
Vol.:(0123456789)1 3

Theoretical and Applied Genetics (2019) 132:1705–1720 
https://doi.org/10.1007/s00122-019-03309-0

ORIGINAL ARTICLE

High‑throughput phenotyping platforms enhance genomic selection 
for wheat grain yield across populations and cycles in early stage

Jin Sun1 · Jesse A. Poland2 · Suchismita Mondal3 · José Crossa3 · Philomin Juliana3 · Ravi P. Singh3 · 
Jessica E. Rutkoski1,4 · Jean‑Luc Jannink1,5 · Leonardo Crespo‑Herrera3 · Govindan Velu3 · Julio Huerta‑Espino6 · 
Mark E. Sorrells1

Received: 7 November 2018 / Accepted: 6 February 2019 / Published online: 18 February 2019 
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Genomic selection (GS) models have been validated for many quantitative traits in wheat (Triticum aestivum L.) breed-
ing. However, those models are mostly constrained within the same growing cycle and the extension of GS to the case of 
across cycles has been a challenge, mainly due to the low predictive accuracy resulting from two factors: reduced genetic 
relationships between different families and augmented environmental variances between cycles. Using the data collected 
from diverse field conditions at the International Wheat and Maize Improvement Center, we evaluated GS for grain yield in 
three elite yield trials across three wheat growing cycles. The objective of this project was to employ the secondary traits, 
canopy temperature, and green normalized difference vegetation index, which are closely associated with grain yield from 
high-throughput phenotyping platforms, to improve prediction accuracy for grain yield. The ability to predict grain yield 
was evaluated reciprocally across three cycles with or without secondary traits. Our results indicate that prediction accuracy 
increased by an average of 146% for grain yield across cycles with secondary traits. In addition, our results suggest that 
secondary traits phenotyped during wheat heading and early grain filling stages were optimal for enhancing the prediction 
accuracy for grain yield.

Abbreviations
BLUPs	� Best linear unbiased predictions
CT	� Canopy temperature
GS	� Genomic selection
HTP	� High-throughput phenotyping
GNDVI	� Green normalized difference vegetation index

Introduction

Grain yield in wheat (Triticum aestivum L.) is controlled 
by many genes and influenced by the interactions between 
genes and with environments (Heffner et al. 2011; Narjesi 
et al. 2015). Despite the widely recognized importance, it is 
still challenging to estimate gain yield across cycles or envi-
ronments. In addition, the growing human population and 
climate change call for increasing global crop productions 
and boosting genetic gains for grain yield per cycle (Ray 
et al. 2013). Genomic selection (GS) is an approach that 
allows the prediction of genomic estimated breeding val-
ues of lines in a breeding population by using the genome-
wide marker information (Meuwissen et al. 2001). Based on 
phenotypic and genotypic data from a training population, 
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the GS approach is capable of building a prediction model 
and predicting the unobserved lines using genotypic data 
only (Crossa et al. 2017). Compared to other traditional 
approaches, such as marker-assisted selection (MAS), GS 
stands out with some intrinsic advantages: increasing genetic 
gain by reducing the duration of breeding cycles (Heffner 
et al. 2010) and capturing minor effect loci based on mark-
ers spread over the whole target genome (Hayes et al. 2009). 
The higher prediction accuracy of GS prediction over MAS 
for quantitative traits (Arruda et al. 2016; Wang et al. 2014; 
Zhang et al. 2016) makes GS a promising approach for 
wheat breeding. With next-generation sequencing technol-
ogy, GS has been applied to several quantitative traits in 
wheat, including grain yield (Heffner et al. 2011; Poland 
et al. 2012a, b; Sun et al. 2017), disease resistance (Juli-
ana et al. 2017; Rutkoski et al. 2012, 2014), and nutritional 
quality (Heffner et al. 2011; Manickavelu et al. 2017; Velu 
et al. 2016).

In addition to genotyping, accurate prediction model 
training for GS requires reliable phenotypes. Because of the 
high labor and time cost, phenotyping becomes a crucial 
factor that limits genetic gains in plant breeding. Therefore, 
substantial efforts have been devoted to the development 
of high-throughput phenotyping (HTP) platforms in many 
crops in order to generate large-scale and in-depth phenotyp-
ing at low cost and labor intensity (Araus and Cairns 2014; 
Yang et al. 2014). Field-based HTP platforms have been 
established by the remote or proximal sensing and imaging 
technologies, in which the sensors and imaging techniques 
are differentially deployed based on each of their advan-
tages, the traits of interest, and the experimental design in 
the field (Araus and Cairns 2014). Recently, HTP platforms 
have extended their applications to measure different traits 
in wheat, such as plant height (Holman et al. 2016), growth 
rate (Holman et al. 2016), vegetation indices (Haghighat-
talab et al. 2016), and disease resistance (Bauriegel et al. 
2011; Devadas et al. 2015).

The majority of HTP platform applications in GS can 
be grouped into two categories. One takes advantage of 
the phenotypic data directly generated from the HTP plat-
forms as the primary trait in the genomic prediction model 
training. For example, Watanabe et al. (2017) applied the 
unmanned aerial vehicle (UAV) remote sensing to collect the 
indicator of sorghum plant height. They demonstrated that 
the predictive ability of GS model, based on the phenotypic 
data measured by UAV, was similar to the traditional meas-
urements, but it significantly reduced the labor cost com-
pared to traditional sorghum height measurements. The other 
improves the prediction accuracy by firstly using the HTP 
platforms to measure the traits that are genetically correlated 
with the primary trait, followed by incorporating such sec-
ondary traits with the primary trait in a multi-trait genomic 
prediction model. For example, Rutkoski et al. (2016) and 

Sun et al. (2017) utilized the canopy temperature (CT) and 
normalized difference vegetation index (NDVI) to improve 
the ability to predict grain yield within a population, leading 
to an average of 70% improvement in the predictive ability 
of GS. The traditional hand measurements of CT and NDVI 
are sensitive to the environmental conditions; in contrast, 
the data collected from HTP platforms are more robust 
because the data collection period and measurement errors 
are significantly reduced. Furthermore, the HTP platforms 
offer the opportunity to collect time-series data to observe 
plant growth continuously over time. Therefore, it enables 
the comparison between the height of different sorghum 
accessions at the same growth stage (Watanabe et al. 2017) 
and allows to select wheat cultivars with high grain yield 
at an early plant growth stage (Sun et al. 2017). Neverthe-
less, the development of HTP platforms is still sensitive to 
field variation that adds to the error variances (Araus and 
Cairns 2014) and must be reduced through the improvement 
in the experimental designs and HTP technologies (Araus 
and Cairns 2014). Certainly, the potential of applying HTP 
platforms in GS has been demonstrated and more traits from 
HTP platforms will become accessible in the near future.

In addition, researchers have investigated different models 
to extract the information of big data collected from HTP 
platforms that have a different structure in terms of response 
variables, for example, the time-series data. Rutkoski et al. 
(2016) utilized a repeatability model for secondary traits 
by considering each time point within a growth stage as 
a repetitive collection for the same trait. Sun et al. (2017) 
proposed a random regression model that is able to capture 
the trait evolution during the growth stages. Besides, func-
tional regression analysis was applied to develop prediction 
equations for yield and other traits using hyperspectral crop 
image data together with genomic information by Montes-
inos-López et al. (2017a, b), in which the method demon-
strate similar prediction accuracy in most cases; however, 
its predictive power is superior to conventional regression 
techniques for some particular cases.

Nowadays, breeders have gained valuable insights into 
the implementation of GS in breeding, but those applications 
were mostly limited to the same population within a breed-
ing cycle (Michel et al. 2016). Auinger et al. (2016) pointed 
that the GS predictive ability obtained within cycle could 
be considered as the upper limit value since those materials 
within the same cycle share close family relatedness, simi-
lar environmental and climatic conditions. However, when 
predicting across multiple growing cycles, it is expected 
that the genetic relationships between families in the popu-
lation would be reduced, and the phenotypic data would be 
more variable due to the external environments, as a result, 
those two factors reduce the genomic prediction accuracy 
across cycles. Several researchers have proposed approaches 
to increase the prediction accuracy for GS across cycles. 
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Auinger et al. (2016) investigated the genomic prediction 
accuracy for grain yield and other traits across multiple 
breeding cycles in rye, and suggested that prediction accu-
racy across cycles could be improved by increasing sample 
size when the different cycles shared a sufficient number 
of common parents. In contrast, Michel et al. (2016) have 
evaluated the genomic prediction for grain yield, protein 
content, and protein yield across five independent breeding 
cycles in wheat, they found that dropping outlier cycles or 
environments had a negligible effect on the genomic predic-
tion accuracy. Herein, we report an approach to improve the 
prediction accuracy for GS across cycles by utilizing the 
secondary trait collected from HTP platforms. The objec-
tives of this study were to: (1) compare the predictive ability 
of grain yield within cycle and across cycles; (2) determine 
the ability of secondary traits in improving genomic predic-
tion accuracy across populations and cycles; (3) evaluate 
the appropriate and optimum stage of secondary trait to be 
collected to improve the prediction accuracy for grain yield 
across cycles in different environments.

Methods and materials

Population and phenotyping

We generated phenotypic data from three different popula-
tions that were also grown in three different crop cycles, 
2013–2014, 2014–2015, and 2015–2016, as part of the 
elite yield trials conducted by the International Wheat and 
Maize Improvement Center (CIMMYT) in Norman E Bor-
laug Research Station, Cuidad Obregon, Mexico. Hereaf-
ter, cycles 2013–2014, 2014–2015, and 2015–2016 will 
be referred to as cycles 2014, 2015, and 2016. Each cycle 
comprised 1094 lines including 1092 unique genotypes and 

two common checks for a total of 3282 lines for all three 
populations. Within each cycle, lines were grouped into 
39 trials, and each trial there were 28 unique lines and two 
checks in an alpha-lattice design with three replicates and 
six blocks. Grain yield was collected for all lines in three 
cycles. Days to heading, which was recorded as number of 
days from planting to 50% of spikes emerged from the flag 
leaf, were calculated for the first replicate of each trial in 
cycles 2014 and 2016 and for all three replicates in cycle 
2015. Canopy temperature (CT) and green NDVI (GNDVI) 
were collected by the hyperspectral and thermal cameras in 
an aircraft flown over multiple wheat growth stages (Rutko-
ski et al. 2016). Days to phenotyping (phenotyping days) for 
CT and GNDVI were calculated as the phenotype collecting 
date for CT or GNDVI minus the planting date within each 
cycle. The planting date of lines and the phenotyping date 
for secondary traits varied in each growing cycle resulting 
in different phenotyping days for secondary traits in each 
cycle (Supplemental Fig. 1). We analyzed phenotypic data 
for three growing cycles in three diverse field conditions: 
optimal, heat, and drought, and the field conditions (plot 
and irrigation), planting date, the average days to heading, 
as well as the climatic information for each cycle in each 
environment are summarized in Table 1.

Genotyping

Genotyping by sequencing (GBS, Poland et al. 2012a, b) 
was applied for the genome-wide genotyping. Single nucleo-
tide polymorphisms (SNPs) were called using the TASSEL 
GBS pipeline (Glaubitz et al. 2014) and the Chinese Spring 
reference genome (International Wheat Genome Sequenc-
ing Consortium, 2014), and they were filtered based on 
the following criteria: the markers were removed if more 
than 80% of the individuals had missing data for a SNP, 

Table 1   Field condition and climatic summary for each cycle in optimal, late heat, and drought environments, respectively

Envir. environment; Ave average heading days over lines in each environment within each cycle; Tmean mean temperature during the crop cycle 
from the planting date to May; Trange mean minimum and mean maximum temperature during the crop cycle from the planting date to May; Acc. 
Prec. accumulated precipitations during the crop cycle from the planting date to May

Envr. Cycle Planting date Plot type Plot 
dimensions 
(m × m)

Irrigation methods Head-
ing days 
(Ave)

Tmean (°C) Trange (°C) Acc. Prec. (mm)

Optimal 2014 20-Nov-13 Two beds with 3 
rows per bed

2.8 × 0.8 Five furrow irriga-
tions

82 20.06 10.6–29.5 12.95
2015 26-Nov-14 77 20.21 11.9–28.6 100.37
2016 30-Nov-15 85 19.63 10.5–28.9 17.53

Drought 2014 21-Nov-13 Two beds with 3 
rows per bed

2.8 × 0.8 Two furrow irriga-
tions

82 20.07 10.6–29.5 12.95
2015 24-Nov-14 78 20.21 12.0–28.6 100.37
2016 25-Nov-15 82 19.67 10.6–28.9 17.53

Heat 2014 24-Feb-14 Two beds with 3 
rows per bed

2.8 × 0.8 Five furrow irriga-
tions

62 22.35 12.4–32.3 0
2015 26-Feb-15 55 22.17 13.9–30.7 31.79
2016 25-Feb-16 58 22.17 13.0–31.4 14.99
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or if more than 20% of individuals were heterozygous for 
a SNP, and lines that had more than 80% missing markers 
were removed. In addition, markers were also filtered for 
minor allele frequency less than 0.01, and missing data were 
imputed based on the mean of marker, resulting in a total of 
18,728 GBS SNP markers for 2960 individuals.

Statistical models

We applied a two-step analysis GS strategy in this study. Dif-
ferent statistical models were used to derive best linear unbi-
ased predictions (BLUPs) of each genotype for grain yield, 
CT, and GNDVI, separately, in the first step. The BLUPs of 
grain yield were predicted using the first replicate, and the 
BLUPs of secondary traits were predicted from the rest of 
two replicates (Sun et al. 2017). In addition, since the lines 
in this data set are replicated the same number of times for 
each cycle within each field condition, differential shrinkage 
of the BLUPs used as the dependent variable is not an issue 
for the genomic prediction in the second step.

Grain yield

Best linear unbiased predictions (BLUPs) of each genotype 
for grain yield were calculated using a mixed model for 
each cycle in each environment, separately, and BLUPs for 
grain yield were adjusted for each cycle and environment by 
including days to heading as a fixed effect in the model (1):

where � is the vector of observations for grain yield, � , � , 
� , and � are incidence matrices corresponding to the fixed 
effect as days to heading ( � ), random genetic effect ( � ), ran-
dom environmental trial effect ( � ), and random environmen-
tal block effects ( � ), and � is the random residual errors. The 
variance and covariance structures are based on the follow-
ing  a s sumpt ions :  � ∼ N

(

0, ��2
g

)

 ,  � ∼ N
(

0, ��2
t

)

 , 

� ∼ N
(

0, ��2
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)

 , and � ∼ N
(

0, ��2
e

)

 , �2
g
 is the genetic vari-

ance, �2
t
 and �2

p
 are environmental variances, �2

e
 is the resid-

ual variance, and � is the identity matrix.

Secondary trait

For secondary traits, CT and GNDVI from HTP platforms 
were collected over wheat growth stages and were consid-
ered as longitudinal data. BLUPs of each genotype for sec-
ondary traits were predicted by fitting a random regression 
cubic smoothing spline model for each trait within each year 
of each environment, separately. Sun et al. (2017) has applied a 
random regression model to capture the change of a secondary 
trait continually over wheat growth stages. A covariance at or 
between each time point can be fitted in the random regression 

(1)� = �� + �� +�� +�� + �

model using cubic smoothing spline. A cubic smoothing spline 
is a curve that is joined continuously by piecewise cubic func-
tional segments, and each joint in the curve is referred to as 
a knot (Meyer 2005; White et al. 1999). More details about 
random regression models could be found in Meyer (2005). 
In this model, for each cycle within each environment, the 
number of knots (q) was the same as the number of time points 
(n) for each secondary trait in each environment. The matrix 
notation for RR model is (DeGroot et al. 2007; Mrode 2005; 
White et al. 1999):

Here � is the vector of observations for secondary traits, � 
is the incidence matrix corresponding to fixed effects which 
is phenotyping days in the model, � is the vector for fixed 
effect. The matrices �� , �� , �� , �� , �� are incidence matri-
ces of the spline coefficients for overall spline, genetic effect, 
and environmental effects including trial, replicate, and block 
effects. � is the overall spline parameter with length (q−2), 
�� is the spline deviation parameter for each genotype with 
length (q−2) × m where m is the number of genotypes, and �� 
is the spline deviation parameter for trial effects with length 
(q−2) × t where t is the number of trial, �� is the spline devia-
tion parameter for replicates nested within the trial effects with 
length (q−2) × r × t where r is the number of replicates, and �� 
is the spline deviation parameters for block effect nested within 
replicate and trial with length (q−2) × p × r × t where p is the 
number of blocks. The matrices �� , �� , �� , �� are incidence 
matrices of linear coefficient relating to random genetic, ran-
dom environmental trial, replicate, and block effects. � is the 
vector of genetic effect for each genotype including genetic 
intercept ( gi ) and slope parameters ( gsl ) with length of 2 m, 
� , � , and � are vectors of environmental (trial, replicate, and 
block) effects including environmental intercept ( ti , ri , pi ) 
and slope ( tsl , rsl , psl ) parameters with length of 2t, 2r × t, and 
2p × r × t, separately. � is the residual effect (DeGroot et al. 
2007).
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� is the identity matrices for splines with dimension 
(q−2) × (q−2), � is the identity matrices with different orders 
corresponding to genetic, environmental (trial, replicate and 
block), and residual effects, ⊗ denotes the Kronocker prod-
uct. �g , �t , �r , �p are unstructured covariance matrices: 
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and �� =

[

�2
pi

�pipsl

�pslpi
�2
psl

]

 . where subscripts i and sl represent 

intercept and slope, separately.
The BLUP for each line at each time point was calculated 

as the following:

The method to calculate �� was described in White et al. 
(1999). The ‘predict’ function implemented in ASReml-R 
could also be utilized to calculate the BLUP for each line 
at each time point by including ��� and ���� terms only. 
The BLUP was predicted at the same time points individu-
ally for 3 years in each environment, and those time points 
were selected within the range of available phenotyping 
days across three cycles (Supplemental Fig. 1). An averaged 
BLUP across all time points for each cycle was calculated 
as well.

Heritability and correlation

Variance components for narrow sense heritability for each 
secondary trait and grain yield in each environment were 
estimated using the following model:

where � is the BLUPs of genotypes for secondary traits, or 
BLUPs of genotypes for grain yield, � and � are incidence matri-
ces corresponding to the fixed effect ( � ) and random genetic 
effect ( � ), and � is the random residual errors. The variance and 
covariance structures are based on the following assumptions: 
� ∼ N(0,��2

a
 ), where � is the genomic relationship matrix, and 

�2
a
 is the additive genetic variance, and � ∼ N

(

0, ��2
e

)

 , �2
e
 is the 

residual variance, and � is the identity matrix. Narrow sense herit-
ability was calculated as: h2 = �2

a

�2
a
+�2

e

.
Variance and covariance components for correlations 

were estimated using the bivariate model for each year in 
each environment:

where � are BLUPs of genotypes for grain yield and second-
ary traits, and subscripts 1 and 2 represent trait 1 (grain 
yield) and trait 2 (one of the secondary traits, CT or 
GNDVI), separately, � and � are the fixed and random 
effects design matrix, individually, and � , � , and � are vec-
tors of fixed effects, random genetic, and residual effects for 
each trait, respectively. Variance components were estimated 

by assuming 
[

�1
�2

]

∼ N(0,�⊗�) , where � is the genomic 

relationship matrix, and � is the genetic variance–covari-

ance matrix for traits. In addition, 
[
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∼ N(0, �⊗ �) , 
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where � is an identity matrix, and � is the residual vari-
ance–covariance matrix between traits. Both � and � are 
assumed as unstructured.

Genetic correlations between secondary traits and grain 
yield were calculated as:

where rg(ST,GRYLD) is the genetic correlation between second-
ary trait (either CT or GNDVI) and grain yield, varg(ST) 
and varg(GRYLD) are the genetic variances of secondary 
trait and grain yield, individually; covg(ST,GRYLD) is the 
genetic covariance between a secondary trait and grain yield.

Cross‑validation

In the second step of GS, the BLUPs of individuals except 
checks for secondary traits and grain yield were utilized as 
the dependent variables in our genomic prediction models. 
The predictive ability for grain yield was investigated in two 
different genomic prediction models: univariate (UV) and 
bivariate (BV) prediction models. The UV model was the 
same as model (3), where � is the BLUPs of genotypes only 
for the grain yield. The BV genomic prediction model was 
employed to identify the genomic predictive ability for grain 
yield after including secondary trait in the model fitting, 
in which the model was the same as model (4). Fivefold 
cross-validation was applied for all genomic predictions. The 
predictive ability for grain yield for three cycles was identi-
fied in two different ways: within cycle and across cycles. 
Thus, four different types of cross-validation schemes were 
evaluated based on different objectives:

1.	 UV prediction model within cycle: the data within a 
growing cycle were randomly divided into five equally 
sized folds, and using the grain yield data of 80% of the 
lines as the training population to predict the grain yield 
for the rest of 20% of the lines as the testing population 
within each growing cycle.

2.	 BV genomic prediction model within cycle: the data 
within a growing cycle were randomly divided into five 
equally sized folds, and the grain yield of 20% of the 
lines as the testing population was predicted by the grain 
yield data of 80% of the lines as the training population 
and secondary trait data of all lines in both training and 
testing populations within each cycle.

3.	 UV prediction model across cycles: one of the cycles 
was considered as the training cycle, and the other cycle 
was considered as the testing cycle. The data in the test-
ing cycle were randomly separated into five equally 
sized folds, and for every fold, the grain yield of 20% 

rg(ST,GRYLD) =
covg(ST,GRYLD)

√

varg(ST)varg(GRYLD)
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of randomly selected lines in the testing cycle was pre-
dicted by the grain yield data of all lines in the training 
cycle.

4.	 BV prediction model across cycles: one of the cycles 
was considered as the training cycle, and the other cycle 
was considered as the testing cycle. The data in the test-
ing cycle were equally and randomly separated into five 
folds, and for every fold, the grain yield of 20% of ran-
domly selected lines in the testing cycle was predicted 
by the grain yield and secondary traits of all lines in the 
training cycle and the secondary trait of those 20% of 
lines in the testing cycle.

For each fold, the predictive ability was calculated as the 
Pearson correlation between the BLUPs of grain yield and 
the estimated breeding values (EBVs) of grain yield from 
genomic prediction models of lines in the testing population 
based on genomic relationship matrix. In addition, cross-
validation was conducted for each field condition, separately. 
The percentage of the improvement in GS with secondary 
traits was calculated as the predictive ability of GS with 
secondary trait (BV model) minus the predictive ability of 
GS with grain yield only (UV model) and then divided by 
the absolute value of the predictive ability of GS with grain 
yield only (UV model).

Software and package

All data analyses were implemented in the R environment (R 
Development Core Team 2010; Butler et al. 2009), and all 
models were fitted in ASReml-R (VSN International Ltd). 
Genomic relationship matrix was calculated according to 
equation 15 in Endelman and Jannink (2012), using the R 
package rrBLUP (Endelman 2011).

Results

Phenotypic data summary

Grain yield varied in different environments: the optimal 
environment produced the highest average grain yield rang-
ing from 6.14 to 7.19 t/ha, followed by the drought environ-
ment with 3.28 to 4.51 t/ha, and last, the heat environment 

yields only 2.33 to 3.84  t/ha (Table  2). In the optimal 
environment, cycle 2016 had the highest yields, but in the 
stressed environments, cycle 2015 showed the best perfor-
mance (Table 2). The grain yield of two cycles showed a 
moderate heritability ranging from 0.23 to 0.46; however, 
grain yield in cycle 2014 was highly heritable in the heat 
environment (0.75, Table 2). The heritability of grain yield 
was mostly lower than those of secondary traits, CT and 
GNDVI, ranging from 0.39 to 0.78 (Table 3). For cycle 2015 
in the optimal and drought environments, the heritabilities 
of GNDVI, phenotyped at different time points, increased 
from 0.60 to 0.75 over growth stages. As a comparison, the 
heritabilities of secondary traits, CT and GNDVI, for the 
other cycles were similar over growth stages in all three 
environments (Table 3). In contrast to the heritabilities of 
secondary traits, the correlations between secondary traits 
and grain yield within each cycle varied significantly across 
the growth stages (Table 4), suggesting that the correlations 
of secondary traits and grain yield played the dominant role 
in influencing the predictive ability of GS for grain yield. 
Consistent with previous studies, our results indicated that 
CT and grain yield were negatively correlated, whereas the 
GNDVI and grain yield were positively correlated. In addi-
tion, our results showed that the heat environment gave rise 
to the highest correlation between grain yield and both CT 
and GNDVI (Table 4).

Genomic prediction ability

Comparison between within cycle and across cycles

In three environments, the GS predictive ability was mod-
erate for grain yield within each cycle, from 0.13 to 0.34 
and with an average of 0.24 (Figs. 1, 2, 3, 2014/2015/2016_
UV). In contrast to the predictive ability of grain yield in 
the optimal and drought environments, the heat environ-
ment of cycle 2015 was characterized as the worst and 
was largely determined by the heritability of grain yield. 
With regard to the genomic prediction for grain yield 
across cycles, they were evaluated reciprocally across 
three cycles. Compared to within cycle, the across cycles 
predictive abilities for grain yield were much lower—
from − 0.02 to 0.17 with an average of 0.09 (Figs. 1, 2, 3, 

Table 2   Mean with standard 
error and heritability of 
grain yield for each cycle in 
optimal, late heat, and drought 
environments, respectively

SE standard error; h2 narrow sense heritability

Cycle Optimal Drought Heat

Mean (t/ha) ± SE h2 Mean (t/ha) ± SE h2 Mean (t/ha) ± SE h2

2014 6.14 ± 0.64 0.23 3.67 ± 0.44 0.27 2.33 ± 0.53 0.75
2015 5.65 ± 0.58 0.38 4.51 ± 0.46 0.40 3.84 ± 0.72 0.40
2016 7.19 ± 0.44 0.37 3.28 ± 0.46 0.26 3.70 ± 0.55 0.46
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Table 3   Heritabilities of 
secondary traits and grain 
yield at different phenotyping 
days over wheat growth stages 
for three cycles in different 
environments

Date phenotyping days after planting. AVE average. GY grain yield. The bold number represents the high-
est heritability for all collecting dates within each cycle of each trait in each environment

Environment Date CT GNDVI

2014 2015 2016 2014 2015 2016

Optimal 60 0.55 0.49 0.44 0.70 0.61 0.66
70 0.57 0.49 0.42 0.74 0.65 0.64
80 0.59 0.50 0.41 0.75 0.69 0.62
90 0.61 0.50 0.40 0.77 0.72 0.63
100 0.58 0.50 0.39 0.77 0.74 0.64
110 0.51 0.50 0.40 0.75 0.75 0.59
AVE 0.64 0.50 0.40 0.76 0.72 0.62
GY 0.23 0.38 0.37 0.23 0.38 0.37

Drought 65 0.67 0.60 0.62 0.78 0.60 0.60
75 0.67 0.60 0.61 0.75 0.69 0.59
85 0.67 0.59 0.59 0.75 0.73 0.58
95 0.68 0.58 0.57 0.76 0.75 0.58
105 0.67 0.57 0.56 0.76 0.75 0.60
115 0.65 0.56 0.56 0.77 0.72 0.65
AVE 0.68 0.58 0.59 0.78 0.73 0.59
GY 0.27 0.40 0.26 0.27 0.40 0.26

Heat 67 0.67 0.57 0.64 0.69 0.62 0.70
75 0.66 0.56 0.64 0.70 0.65 0.70
85 0.66 0.54 0.61 0.69 0.61 0.69
AVE 0.66 0.56 0.64 0.69 0.64 0.70
GY 0.75 0.40 0.46 0.75 0.40 0.46

Table 4   Correlations between 
secondary traits and grain 
yield at different phenotyping 
days over wheat growth stages 
for three cycles in different 
environments

Date phenotyping days after planting. AVE average. The bold number represents the highest correlations 
between secondary trait and grain yield for all collecting dates within each cycle of each trait in each envi-
ronment

Environment Date CT GNDVI

2014 2015 2016 2014 2015 2016

Optimal 60 − 0.39 − 0.17 − 0.52 0.14 − 0.15 0.39
70 − 0.40 − 0.26 − 0.50 0.19 0.06 0.33
80 − 0.45 − 0.32 − 0.47 0.24 0.30 0.26
90 − 0.55 − 0.36 − 0.43 0.25 0.47 0.17
100 − 0.67 − 0.38 − 0.37 0.24 0.56 0.07
110 − 0.76 − 0.39 − 0.31 0.18 0.57 − 0.03
AVE − 0.62 − 0.34 − 0.45 0.22 0.45 0.24

Drought 65 − 0.38 − 0.47 − 0.25 0.06 0.24 0.26
75 − 0.36 − 0.46 − 0.28 0.12 0.27 0.26
85 − 0.34 − 0.44 − 0.30 0.17 0.29 0.25
95 − 0.34 − 0.42 − 0.32 0.18 0.28 0.21
105 − 0.33 − 0.39 − 0.33 0.13 0.24 0.13
115 − 0.32 − 0.37 − 0.34 0.09 0.19 0.04
AVE − 0.36 − 0.42 − 0.31 0.14 0.26 0.21

Heat 67 − 0.80 − 0.54 − 0.74 0.62 0.55 0.57
75 − 0.80 − 0.54 − 0.75 0.64 0.48 0.51
85 − 0.81 − 0.54 − 0.76 0.63 0.31 0.36
AVE − 0.80 − 0.54 − 0.75 0.63 0.46 0.50
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15-14/16-14/14-15/16-15/14-16/15-16_UV)—in three envi-
ronments, in which cycles from 2014 to 2016 even showed 
negative or zero predictive abilities for grain yield in the 
optimal environment.

Predictive ability with secondary traits

When including CT or GNDVI in the genomic prediction 
model for grain yield within cycle, the predictive abilities 
improved by 18% on average for three cycles in all three 
environments, in which CT increased accuracy by 26% and 
GNDVI by 10% (Figs. 1, 2, 3, 2014/2015/2016_BV). This 
is consistent with our previous study (Sun et al. 2017) which 
concluded that the secondary traits can improve the GS pre-
dictive ability within the same growing cycle. Furthermore, 
our results also showed that the predictive ability across 
cycles was largely improved by as much as 146% on average 
(Figs. 1, 2, 3, 15-14/16-14/14-15/16-15/14-16/15-16_BV). 
CT improved the predictive ability by an average of 202% 
and GNDVI by 90%. Note that the large improvement for 
predictive ability in terms of percent can be partly ascribed 
to the low or negative predictive ability in our populations 
resulting from the absence of secondary traits across cycles. 
In addition, for each environment, the group with secondary 

traits improved most in the optimal environment and least in 
the drought environment, in particular, no visible improve-
ment for GS was observed either within cycle or across 
cycles by using GNDVI in the drought environment.

The optimum date

CT and GNDVI from HTP platforms were phenotyped over 
the course of wheat growth stages, and the predictive ability 
of secondary traits was investigated at selected phenotyping 
time points that allow breeders to determine the optimal time 
points to utilize for breeding value estimation and selection. 
The results showed that the predictive ability for grain yield 
was improved by using secondary traits in both optimal and 
drought environment, whereas improvement was less evident 
in the heat environment probably due to a limited number of 
time points (Figs. 4, 5, 6). Secondary traits data collection 
from the HTP platforms started from 45 days after planting, 
and periodically phenotyping lasted more than 2 months 
(January to March) for the optimal and drought environ-
ments, and 1 month (April to May) for the heat environment 
(Supplemental Fig. 1). Based on the available phenotyp-
ing dates for secondary traits in our populations, our study 
suggested that the optimum timings for CT and GNDVI 

Fig. 1   Comparison between within cycle analysis and across cycles 
analysis for genomic selection with secondary trait or without sec-
ondary trait in the optimal environment. Model: UV: univariate 
model; BV: bivariate model with the average best linear unbiased 
predictions of secondary trait; Cycle: 2014_UV/2015_UV/2016_UV: 
genomic selection within each cycle using univariate model; 2014_
BV/2015_BV/2016_BV: genomic selection within each cycle using 

bivariate model; 15-14_UV/16-14_UV/14-15_UV/16-15_UV/14-
16_UV/15-16_UV: genomic prediction across cycles using univari-
ate model, where the first number represent the training cycle, the 
second number represent the testing cycle; 15-14_BV/16-14_BV/14-
15_BV/16-15_BV/14-16_BV/15-16_BV: genomic prediction across 
cycles using bivariate model, where the first number represents the 
training cycle, the second number represents the testing cycle
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phenotyping were about 100 to 120 days after planting for 
the optimal and drought environments, and about 70 days 
for the heat environment. Given that the planting date in the 
heat environment typically started 3 months later than the 
other two environments, all three environments shared a sim-
ilar optimum timing, and that is around late March to early 
April. Additionally, we also quantified the predictive ability 
of using secondary trait for GS within each cycle; likewise, 
our results indicated the optimum date of phenotyping for 
use in genomic prediction was late March, except for cycle 
2016 in the optimal condition (Supplemental Figs. 2–4).

Discussion

Genomic prediction across cycles without secondary 
traits

Often, the genetic relationships between the observed lines 
in the training population and unobserved lines or selec-
tion candidates in the testing population (Crossa et al. 2017) 
act as one of the main factors that govern the accuracy of 
GS. In our population, the principle components analysis of 
genetic relationships shows no evidence of strong population 

structures for the three growth cycles (Fig. 7), which agreed 
with our previous expectation on populations from CIM-
MYT because lines in the three cycles are derived from 
several of the same parents and thus possess the close fam-
ily relatedness features. Previous studies have indicated that 
common ancestors in both training and testing cycles can 
improve the genomic prediction across cycles (Auinger et al. 
2016). Despite the inherent family relatedness between train-
ing and testing cycles, the predictive ability for grain yield 
across cycles, as compared to the one within each cycle, 
were generally low in this study. In addition, the previous 
studies indicated that increasing the training population size 
increased the GS accuracy for the trait controlled by many 
genes with minor effects (Asoro et al. 2011; Hoffstetter et al. 
2016; Lorenz et al. 2012). We evaluated the across cycles 
predictive ability of GS by using two of three cycles as the 
training population to predict the rest cycle, our results sug-
gest the accuracy for the testing cycle remained similar with-
out visible improvement (Supplemental Table 1). This may 
be explained by the limitation of the methodology, where the 
ability of further improving the accuracy based increasing 
the population size has a plateau (Asoro et al. 2011), and on 
the other hand, training population size has less effect on the 
training population composed of related lines compared to 

Fig. 2   Comparison between within cycle analysis and across cycles 
analysis for genomic selection with secondary trait or without sec-
ondary trait in the drought environment. Model: UV: univariate 
model; BV: bivariate model with the average best linear unbiased 
predictions of secondary trait; Cycle: 2014_UV/2015_UV/2016_UV: 
genomic selection within each cycle using univariate model; 2014_
BV/2015_BV/2016_BV: genomic selection within each cycle using 

bivariate model; 15-14_UV/16-14_UV/14-15_UV/16-15_UV/14-
16_UV/15-16_UV: genomic prediction across cycles using univari-
ate model, where the first number represent the training cycle, the 
second number represent the testing cycle; 15-14_BV/16-14_BV/14-
15_BV/16-15_BV/14-16_BV/15-16_BV: genomic prediction across 
cycles using bivariate model, where the first number represents the 
training cycle, the second number represents the testing cycle
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the one comprised of unrelated lines (Asoro et al. 2011; Rut-
koski et al. 2015). Therefore, for populations sharing related 
lines but with low GS accuracy across populations, utilizing 
secondary traits highly correlated with the trait of interest 
can be a useful approach to improve the GS accuracy across 
cycles and populations. This study indicated that secondary 
traits can improve the genomic prediction across cycles and 
revealed the optimum time point to collect secondary traits. 
The synergy of GS and HTP platforms offer the opportunity 
to increase the genetic gain by reducing the breeding time 
and labor cost per cycle. Meanwhile, by taking advantage of 
secondary traits collected at multiple time points from HTP 
platforms, breeders can select the optimum and the appropri-
ate phenotyping time for the secondary trait depending on 
breeding objectives and resources accessible in the practical 
breeding programs.

Secondary traits improve predictive ability for grain 
yield across cycles

Previous studies (Rutkoski et al. 2016; Sun et al. 2017) 
together with this work demonstrated that including sec-
ondary traits in the multivariate genetic prediction models 
significantly improved genomic predictive ability for grain 

yield within the same population or cycle. The advantage 
of using secondary traits to improve GS for grain yield lies 
in the genetic correlations between the secondary traits and 
grain yield (Jia and Jannink 2012). CT generally demon-
strated superior predictive ability for grain yield compared 
to GNDVI because of its higher correlations with grain yield 
as shown in Figs. 1, 2, 3 and Table 4. For GS across cycles, 
the relationships between the improved predictive ability and 
the correlations of grain yield with secondary traits were 
investigated, where the secondary traits were collected from 
three types of populations, training cycle only, testing cycle 
only, and both training and testing cycles (Fig. 8). For CT in 
the stressed environments and for GNDVI in all three envi-
ronments, our results indicated that the improved predictive 
ability can be mainly ascribed to the correlations between 
grain yield and secondary traits from the population of the 
testing cycle only (Supplemental Table 2). This illustrates 
the difficulty of genomic prediction across cycles or envi-
ronments in the stressed environments, mainly because of 
considerable environmental variances and unpredictable 
Genotype x Environment (G × E) between cycles, such as 
the severity and the time of the stress (Araus 2002; Ovenden 
et al. 2018). In this regard, the correlation between second-
ary traits and grain yield in the testing cycle governs the 

Fig. 3   Comparison between within cycle analysis and across cycles 
analysis for genomic selection with secondary trait or without sec-
ondary trait in the heat environment. Model: UV: univariate model; 
BV: bivariate model with the average best linear unbiased predictions 
of secondary trait; Cycle: 2014_UV/2015_UV/2016_UV: genomic 
selection within each cycle using univariate model; 2014_BV/2015_
BV/2016_BV: genomic selection within each cycle using bivariate 

model; 15-14_UV/16-14_UV/14-15_UV/16-15_UV/14-16_UV/15-
16_UV: genomic prediction across cycles using univariate model, 
where the first number represent the training cycle, the second num-
ber represent the testing cycle; 15-14_BV/16-14_BV/14-15_BV/16-
15_BV/14-16_BV/15-16_BV: genomic prediction across cycles using 
bivariate model, where the first number represents the training cycle, 
the second number represents the testing cycle
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Fig. 4   Predictive ability of secondary traits to grain yield in differ-
ent time points across years in the optimal environment. Date: phe-
notyping days after planting; 60: predictive ability of grain yield 
with secondary traits collected at 60 days after planting using bivari-

ate genomic selection model, same for other numbers; UV: predic-
tive ability of grain yield without secondary traits using univariate 
genomic selection model

Fig. 5   Predictive ability of secondary traits to grain yield in differ-
ent time points across years in the drought environment. Date: phe-
notyping days after planting; 65: predictive ability of grain yield 
with secondary traits collected at 65 days after planting using bivari-

ate genomic selection model, same for other numbers; UV: predic-
tive ability of grain yield without secondary traits using univariate 
genomic selection model
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genomic prediction accuracy for the grain yield of unob-
served lines across cycles. By contrast, the improvement in 
predictive ability across cycles in the optimal environment 
can be largely attributed to the correlations between sec-
ondary traits and grain yield in the training population, as 
exemplified by CT (Fig. 8; Supplemental Table 2).

The optimum time for genomic prediction using 
secondary traits

In order to efficiently apply the secondary traits to increase 
genomic prediction accuracy across cycles, determining 
the optimum collection time for the secondary traits in the 
testing cycle is essential. Among CIMMYT wheat growing 
cycles and available time points, our study suggested that the 
optimum stage of collecting secondary traits was between 
late March and early April in all three field conditions, 
despite the fact that there was no single phenotyping date. 
Moreover, even though the predictive ability from the sec-
ondary traits at early time points was not as high as the later 
stages, they still had potential advantages in increasing the 
genetic gain per cycle. For example, using secondary traits 
collected before heading date improved the predictive ability 
by 89% on average. Hence, selecting the optimum collection 
time for secondary traits allows the breeder to maximize 
genetic gain of GS, whereas collecting secondary traits at 

Fig. 6   Predictive ability of secondary traits to grain yield in different 
time points across years in the heat environment. Date: phenotyping 
days after planting; 67: predictive ability of grain yield with second-
ary traits collected at 67 days after planting using bivariate genomic 

selection model, same for other numbers; UV: predictive ability of 
grain yield without secondary traits using univariate genomic selec-
tion model

Fig. 7   Principle component analysis based on genomic relationship 
matrix. Each group represent one wheat growing cycle
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the early time points of secondary traits enable breeders to 
eliminate lines before harvest saving time and labor costs. 
Therefore, these results are valuable for breeders to optimize 
the resources allocations in the practical breeding programs.

The comparison between GNDVI and CT

GNDVI failed to improve the predictive ability for grain 
yield in the drought environment and was consistently infe-
rior to CT for genomic prediction of grain yield in all envi-
ronments. The inconsistency of correlations with grain yield 
across different environments or cycles is a major barrier for 
the application of GNDVI in GS across cycles. GNDVIs are 
usually positively correlated with the grain yield; however, 
the correlation becomes negative under the drought-stressed 
environments (Rutkoski et al. 2016; Sun et al. 2017) for the 
reason that the plants probably tend to avoid or escape the 
drought conditions at an early stage. Therefore, GNDVI was 
not useful for GS for grain yield across environments when 
the environments or management in the training population 
differs significantly from the testing ones. Compared to the 
other two cycles, the drought environment defined in our 
study for cycle 2015 suffered from accumulated precipita-
tions, thus presenting positive correlations between GNDVI 
and grain yield (results not shown), which is inconsistent 
with the 2014 and 2016 cycles. Adjusting days to heading for 

grain yield provided a partial solution to eliminate the dis-
crepancy in the drought environment (Table 4); however, the 
advantage of GNDVI in improving the genomic prediction 
accuracy for grain yield across cycles was compromised due 
to precipitation differences across cycles (Fig. 5). Therefore, 
without knowing the environmental and climatic conditions 
for different cycles or environments, CT from HTP platforms 
was superior to GNDVI in terms of predicting grain yield 
across cycles or environments.

Future directions

Even though no population structure existed in three cycles 
based on the principle component analysis of genetic rela-
tionships (Fig. 7), our observations revealed the low predic-
tive ability for grain yield across cycles in the absence of 
secondary traits. Accordingly, the genotype-by-environment 
(G × E) interactions played the major role that impeded the 
prediction accuracy across cycles in this population. The 
genotypes behaved differently in response to the environ-
ments because of G × E interactions, enhancing the phe-
notypic variation across environments and lowering the 
accuracy for genomic prediction across environments or 
cycles (Heslot et al. 2014). For example, based on the cli-
matic data (Table 1), the considerable precipitations have 
mitigated the stress environments for cycle 2015, leading 

Fig. 8   Relationship between the improved predictive ability and the 
correlations between the secondary traits and grain yield improved 
predictive ability, predictive ability for grain yield with secondary 
trait minus without secondary trait; pop: the correlations between the 
secondary traits and grain yield from the population including both 

training and testing; test: the correlation between the secondary traits 
and grain yield from the testing population only; train: the correlation 
between secondary traits and grain yield from the training population 
only
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to the higher grain yield than other two growing cycles. 
A number of studies have indicated that including G × E 
interaction terms in different models improve the predic-
tive accuracy, as can be exemplified by G × E interaction 
kernel regression model (Cuevas et al. 2017), crop modeling 
into GS (Heslot et al. 2014), reaction norm model (Jarquín 
et al. 2014), where the accuracy was improved by more than 
10% on average (Crossa et al. 2017). Recently, Montesinos-
López et al. (2017a, 2018) proposed Bayesian functional 
regression models to predict grain yield, in which two types 
of basis B-splines and Fourier and all wavelengths of the 
reflectance data from the HTP platforms are involved for 
analysis. They found that including the Band × E interaction 
term in the calculation provides the best accuracy (2017b). 
Therefore, the combination of both approaches, G × E inter-
actions and secondary traits, demonstrate promising poten-
tial to GS because of their remarkable ability in improving 
the genomic prediction accuracy by involving the genetic 
correlations between environments (Falconer and Mackay 
1996; Heslot et al. 2014) and employing the genetic correla-
tions between traits (Jia and Jannink 2012).

Conclusion

In conclusion, our studies demonstrated that the prediction 
accuracies across cycles were improved by including sec-
ondary traits in the genomic prediction models, and pre-
dicted the optimum date for secondary traits collection. The 
analysis on our dataset revealed the vital role of secondary 
traits, which improved genomic prediction of grain yield 
across cycles by an average of 146%. In addition, secondary 
traits showed their remarkable capabilities of detecting geno-
type under heat and drought-stressed environments for GS 
across cycles or environments, allowing breeders to make 
selections at an early stage and to capture the environmental 
variances for GS across environments. Our results conclude 
that, to improve the genomic prediction accuracy for grain 
yield in the CIMMYT breeding cycles, late March and early 
April are the optimum times for secondary traits collection. 
This suggested collection time for secondary traits falls into 
the range of wheat heading to early grain filling stages, and 
therefore, those results should also be applicable to other 
wheat breeding programs.
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