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Abstract
Key message  A genome-wide associated study identified six novel QTLs for lint percentage. Two candidate genes 
underlying this trait were also detected.
Abstract  Increasing lint percentage (LP) is a core goal of cotton breeding. To better understand the genetic basis of LP, a 
genome-wide association study (GWAS) was conducted using 276 upland cotton accessions planted in multiple environ-
ments and genotyped with a CottonSNP63K array. After filtering, 10,660 high-quality single-nucleotide polymorphisms 
(SNPs) were retained. Population structure, principal component and neighbor-joining phylogenetic tree analyses divided 
the accessions into two subpopulations. These results along with linkage disequilibrium decay indicated accessions were 
not highly structured and exhibited weak relatedness. GWAS uncovered 23 polymorphic SNPs and 15 QTLs significantly 
associated with LP, with six new QTLs identified. Two candidate genes, Gh_D05G0313 and Gh_D05G1124, both contained 
one significant SNP, highly expressed during ovule and fiber development stages, implying that the two genes may act as the 
most promising regulators of LP. Furthermore, the phenotypic value of LP was found to be positively correlated with the 
number of favorable SNP alleles. These favorable alleles for LP identified in the study may be useful for improving lint yield.

Introduction

Cotton is a major source of natural textile fiber and a signifi-
cant cash crop worldwide (Chen et al. 2007). Upland cotton 
(Gossypium hirsutum L.) occupies approximately 95% of 
global cotton production (Zhang et al. 2008). Lint yield, an 

important measure of cotton yield, depends on boll num-
ber (BN), lint percentage (LP), boll weight (BW) and other 
factors (Qin et al. 2015). Many studies have uncovered a 
significant positive correlation between LP and cotton yield, 
and LP is an important trait index for the breeding of high-
yielding cotton (Immenkamp 2006). However, the genetic 
basis of LP is not fully understood. Identifying genetic vari-
ation in LP and the genes underlying this trait is therefore 
essential.

Most traits in plants are complex quantitative traits con-
trolled by the small effects of multiple genes (Huang et al. 
2010). Identification of genes underlying the target trait is 
therefore difficult. Analysis of quantitative trait loci (QTL) 
and genome-wide association studies (GWASs) are cur-
rently the most commonly used research methods to deter-
mine the genetic variation of a complex trait (Huang et al. 
2018; Mitchell-Olds 2010). In the past few decades, QTL 
mapping has been widely used to dissect the genetic basis 
for cotton complex traits (Jamshed et al. 2016; Liu et al. 
2017; Reinisch et al. 1994; Rong et al. 2004). QTL map-
ping of related traits in cotton has yielded fruitful results, 
with a total of 4892 QTLs for yield, fiber quality, stress 
resistance and seed traits currently identified. Among 
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them, 327 LP QTLs distributed on different chromosomes 
have been detected (Said et al. 2015a, b). Because of the 
time-consuming nature of mapping-group construction 
and the low mapping accuracy of linkage analysis, fine 
mapping of QTLs for LP and map-based cloning of key 
genes is difficult to achieve (Cavanagh et al. 2008; Nie 
et al. 2016). GWAS is a more convenient and effective 
tool for discovering QTLs and candidate genes related 
to major traits in plants (Saidou et al. 2014; Zhu et al. 
2008). Because of higher resolution, greater efficiency and 
suitability for use with large natural populations, GWAS 
has been widely applied to detect relationships between 
genetic loci and complex phenotypes in crops such as rice 
(Dong et al. 2018; Huang et al. 2010; Zheng et al. 2018), 
maize (Li et al. 2013; Tian et al. 2011; Zhao et al. 2018), 
rapeseed (Wang et al. 2018a; Wei et al. 2016) and soybean 
(Wang et al. 2018b; Wen et al. 2018; Zhou et al. 2015). 
However, conducting a genome-wide association analy-
sis in cotton is relatively lagging, because of the complex 
genome of this species.

The completion of cotton genome sequence (Li et al. 
2014; Paterson et al. 2012; Zhang et al. 2015) and the rapid 
evolution of gene array and high-throughput sequencing 
technologies (Cai et al. 2017; Hulse-Kemp et al. 2015) 
have led to the discovery of a large number of single-
nucleotide polymorphism (SNP) markers and greatly 
promoted the use of genome-wide association analyses in 
cotton. Using a GWAS strategy with high-density SNP 
markers, researchers have recently detected many genetic 
loci associated with cotton yield components, fiber qual-
ity and disease resistance (Fang et al. 2017; Li et al. 2017; 
Ma et al. 2018; Wang et al. 2017). Similarly, GWAS has 
been used to investigate the LP trait. The 355 upland cot-
ton accessions were genotyped by specific-locus amplified 
fragment sequencing (SLAF-seq), and combination with 
multiple environmental phenotypes in a GWAS, a gene, 
Gh_A02G1268, that may determine LP, was revealed (Su 
et al. 2016). The population structure and linkage disequi-
librium (LD) of 503 upland cotton accessions were dis-
sected using a CottonSNP63K array (Hulse-Kemp et al. 
2015), and one candidate gene for LP, Gh_D08G2376, was 
detected (Huang et al. 2017).

In the present study, a population comprising of 276 
upland cotton accessions was genotyped using a Cotton-
SNP63K array and analyzed for structure, kinship and LD. 
Phenotype data were collected from seven environments 
and used for GWAS to determine the relationship between 
genetic loci and LP. The main objectives of this research 
were to: (1) determine the genetic structure and linkage dis-
equilibrium level of this population, (2) identify loci associ-
ated with LP and (3) explore the candidate genes that control 
LP. These results should serve as useful information for the 
improvement breeding of LP in cotton.

Materials and methods

Plant materials and field experiments

A diverse collection of 276 upland cotton accessions was 
used for an association study (Table S1). These accessions 
were classified into five groups according to their origin: 
YRR (Yellow River region of China), YtRR (Yangtze 
River region of China), NW (Northwest China), NSEMR 
(Northern special early maturing region of China) and other 
countries of the world. All 276 accessions were grown in 
Anyang (Henan Province, China), Jingzhou (Hubei Prov-
ince, China) and Jiujiang (Jiangxi Province, China) in 2016 
and in Anyang, Jingzhou, Huanggang (Hubei Province, 
China) and Anqing (Anhui Province, China) in 2017 and 
designated as 16AY, 16JZ, 16JJ, 17AY, 17JZ, 17HG and 
17AQ, respectively. In each experimental environment, all 
accessions were planted in a single-row plot (6.0 m long and 
0.8 m between rows) with two replications (20–25 plants 
per replication). All field experiments were arranged in a 
complete randomized block design. The field management 
followed the local agricultural practices throughout the 
growing period.

Phenotypic evaluation and statistical analysis

During the open-boll bloom period, 25 naturally open 
bolls were randomly harvested from the middle of each 
plot. The lint fiber was ginned by roller gin, and LP was 
calculated based on fraction of lint weight to seed-cotton 
weight (Abdurakhmonov et al. 2007). Statistical analysis, 
calculation of Pearson linear correlation coefficients of LP 
between different environments and an analysis of variance 
(ANOVA) were conducted using R software (Team 2014). 
In addition, the broad-sense heritability (H2) of LP was com-
puted as H2 = �
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function in the lme4 package of R. The best linear unbiased 
prediction (BLUP) of LP for each line across multiple envi-
ronments was calculated using lme4 package as well (Bates 
et al. 2015).

SNP genotyping

Total DNA was extracted from young leaf tissues of each 
accession using a modified CTAB method (Zhang and Stew-
art 2000). A CottonSNP63K array (Hulse-Kemp et al. 2015), 
which contained 63,058 SNPs, was used to determine the 
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genotype of each mapping accession as the previous reports 
(Huang et al. 2017; Sun et al. 2017b). The genotyping was 
performed on an Illumina Infinium platform following the 
Illumina protocols. The SNP data were clustered and geno-
typed using Illumina GenomeStudio v2011.1. The SNP data 
were further screened according to the following criteria: 
SNP call rate > 0.85 and minor allele frequency > 0.05. 
In addition, according to the reported method (Sun et al. 
2017b), the probe sequences of the SNP array were assigned 
to the G. hirsutum TM-1 reference genome (Zhang et al. 
2015), and SNPs with the unique physical positions were 
retained for further analysis.

Population structure assessment and GWAS

The population genetic structure of the 276 accessions was 
analyzed using a Bayesian model-based method in STRU​
CTU​RE 2.3.4 (Evanno et al. 2005). The number of popula-
tion clusters was predefined as K = 1–10, with five independ-
ent runs for each K. For each run, we performed 100,000 
Markov chain Monte Carlo iterations after a burn-in period 
of 100,000 iterations. STRU​CTU​RE HARVESTER (Earl 
and Vonholdt 2012), a free web-based program, was used 
to calculate the natural logarithm of the probability of the 
data (Ln P[K]) and the ad hoc statistic ΔK. The optimal K 
was chosen based on ΔK (Mezmouk et al. 2011). Finally, 
the Q matrix was obtained from CLUMPP software (Jakob-
sson and Rosenberg 2007) by integrating the results of the 
five repeated runs. In addition, principal component analy-
sis (PCA) and calculation of a relative kinship matrix were 
performed using the GAPIT package (Lipka et al. 2012), 
with the first three principal components constituting the 
PCA matrix and the kinship matrix constructed according 
to the described method (VanRaden 2008). PowerMarker 
v3.25 (Liu and Muse 2005) was used to estimate the poly-
morphism information content (PIC) of the SNP markers, 
gene diversity and genetic distances among the 276 acces-
sions. A neighbor-joining phylogenetic tree based on Nei’s 
genetic distances (Nei 1972) was generated using MEGA 6.0 
(Tamura et al. 2013). The LD parameter r2 between pairs of 
SNPs was calculated with the −r2 command in PLINK soft-
ware (Purcell et al. 2007) based on a window size of 1000 
following the reported method (Wang et al. 2017).

The association study between phenotype and genotype 
was performed using the GAPIT package in R under the 
mixed linear model (MLM) (Yu et  al. 2006). The PCA 
matrix and kinship matrix were used as the fixed and ran-
dom effects, respectively. The significance threshold for 
trait–marker associations was calculated according to the 
number of markers (p = 1/n, where n is the total number of 
SNPs used). By combining the GWAS results in different 
environments, an adjusted suggested genome-wide signifi-
cance threshold of p = 1.0 × 10−3 was chosen in this study. 

Manhattan plots were generated using the R package qqman 
(Turner 2014). Heatmaps of LD on both sides of peak SNPs 
were produced using Haploview 4.2 (Barrett et al. 2005).

RNA‑seq and quantitative real‑time PCR (qRT‑PCR) 
analysis

The raw RNA-seq data of G. hirsutum TM-1 tissues (root, 
stem, leaf, ovule and fiber developmental periods) were 
downloaded from the National Center for Biotechnology 
Information (NCBI) Sequence Read Archive (accession no. 
PRJNA248163). Expression analysis of the RNA-seq data 
was carried out using TopHat and Cufflinks software (Trap-
nell et al. 2012), with normalized fragments per kilobase 
per million mapped read (FPKM) values used as the gene 
expression levels.

Total RNA was extracted from G. hirsutum TM-1 tis-
sues, including ovules at 0, 10, 20 and 30 days post-anthesis 
(DPA) and fibers at 10, 20 and 30 DPA, using TRIzol reagent 
(Tiangen, Beijing, China) and then reverse-transcribed using 
a PrimeScript RT Reagent Kit with gDNA Eraser (Takara, 
Tokyo, Japan). qRT-PCR amplifications were performed 
using SYBR Premix Ex Taq (2×) (Takara) on a LightCycler 
480 96-well system (Roche, Mannheim, Germany). The G. 
hirsutum histone3 gene was used as an internal reference. 
Expression levels of target genes were calculated using the 
comparative Ct method (Schmittgen and Livak 2008). Gene-
specific primers are listed in Table S6.

Results

Analysis of LP phenotypic variation

We evaluated LP of 276 accessions in seven environments 
during 2016 and 2017 (Table 1). Extensive phenotypic varia-
tion was observed in each individual environment. LP values 
ranged from 10.49 to 49.62%, with a mean value of 37.60% 
across the seven environments. The coefficient of variation 
(CV) ranged from 7.68 to 11.20%. As indicated by skewness 
and kurtosis values, the LP trait exhibited an approximately 
normal distribution pattern in all environments (Table 1, 
Figure S1). In addition, the ANOVA revealed significant 
differences (p < 0.001) in the effects of genotype (G), envi-
ronment (E) and the interaction of genotype and environ-
ment (G × E) (Table S2). The broad-sense heritability (H2) of 
LP was 90.7% (Table S2), and a correlation analysis across 
different environments uncovered significant positive cor-
relations among LP phenotypes in different environments 
(Figure S1). These results demonstrated that the LP trait is 
highly stable and mainly controlled by genetics.
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Analysis of genetic diversity based on SNPs

From the 63,058 SNPs, used to genotype the 276 tested 
accessions, a total of 10,660 high-quality SNPs meeting 
the filtering criteria were used for the subsequent analysis 
(Fig. 1, Table 2). These SNPs were unevenly distributed 
across the 26 chromosomes, with more SNPs found on the 
Dt subgenome (6480) than on the At subgenome (4180). The 

SNP density of chromosomes ranged from 86.43 kb/SNP 
(Dt07) to 731.71 kb/SNP (At06), with an average marker 
density of 237.32 kb/SNP. In addition, the polymorphism 
information content (PIC) values varied from 0.200 (Dt06) 
to 0.294 (At13) among the 26 chromosomes, with a mean 
value of 0.250. The mean gene diversity value of all chromo-
somes was 0.31 and ranged from 0.24 (Dt06) to 0.37 (At01, 
At05 and At13) (Table 2).

Table 1   Phenotypic data 
statistics of lint percentage 
observed in seven environments

16AY, 16JZ and 16JJ represent the environment of Anyang, Jingzhou and Jiujiang in 2016; 17AY, 17JZ, 
17HG and 17AQ represent the environment of Anyang, Jingzhou, Huanggang and Anqing in 2017; BLUP 
represents the best linear unbiased prediction across seven environments of lint percentage, SD and CV 
represent standard deviation and coefficient of variation, respectively

Environment Min Max Mean SD CV (%) Skewness Kurtosis

16AY 20.30 49.62 36.85 3.35 9.09 − 0.625 2.446
16JZ 12.89 46.51 36.24 4.06 11.20 − 1.442 4.496
16JJ 14.52 43.96 35.97 3.79 10.55 − 1.213 3.782
17AY 10.49 46.20 38.86 3.71 9.54 − 2.053 11.821
17JZ 22.33 46.51 37.90 3.93 10.37 − 0.708 0.969
17HG 15.39 44.29 37.86 3.31 8.76 − 1.614 7.255
17AQ 28.83 45.26 39.53 3.04 7.68 − 1.085 1.480
BLUP 22.37 43.28 37.51 2.92 7.78 − 1.200 2.760

Fig. 1   Distribution of 10,660 polymorphic SNPs on the 26 chromosomes of an upland cotton association population. The horizontal axis indi-
cates chromosome lengths, and the color legend depicts SNP density (the number of SNPs within a 1-Mb window)



1995Theoretical and Applied Genetics (2019) 132:1991–2002	

1 3

Population structure and kinship analyses and LD 
decay estimation

STRU​CTU​RE analysis indicated that values of Ln P(K) 
increased continuously as K was increased from 1 to 10, and 
there was no obvious inflexion point (Fig. 2a). However, the 
∆K reached its maximum value when K = 2 (Fig. 2b), indi-
cating that the population could be separated into two sub-
groups (Fig. 2c). PCA gave a result similar to the STRU​CTU​
RE analysis, and some accessions were admixed between 
the two groups (Fig. 2d). The association population was 
divided into two clades in a neighbor-joining phylogenetic 
tree based on Nei’s genetic distances (Fig. 2e). This clas-
sification was also supported by a kinship plot (Figure S2).

Most of the kinship coefficients (88.71%) were less than 
0.2, with 58.74% equal to 0. Only 2.37% of kinship values 
were larger than 0.5 (Figure S3). These results indicated that 
weak relatedness was present in the accessions. Moreover, 
the LD decay, which corresponded to the distance at which 

r2 was half of its maximum value, was approximately 530 kb 
(Fig. 3).

These results indicated that the accessions were not 
highly structured and exhibited weak relatedness and mod-
erate LD decay. The association population was thus suitable 
for association mapping.

GWAS of the LP trait

A total of 23 SNP loci randomly distributed on 13 chromo-
somes were identified as significantly associated with the 
LP (Fig. 4a, Figure S4 and Table S3). The quantile–quan-
tile (Q–Q) plot indicated that the MLM model can be used 
to identify association signal (Fig. 4b). Among these loci, 
seven were located on chromosomes Dt05, four on Dt10 
and two on Dt13. The remaining 10 loci were positioned on 
chromosomes At01, At03, At05, At07, At10, Dt01, Dt02, 
Dt04, Dt09 and Dt11 (Figure S4 and Table S3). The pheno-
typic variation explained by these SNPs ranged from 4.20 
to 10.23%, with an average of 5.68% (Table S3). Eleven 
significant SNPs were consistently detected in at least two 
environments. Four SNPs (i56741Gb, i61131Gt, i08888Gh 
and i00252Gh) were simultaneously detected in five environ-
ments and were distributed on chromosomes At03 and Dt05. 
Moreover, ten of these SNPs were also identified in BLUP. 
For example, the SNP locus i56741Gb on chromosome At03 
had the highest −log10(P) value (5.10) and explained the 
largest amount of phenotypic variation (10.23%) in 17JZ, 
and the −log10(P) value and phenotypic variation explained 
in BLUP were 4.03 and 6.02%, respectively. For SNP loci on 
chromosome Dt05, i00252Gb recorded the highest −log10(P) 
value (5.06) and phenotypic contribution rate (8.05%) and 
also possessed the highest value in BLUP (Table S3). Thus, 
these SNPs, which were detected in more than two environ-
ments and BLUP at the same time, were used for further 
analysis.

According to previous studies (Su et al. 2018; Sun et al. 
2017b), the 200-kb upstream and downstream regions of 
significant SNPs could be defined as QTLs and considering 
QTLs with overlapping regions to be the same locus. Fol-
lowing the definition of QTL, 15 QTLs were detected in total 
(Table S4). Similar to significant SNP loci, these QTLs were 
scattered across different chromosomes. Most of these QTLs 
contained only one significant SNP, and the exceptions were 
qLP-Dt05-1 (five significant SNPs), qLP-Dt05-2 (two signif-
icant SNPs), qLP-Dt10-2 (three significant SNPs) and qLP-
Dt13 (two significant SNPs). Moreover, nine QTLs were co-
localized with 11 previously reported QTLs (Table S4). Six 
of these co-localized QTLs shared overlapping regions with 
known QTLs (qLp-A-1, qLP-Chr10-1, qLP-Chr14-1, qLP-
Chr21-2, TMB0206 and MGHES46), and the remaining 
QTLs were adjacent to qGhLP-c5, JESPR220, NAU3269, 
qLP-19 or qLP-D10_16.

Table 2   The summary of SNPs, PIC and gene diversity in 26 chro-
mosomes of upland cotton

Chr Chromosome

Chr Chr length (kb) SNPs SNP den-
sity (kb/
SNP)

PIC Gene diversity

At01 99,884.700 351 284.57 0.293 0.37
At02 83,447.906 166 502.70 0.259 0.32
At03 100,263.045 225 445.61 0.280 0.35
At04 62,913.772 132 476.62 0.272 0.34
At05 92,047.023 324 284.10 0.292 0.37
At06 103,170.444 141 731.71 0.239 0.29
At07 78,251.018 275 284.55 0.250 0.31
At08 103,626.341 846 122.49 0.240 0.29
At09 74,999.931 303 247.52 0.271 0.34
At10 100,866.604 405 249.05 0.222 0.26
At11 93,316.192 294 317.40 0.213 0.26
At12 87,484.866 245 357.08 0.261 0.32
At13 79,961.121 473 169.05 0.294 0.37
Dt01 61,456.009 638 96.33 0.242 0.30
Dt02 67,284.553 694 96.95 0.289 0.36
Dt03 46,690.656 235 198.68 0.209 0.25
Dt04 51,454.130 259 198.66 0.266 0.33
Dt05 61,933.047 495 125.12 0.260 0.32
Dt06 64,294.643 697 92.24 0.200 0.24
Dt07 55,312.611 640 86.43 0.246 0.30
Dt08 65,894.135 677 97.33 0.273 0.34
Dt09 50,995.436 458 111.34 0.232 0.28
Dt10 63,374.666 462 137.17 0.264 0.33
Dt11 66,087.774 379 174.37 0.235 0.29
Dt12 59,109.837 436 135.57 0.252 0.31
Dt13 60,534.298 410 147.64 0.234 0.29
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Candidate genes underlying associated loci

In total, 434 candidate genes were identified in the QTL 
regions (Table S5). Analysis of the TM-1 RNA-seq data 
revealed that 263 of these genes were specifically highly 
expressed in different organs, including roots, stems, leaves, 
ovules (− 3, − 1, 0, 1, 3, 5, 10, 20, 25 and 35 DPA), and 
fibers (5, 10, 20 and 25 DPA) (Figure S5). Some of these 
specifically expressed genes, such as GhUPL7, GhTUB5 and 
GhCK1, have been previously determined to be involved in 

cotton fiber development (Table S5). Moreover, to narrow 
the range of candidate genes associated with LP, we con-
ducted the local LD analysis of the peak SNPs and non-
synonymous SNPs identified in the GWAS. Finally, we iden-
tified two genomic loci associated with LP.

The most significant SNP (i00252Gh) on Dt05 was 
selected the promising variant site, as i00252Gh was 
identified in five environments and exhibited the lowest p 
value (Fig. 5a and Figure S4). The candidate region was 
estimated to be 9.41–9.81 Mb (Fig. 5a, b). An LD block 

Fig. 2   The results of population structure, principal component and 
phylogenetic analyses of 276 upland cotton accessions. a Plot of 
mean Ln P(K) versus K for K = 1 to 10. b Plot of ΔK versus K for 
K = 1 to 10. c Population structure based on a STRU​CTU​RE analy-
sis at K = 2. The y-axis quantifies cluster membership, and the x-axis 

represents the different accessions. d Principal component plot of the 
test population. e Neighbor-joining phylogenetic tree based on Nei’s 
genetic distances. Group 1 and Group 2 are represented by blue and 
orange, respectively (color figure online)
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analysis indicated that the candidate SNP locus i00252Gh 
did not fall into any LD block (Fig. 5b). Interestingly, 
the peak SNP (i00252Gh) was located in the 10th exon 
region of Gh_D05G1124, a gene of unknown function 
homologous to a gene encoding a protein phosphatase 
2C family protein in Arabidopsis. In addition, i00252Gh 
was a non-synonymous SNP (A/G) (Table S3) responsi-
ble for an aspartic acid to glycine amino acid substitution 
(Fig. 5c). The GG haplotype was found to have positive 
phenotypic effects on LP, as accessions carrying the GG 
allele had significantly higher LP values than those with 
the AA allele (p < 0.001) (Fig. 5d). Moreover, RNA-seq 
data for Gh_D05G1124 from 17 different upland cotton 
tissues revealed that Gh_D05G1124 was highly expressed 
during ovule and fiber development (Figure S5). qRT-PCR 
analysis indicated that the expression of this gene gradu-
ally increased during ovule and fiber development, with 

peak levels observed at 30 DPA in ovules as well as in 
fibers (Fig. 5e). These results suggest that Gh_D05G1124 
participates in ovule and fiber development and is a causa-
tive gene for LP in upland cotton.

There is a another notable hotspot region at the inter-
val of 2.61–2.76 Mb on chromosome Dt05, where a novel 
non-synonymous SNP (i08888Gh) resulted in an amino 
acid change from asparagine to serine in the coding 
sequence (CDS) of gene Gh_D05G0313 (Figure S6a–c). 
Accessions with the GG allele had significantly higher 
LP values than those harboring the AA allele (p < 0.001; 
Figure S6d). Furthermore, qRT-PCR analysis indicated 
that Gh_D05G0313 was relatively high expressed in 20 
and 30 DPA ovules and 30 DPA fibers (Figure S6e). The 
ortholog of Gh_D05G0313 in Arabidopsis, AtLUT2, plays 
an important role in photosynthesis, an important process 
in plant organs, including developing cotton ovules and 
fibers.

Analysis of favorable SNP alleles

To identify the cumulative effect of favorable SNPs on 
LP, we selected the two significant SNPs i00252Gh and 
i08888Gh, which were found to have a positive effect on 
LP phenotypic performance. The 276 accessions were 
classified into three types (AA–AA, AG–AG/AG–AA/
AG–GG and GG–GG) based on the SNP alleles of the two 
loci. A total of 134 accessions were genotyped as AA–AA, 
126 accessions were heterozygous, and only 16 possessed 
the GG–GG genotype. The average LP values of the 
three genotype groups were 36.58%, 38.24% and 39.48%, 
respectively, showing that the more favorable alleles were 
pyramided in varieties, with the larger average LP values 
increasing (Fig. 6). These results suggest that LP is posi-
tively correlated with the number of favorable alleles and 
these favorable alleles displayed pyramiding effects on LP.

Fig. 3   Genome-wide average LD decay estimates of the association 
population. The black dashed line indicates the position where r2 is at 
half of its maximum value

Fig. 4   Genome-wide association study (GWAS) for lint percentage (LP). a Manhattan plot of the best linear unbiased prediction (BLUP) across 
seven environments. The black dashed line represents the significance threshold. b A quantile–quantile (Q–Q) plot of the BLUP for LP
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Discussion

For GWAS, the wider range of genetic diversity among 
materials is especially critical (Li et al. 2018). In the present 
study, the 276 accessions originated from the five main cot-
ton regions in China and other foreign countries, with more 
abundant genetic variation among materials. Moreover, the 
LP trait for the association panel was evaluated in seven 
environments during 2016 and 2017. The LP trait showed 
abundant phenotypic variation in each single environment, 
and multienvironment survey phenotypic data strategy 
would be enhanced the reliability of association mapping. 
In addition, the broad-sense heritability of LP was 90.7%, 

which is similar to previously reported values (Huang et al. 
2017; Wang et al. 2015). This showed that the stability of 
LP was high, and the marker associated with LP can be sta-
bly detected and those markers should be useful for cotton 
breeding to adapt to different environments (Su et al. 2016).

Moreover, the high marker density is beneficial for the 
discovery of more elite loci and promising genes (Wang 
et al. 2018a). In our study, the average genome-wide den-
sity of polymorphic SNPs was one SNP per 273.32 kb. This 
marker density is similar to levels reported by Sun et al. 
(2017b) and Huang et al. (2017). The LD decay distance 
in the current study, 530 kb, was higher than the distance 
reported in cotton by Li et al. (2018) (400 kb) but lower 

Fig. 5   GWAS results for lint percentage and identification of the 
causal gene for the peak on chromosome Dt05. a Local  Manhat-
tan plot for the candidate region on Dt05. The purple dot represents 
the peak SNP i00252Gh. Red dotted lines indicate the candidate 
region. b LD block analysis of SNPs in this region. The degree of 
linkage is represented by the coefficient of r2. c Gene structure of 
Gh_D05G1124 and a non-synonymous SNP within it. Purple rec-
tangles and black lines indicate exons and introns, respectively. Ref 

and Alt stand for reference and alternate, respectively. d Box plots for 
LP based on the allele of SNP i00252Gh. The significance of differ-
ences was analyzed by a two-sided Wilcoxon test. e Tissue-specific 
expression profiles of Gh_D05G1124. Expression of Gh_D05G1124 
was investigated in ovule (0, 10, 20 and 30 DPA) and fiber (10, 20 
and 30 DPA) developmental stages by qRT-PCR. GhHis3 was used as 
an internal control. Error bars indicate the standard deviation of three 
technical replicates (color figure online)
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than the result of Sun et al. (2017b) (820 kb). The average 
PIC value of the markers was 0.250, less than the value of 
0.332 obtained by Huang et al. (2017) and close to 0.285 
reported by Sun et al. (2017b). These conflicting results may 
be mainly due to differences in population sizes and SNP-
marker filtering criteria, as a similar phenomenon has been 
observed in soybean (Wen et al. 2018). Furthermore, popu-
lation structure and relative kinship among individuals are 
the two important factors in controlling false positives (Lu 
et al. 2015). In this study, the 276 accessions were divided 
into two subpopulations by comprehensive analysis, which 
were unrelated to geographic origin. The lack of any geo-
graphic correlation may be due to extensive exchange and 
penetration of germplasm from different geographic origins 
during the process of cotton breeding. Overall, the associa-
tion population was not highly structured and the LD level 
was moderate.

LP is a typical complex quantitative trait, which is con-
trolled by multigene (Sun et al. 2018). In cotton, more than 
327 QTLs for LP have been detected based on linkage and 
association mapping (Said et al. 2015a, b). Some of them 
were also identified by GWAS, especially the stably inher-
ited QTLs (Huang et al. 2017; Su et al. 2016; Sun et al. 
2018). In the present study, a total of 23 SNPs were found 
to be significantly associated with LP, half were identified 
in more than two environments and BLUP. The high propor-
tion of significant SNPs identified in multiple environments 
reflects their high heritability. In addition, a total of 15 QTLs 
(as defined in this study) were detected. Among them, six 
were novel, while six overlapped with confidence regions of 
previously reported QTLs or GWAS signals for LP and three 
were near these regions. For instance, qLP-At03, qLP-Dt02 
and qLP-Dt04 identified in this study overlapped with the 
confidence intervals of qLP-A-1 (Wang et al. 2013), qLP-
Chr14-1 (Li et al. 2016) and TMB0206 (Abdurakhmonov 
et al. 2007). These results confirm the reliability of the 

LP-related associations determined in the present study. In 
addition, these stably inherited QTLs, which were repeatedly 
identified across different genetic backgrounds, populations 
and environments, may display a great potential of marker-
assisted breeding for LP in cotton.

In cotton, several genes associated with LP, such as Gh_
A02G1268 (Su et al. 2016), Gh_D08G2376 (Huang et al. 
2017), AIL6 and EIL (Fang et al. 2017), Gh_D03G1064 and 
Gh_D12G2354 (Sun et al. 2018) and Gh_D02G0025 (Ma 
et al. 2018), have been detected via GWAS using different 
association populations. In the current study, 434 genes 
were found in the confidence intervals of identified QTLs. 
Among them, 263 genes were highly expressed in various 
organs including ovule and fiber developmental stages. We 
particularly focused on two of these genes, Gh_D05G1124 
and Gh_D05G0313, because their exon regions harbored 
polymorphic SNPs that were responsible for protein-coding 
differences. Moreover, qRT-PCR analysis revealed that both 
genes were highly expressed at the ovule and fiber devel-
opment stages. The closest homologs of Gh_D05G1124 
and Gh_D05G0313 in Arabidopsis are, respectively, PP2C 
(Protein phosphatase 2C family protein) and AtLUT2; those 
homologs are involved in protein phosphorylation and pho-
tosynthesis, two processes related to fiber development. Our 
results thus point to Gh_D05G1124 and Gh_D05G0313 as 
candidate genes for LP.

Elite-allele loci are valuable resources for crop breed-
ing programs, and the accumulation of superior alleles is 
an efficient way to improve target traits in crop plants (Su 
et al. 2016). In wheat, the nine superior alleles contributing 
to a high thousand-kernel weight were uncovered in mul-
tiple environments in the cultivar Pindong34, and proper 
pyramiding of superior alleles was beneficial to increase 
wheat yield (Sun et al. 2017a). In rapeseed, the aggrega-
tion of superior alleles significantly associated with earli-
ness resulted in earlier flowering or maturity (Zhou et al. 
2018). In cotton, three favorable SNP alleles were selected 
to identify the effects of allelic variation on Verticillium wilt 
resistance in upland cotton, and it was found that the resist-
ance of accessions was increased by pyramiding favora-
ble SNP alleles (Li et al. 2017). In the present study, we 
similarly found two SNPs significantly associated with LP, 
i00252Gh and i08888Gh, that had a positive effect on LP. 
Accessions carrying GG alleles at i00252Gh and i08888Gh 
had higher LPs than those harboring the AA allele. The phe-
notypic value of LP increased continuously with the number 
of favorable alleles. This result indicates that those favorable 
alleles can be pyramided in a target line by marker-assisted 
selection. Out of the 276 upland cotton accessions, however, 
only 16 contained these favorable alleles. This scarcity indi-
cates that these elite loci are not presently well utilized. The 
future application of favorable alleles thus has great potential 
in cotton breeding programs.

Fig. 6   Box plot of lint percentage versus the number of favorable 
alleles. The x-axis indicates LP, and the y-axis indicates the number 
of favorable SNP alleles
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