rice accession, which makes the sequencing-based 
genotyping approach the routine process used in rice GWAS.

Because Asian cultivated rice is a self-pollinated crop, 
most accessions of rice are inbred lines. The homozygous 
genotypes greatly facilitate both genotype calling and miss-
ing data imputation. However, hybrid rice and natural wild/
weedy rice accessions contain a large proportion and a mod-
est proportion of heterozygous genotypes, respectively. The 
genotype of hybrid rice accessions can be determined pre-
cisely by sequencing their inbred parental lines, and wild/
weedy rice accessions from natural conditions can be “puri-
fied” by several generations of selfing. Without such infor-
mation or experiments, the processes would be complicated 
because, even with high coverage (e.g., tenfold), the raw 
genotypes may not be the real genotypes. For example, for 
one heterozygous site (e.g., an A/T polymorphism), most 
likely only one allele (e.g., “A”) is covered by multiple reads, 
while the other allele (e.g., “A”) is not sequenced. Hence, the 
uncertainty regarding heterozygous genotypes, coupled with 
sequencing errors and alignment errors (typically for paral-
ogs), must be corrected with imputation processes. The gen-
otype calling for these heterozygous genomes from hybrid or 
wild rice (Huang et al. 2012a, 2015b) can be improved with 
greater sequencing depths and imputed by hidden Markov 
model-based imputation methods (e.g., that in the Beagle 
pipeline, Browning and Browning 2009). In particular, when 
reference haplotype maps are provided (that is, haplotype-
based information for the rice population), the performance 
can be improved.

High‑throughput phenotyping

The agronomic traits that have received much attention in 
rice molecular genetic studies include grain yield, grain 
quality and stress resistance, and a high-quality phenotype 
dataset is crucial in rice GWAS. Phenotyping of these agro-
nomic traits in thousands of rice accessions with many repli-
cates is very laborious and time-consuming and is thus usu-
ally performed by several farmers or researchers for several 
months or even 2–3 years, making it much slower than the 
genotyping steps. Recently, rapid progress in remote sensing 
and robotic technologies (e.g., small unmanned aerial vehi-
cles, Reynolds et al. 2019a, b) has made high-throughput 
phenotyping possible in rice. By capturing relevant images 
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of rice plants in greenhouses or in the field, software pipe-
lines of image analyses have been developed to estimate 
various phenotypes for each plant line (Yang et al. 2014). 
In a recent GWAS of drought resistance in rice, a mecha-
nized phenotyping platform was used to measure the mor-
phological changes before and after drought stresses (Guo 
et al. 2018). The nondestructive image-based techniques 
monitored the detailed dynamic response of 507 diverse 
rice varieties, and 51 image-based traits were extracted from 
quantitative analyses of objects in binary images, illustrat-
ing the power of the mechanized phenotyping methods. 
The hardware for high-throughput experiments is becoming 
increasingly cost-efficient and miniaturized, and the image 
recognition by artificial intelligence algorithms of plant phe-
notypes is becoming increasingly precise. Hence, it is very 
likely that more phenotyping studies for rice GWAS will be 
accomplished with automated platforms requiring very little 
manual intervention.

Metabolic profiling, gene expression profiling and meth-
ylation profiling can be considered complex quantitative 
traits in a broad sense. There has been an increasing interest 
over the past few years in investigating the genetic varia-
tion in metabolite content, gene expression levels and gene 
methylation levels among rice accessions through GWAS. 
For example, metabolic GWAS of rice leaves and grains was 
performed, resulting in the identification and annotation of 
many candidate genes involved in metabolic pathways (Chen 
et al. 2014, 2016). The levels of metabolites were found 
to be of potential physiological and nutritional importance. 
A GWAS using the data from gene expression profiling as 
the traits, called an eGWAS, has been performed in maize 
(Kremling et al. 2018). With transcriptomic data from seven 
tissues in 255 maize lines, expression quantitative trait loci 
(including trans- and cis-variants) were characterized in the 
maize genome. In Arabidopsis thaliana (Kawakatsu et al. 
2016), transcriptome and methylome data were collected 
from > 1000 accessions. In addition to the genes known to 
be involved in epigenetics, the GWAS also identified many 
novel loci controlling DNA methylation levels in Arabidop-
sis genomes. In the future, similar studies in rice will provide 
important resources and genetic insights into natural varia-
tion in gene regulation.

Analysis methods and significance 
thresholds for GWAS

Due to the problem of strong population structure, which 
often leads to many spurious associations, many GWAS 
methods (e.g., simple linear association and correction by 
principal component analysis and genomic control in Plink 
software for human GWAS) do not work well in rice. The 
linear mixed model approach was developed to account for 

multiple levels of relatedness by using a kinship matrix, 
which greatly improved the performance of GWAS by reduc-
ing both the false-positive rate and the false-negative rate 
(Yu et al. 2006). One of the limitations of the original analy-
sis method using a linear mixed model is the computational 
burden—it takes a long time or many CPUs to handle a large 
dataset. The method was improved in terms of computa-
tion time by clustering individuals into groups (Zhang et al. 
2010), by using the same variance components estimated 
from the null hypothesis throughout the genome (Kang et al. 
2010) and other methods that greatly improve computation 
speed (such as FaST-LMM, Lippert et al. 2011). When the 
linear mixed model became capable of handling the compu-
tations of thousands of lines genotyped at millions of SNPs, 
coupled with the imputation from low-coverage sequencing 
becoming applicable for generating high-quality genotypic 
data, rice GWAS began to be widely used in the genetic 
mapping of various traits. Additional gene-based and multi-
omics data analyses, which have been developed very fast in 
the past decade, may further contribute to finding the causa-
tive genes and understanding the underlying mechanisms 
in rice (Chen et al. 2014, 2016; Yano et al. 2016; Si et al. 
2016).

The association significance thresholds used in rice 
GWAS are crucial. In most reports on human GWAS, the 
genome-wide significance threshold is P value < 5 × 10−8 
(0.05/1 million markers, The Wellcome Trust Case Control 
Consortium, 2007), sometimes followed by independent 
replication in a new dataset. There are no fixed and conven-
tional thresholds for rice GWAS, especially when different 
populations and different numbers of markers are used. Per-
mutation tests can be used to estimate the GWAS P value 
threshold by reshuffling the phenotypic data and perform-
ing a GWAS with the reshuffled phenotypes. In most cases 
of rice GWAS performed with a linear mixed model, the 
threshold  10−7 is reasonable. Moreover, because most rice 
GWAS uses whole-genome sequencing data and there are 
enough markers in each linkage disequilibrium block, a sin-
gle SNP passing the threshold (not multiple SNPs around 
one locus showing associations) in a Manhattan plot (the 
plot of –log GWAS P values across the rice genome) is often 
due to some errors.

We noticed that nearly all analyses used in rice genetics 
currently involve linear models. In recent years, algorithms, 
especially deep learning, have been shown to be very pow-
erful in many areas, including image recognition and voice 
recognition. Some exploratory studies in human genet-
ics assessed the performance of deep learning with linear 
models in solving genetics-based problems and found that 
deep learning did not significantly outperform linear models 
(Bellot et al. 2018). Up to date, few pioneer tests using the 
new algorithms for GWAS have been reported in plants. We 
believe that novel methodologies (e.g., deep learning) are 
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much needed in the genetic modeling of complex traits in 
rice, but more in-depth research is needed to adapt them.

Recent GWAS in rice and characterization 
of candidate genes

Since becoming a considerably mature and verified method 
(Huang et al. 2012b; Huang and Han 2014), GWAS has 
been used to investigate the genetic basis of natural varia-
tion in biological traits in rice, especially in the last 5 years 
(Table 1). The traits examined in these GWAS include 
grain size traits (Duan et al. 2017; Gong et al. 2017), pani-
cle traits (Crowell et al. 2016), callus induction (Zhang 
et al. 2018), mesocotyl length (Sun et al. 2018), chloro-
phyll content (Wang et al. 2015), stigma exsertion (Zhou 
et al. 2017), cold tolerance (Xiao et al. 2018), drought 
tolerance (Guo et al. 2018), and metabolism in rice leaves/

grains (Chen et al. 2014, 2016). In Table 1, we provide 
a summary of several major GWAS in rice. In addition 
to O. sativa (Asian cultivated rice), a GWAS was also 
applied in the close relative O. glaberrima (African cul-
tivated rice, Meyer et al. 2016). Six salt tolerance-related 
traits were phenotyped in 93 African rice landraces, and 
11 significantly associated loci were identified, including 
the candidate genes OsHAK5 and OsHAK6. Moreover, the 
activation of retrotransposons was treated as a phenotype, 
and its genetic basis was detected. Using genomic data for 
3000 rice accessions, 53,262 transposon insertion poly-
morphisms from 32 retrotransposon families were identi-
fied (Carpentier et al. 2019). The underlying genetic fac-
tors were examined by looking for associations between 
each SNP and the number of copies of retrotransposons, 
and significant association peaks were detected. Nearly 
all associations overlapped with genomic loci enriched in 
retrotransposon insertions, suggesting that the presence 

Table 1  List of GWAS in rice during recent few years

Traits Population size Associated loci Genes with functional valida-
tions

References

Metabolic features 529 accessions 36 Os02g57760, Os07g32060 Chen et al. (2014)
13 traits (e.g., plant compact-

ness)
529 accessions 141 Yang et al. (2014)

Chlorophyll content 529 accessions 46 Wang et al. (2015)
38 agronomic traits 1495 hybrids 130 Huang et al. (2015b)
Metabolic features 502 accessions 32 Os11g42370, Os11g25454, 

Os04g11970
Chen et al. (2016)

49 panicle phenotypes 242 accessions 489 Crowell et al. (2016)
Grain length, grain width, amyl-

ose content, pericarp color
203 varieties 4 Wang et al. (2016)

Salt tolerance traits 93 landraces 11 Meyer et al. (2016)
7 traits (e.g., awn length) 176 varieties Not reported Os01g62780, Os11g08410, 

Os04g52479, Hd1, 
Os08g37890

Yano et al. (2016)

Grain length and grain weight 381 varieties Based on previous GWAS OsSPL13 Si et al. (2016)
Broad-spectrum blast resistance 67 from a large collection Not reported Os03g32230 Li et al. (2017)
Stigma exsertion and related 

floral traits
533 accessions 23 Zhou et al. (2017)

Grain width 102 varieties 3 GSE5 Duan et al. (2017)
Grain length-to-width ratio, 

chalky grain rate
10,074  F2 lines 23 Gong et al. (2017)

Flag leaf angle 529 accessions 40 and 32 in environments OsbHLH153, OsbHLH173, 
OsbHLH174

Dong et al. (2018)

Drought responses 507 accessions 470 OsPP15 Guo et al. (2018)
Callus induction traits 510 accessions 21 OsIAA10 Zhang et al. (2018)
Cold stress adaption 641 cultivars Not a typical GWAS bZIP73 Liu et al. (2018)
Mesocotyl length 510 accessions One major locus OsGSK2 Sun et al. (2018)
Cold tolerance 1033 accessions 13 Os10g34840 Xiao et al. (2018)
Grain length and grain width 270 accessions 9 OsSNB Ma et al. (2019)
Cadmium accumulation 127 cultivars 12 OsCd1 Yan et al. (2019)
10 traits (e.g., seed setting rate) 100 lines 34 Chen et al. (2019)
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of the active copy of retrotransposons is one of the most 
important causes of transposition activation in rice.

The functions of several important genes within QTLs 
in rice have been successfully characterized by the GWAS 
approach (Si et al. 2016; Yano et al. 2016; Li et al. 2017; 
Dong et al. 2018; Liu et al. 2018; Sun et al. 2018; Ma et al. 
2019). Due to the modest rate of linkage disequilibrium 
decay in rice, the associated loci usually contain several 
genes (~ 10, on average), which is different from the pattern 
in maize, which has rapid linkage disequilibrium decay (Li 
et al. 2013; Navarro et al. 2017). When integrated with other 
functional evidence (e.g., homolog information, expres-
sion profiling, and sequencing variation in genic regions), 
the GWAS approach often results in a few strong candi-
date genes for follow-up validation experiments, usually 
by genetic complementary and genome-editing methods. 
Using this strategy, one major QTL controlling grain size, 
GLW7, was identified, which encoded the plant-specific 
transcription factor OsSPL13 (Si et al. 2016). According 
to the genetic transformation of different constructs, a tan-
dem repeat in the 5′ UTR of OsSPL13, which affected the 
expression level of this gene, was proven to be the causa-
tive variant (Fig. 2). Another GWAS identified four new 
genes underlying awn length, heading date, plant height 
and panicle number in a japonica population (Yano et al. 
2016). Candidate gene analysis was performed through in-
depth annotations based on the estimated effect of sequenc-
ing variation and validated all four genes using transgenic 
approaches. A GWAS of broad-spectrum resistance to blast 
disease in 534 sequenced rice accessions detected six associ-
ated SNPs in the cis-elements of the promoter regions of six 
genes (Li et al. 2017). Linkage mapping using 3685 recom-
binant inbred lines indicated that one of them, the C2H2-
type transcription factor “Bsr-d1” gene, was tightly linked 
to the resistance phenotype, which was further confirmed 
by silencing, overexpression and CRISPR-mediated knock-
out of the Bsr-d1 gene. In addition, a GWAS for mesocotyl 

length among 510 diverse accessions identified one candi-
date gene, OsGSK2, a conserved kinase involved in brassi-
nosteroid signaling (Sun et al. 2018). The candidate gene 
was verified using transgenic rice lines and was also found to 
be an important gene under domestication selection in rice.

Application in breeding

Conventional breeding in rice usually requires a long period 
of time, largely owing to the personal experiences and feel-
ings of the breeders. Recently, it became possible to use 
molecular breeding strategies to design new rice varieties 
(Zhang 2007; Zeng et al. 2017; Ouyang 2019). GWAS may 
be an important and effective approach for rice breeding by 
guiding the genetic improvement of inbred lines and helping 
in the design of hybrid crosses. The sequence variants that 
are detected as being associated with important agronomic 
traits, especially those for disease resistance and the accu-
mulation of heavy-metal elements, can be designed for use 
as molecular markers in rice breeding directly. GWAS data 
are also useful in genomic selection for highly complex traits 
(e.g., grain yield and combining ability in hybrid rice, Huang 
et al. 2015b; Chen et al. 2019). However, these applications 
are not yet widely used in rice breeding because there are 
still gaps between genomic studies and breeding. One of 
the gaps is that most breeders, even those with molecular 
biology training, are not familiar with genomic data. More 
useful and friendly software systems, similar to mobile 
apps in smartphones, are needed to fill this gap. Another 
gap is that the effectiveness of molecular breeding based 
on GWAS data needs to be further improved, mainly for 
highly complex traits. For many traits in rice, the gene loci 
detected from current GWAS designs can explain only a 
small proportion of the phenotypic variation (much smaller 
than the heritability of the traits), and more gene loci useful 
in breeding are not detected. Moreover, there are complex 
QTL–QTL interactions and G × E interactions in rice, which 
have not been fully addressed in genetic studies.

In addition to molecular breeding through several gen-
erations of crossing and selection, genome-editing technol-
ogy provides another powerful tool for rapid and effective 
genetic improvement. GWAS in rice provides many gene 
targets for breeding (Hickey et al. 2019), and the CRISPR-
Cas9 system is an innovation that speeds up selective breed-
ing by allowing several QTL genes to be edited precisely 
and simultaneously or even novel alleles to be created (Shen 
et al. 2018; Liu et al. 2019c). Genetic studies in tomato, 
rice and maize (Krieger et al. 2010; Huang et al. 2016; 
Liu et al. 2019a) revealed that the overdominance effects 
of a few genes in hybrid crops (e.g., IPA1 and hd3a) are 
probably due to dosage effects—the heterozygous state of 
the genes exhibited ideal expression levels for grain yield 

TCCGCACTTCCACTTCCAC TCCGCACTTCCAC

Fig. 2  Illustration of fine mapping in GWAS, using the identification 
of OsSPL13 (underlying grain size in rice) as an example
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performance. CRISPR-Cas9 editing of the promoter regions 
of these genes has the potential to create a new allele (with 
homozygous genotypes) with an effect that is equivalent to 
the genetic effects of the heterozygous state in hybrid rice 
(Liu et al. 2019b). Hence, the CRISPR-Cas9 system will 
play an important role in the era of “GWAS plus” in rice 
(Fig. 3).

Conclusions and perspectives

In human genetics, GWAS has laid the foundation for uncov-
ering the molecular basis of complex medical traits. The idea 
of GWAS was introduced to the plant research community 
very early, with many preliminary and pioneer studies on 
genetic diversity, linkage disequilibrium, population struc-
ture and association mapping methods using Arabidopsis, 
maize and rice as model species (Caicedo et al. 2007; Zhu 
et al. 2007; Mather et al. 2007; Clark et al. 2007; Nordborg 
and Weigel 2008; Zhang et al. 2009; McNally et al. 2009; 
Tian et al. 2009; Myles et al. 2009). Largely owing to the 
advent of high-throughput sequencing technology and the 
development of linear mixed models, GWAS has become 
a feasible and popular method for the genetic dissection of 
complex traits in rice and many other plants. In contrast to 
GWAS of human populations, GWAS of rice has unique 
advantages. Because rice is a self-pollinated species, in 
principle, a GWAS population can be genotyped only once 
but phenotyped multiple times for different kinds of traits 
and under various environmental conditions, and the genetic 
architecture of tens of agronomic traits has been investigated 

via GWAS and follow-up studies using several major sets of 
rice collections.

Nearly 10 years have passed since the first attempt to 
perform a GWAS in rice was published. Despite many 
successes, GWAS faces new challenges (Zhou and Huang 
2019). As stated above, genetic interactions (also called epi-
static interactions) and G × E interactions are mostly ignored 
in rice GWAS, although these interactions have been shown 
to be particularly important for quantitative traits (Manolio 
et al. 2009; Forsberg et al. 2017). New statistical analysis 
methods and the corresponding experimental designs for 
these interactions need to be well addressed in the future. 
Moreover, to date, most GWAS populations in rice have 
included temperate japonica and indica rice (accounting 
for > 80%). The use of exotic subpopulations [e.g., bas-
mati, tropical japonica, aus and wild rice (O. rufipogon)] 
is relatively limited in number. This situation is similar to 
that in humans, in which most GWAS data are from Euro-
pean populations, while large-scale genomic studies of 
African, Asian, multiethnic and admixed populations are 
relatively few in number (Wojcik et al. 2019). In fact, many 
critical variants and associations present in non-European 
populations were missed. Based on these advancements in 
humans, genetic studies on exotic germplasm accessions in 
rice, including GWAS and subsequent works, need to be 
enhanced in the future.

With the development of molecular genetic studies, the 
rice research community has fine-mapped many quantita-
tive trait loci and identified the causative genes at these loci 
(Xing and Zhang 2010; Zuo and Li 2014). To further enrich 
our understanding of the underlying molecular mechanisms, 
not only causative genes but also other causative sequence 

Fig. 3  Creation of new alleles 
through genome-editing tech-
nology for the genes identified 
from GWAS
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variants need to be identified (Fig. 2). One remaining dif-
ficulty in rice GWAS is the lack of in-depth annotation of 
genetic variants. We still have limited knowledge of the 
potential effects of sequence variants on promoter regions, 
coding regions and UTRs. Learning from the ENCODE Pro-
ject, which seeks to interpret the human genome sequence 
and precisely annotate the DNA elements (Dunham et al. 
2012), a “user’s guide” to the rice genome (e.g., including 
large-scale, well-designed experiments based on data from 
Chip-Seq, Hi-C and coupled in-depth annotation platforms) 
is greatly needed, which will provide new insights into rice 
genetics. We believe that these efforts may also facilitate 
molecular breeding in rice.
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