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Abstract
Loose cluster architecture is an important aim in grapevine breeding since it has high impact on the phytosanitary status of 
grapes. This investigation analyzed the contributions of individual cluster sub-traits to the overall trait of cluster architecture. 
Six sub-traits showed large impact on cluster architecture as major determinants. They explained 57% of the OIV204 descrip-
tor for cluster compactness rating in a highly diverse cross-population of 149 genotypes. Genetic analysis revealed several 
genomic regions involved in the expression of this trait. Based on the linkage of phenotypic features to molecular markers, 
QTL calculations shed new light on the genetic determinants of cluster architecture. Eight QTL clusters harbor overlapping 
confidence intervals of up to four co-located QTLs. A physical projection of the QTL clusters by confidence interval-flanking 
markers onto the PN40024 reference genome sequence revealed genes enriched in these regions.

Introduction

Grapevine (Vitis vinifera L. subsp. vinifera) is one of the 
most important and valuable fruit crops. Globally, 7.5 mil-
lion hectares are under viticulture. The annual grape yield 
reached 75.8 million tons in 2016. The largest part of the 
harvested grapes (47.3%) sustains wine production (267 
million hl). The remaining shares are sold as fresh grapes 
(35.8% of the annual yield), followed by raisins and the pro-
duction of juice (13.5%; OIV 2017).

High-quality fruits are crucial for winemakers and the 
fruit processing industry. However, V. vinifera grapevine cul-
tivars are susceptible to several diseases and pests, so viticul-
ture depends on intense protective sprayings. The obligate 

biotrophic pathogens Erysiphe necator (the causal agent of 
powdery mildew) and Plasmopara viticola (the causal agent 
of downy mildew), both specific pathogens of grapevine, as 
well as the ubiquitous fungus Botrytis cinerea (teleomorph 
Botryotinia fuckeliana, the causal agent of gray mold) repre-
sent the major threats (Pertot et al. 2017). Recent grapevine 
breeding efforts succeeded in the introgression of resistance 
loci for Erysiphe necator and for Plasmopara viticola from 
Vitis wild species into new high-quality cultivars (Töpfer 
et al. 2011). Grapevine varieties with enhanced genetically 
determined resistance against those pathogens became 
available. However, this strategy is not a solution to obtain 
resistance to Botrytis cinerea. There is no efficient cellular 
defense response known against this fungus. Due to the lack 
of resistance donors, grapevine breeding and clonal selection 
for resilience to Botrytis have to rely on the utilization of 
physical factors, e.g., the selection of genotypes with loose 
cluster architecture, thick berry skin and hydrophobic berry 
surface (Gabler et al. 2003; Herzog et al. 2015; Shavrukov 
et al. 2004). Loosely structured grape clusters have enhanced 
resilience to B. cinerea due to improved ventilation within 
the grape cluster. The accelerated drying process of residual 
humidity after rainfall or the precipitation of dew functions 
as a physical barrier against infections with fungal pathogens 
(Hed et al. 2010; Molitor et al. 2012). Several studies under-
line the importance of wetness duration for the successful 
infection by B. cinerea (Broome et al. 1995; Nair and Allen 
1993; Nelson 1956). In addition, fungicide applications can 
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better reach the berries surface within the cluster in the case 
of a more open, loose cluster (Hed et al. 2010). Further-
more, spatial temperature gradients between the inner and 
outer berries of a cluster are less pronounced. Solar radiation 
can much better reach the internally situated berries. Fruit 
maturity thus reaches a higher rate of uniformity in a loosely 
structured grapevine cluster (Pieri et al. 2016; Vail and Mar-
ois 1991). The formation of micro-cracks and the subsequent 
loss-of-barrier effect of the berry’s epidermis against patho-
gens (Becker and Knoche 2012) appear reduced. According 
to Smart and Robinson (1991) berries may even burst due 
to high pressure inside of compact clusters and thereby lose 
any kind of barrier against pathogens. Loose cluster archi-
tecture thus contributes to healthier grapes and harmonized 
ripening periods for the production of supreme yield and 
quality.

The grade of density or openness of a grapevine cluster 
relates to the ratio between the volume occupied by berries 
and the total cluster volume. This ratio describes the free 
space between the berries. Cluster architecture (CA) deter-
mines the arrangement of berries in a cluster and the distri-
bution of free space. The components of CA comprise berry 
traits and stalk traits. The interplay of berry traits, e.g., berry 
number and berry volume, and stalk traits, e.g., rachis length 
or pedicel length, determines the final grade of compact-
ness (discussed in Tello and Ibáñez 2017). The International 
Organization of Vine and Wine (OIV) developed descrip-
tors to score and measure morphologic grape cluster traits 
(OIV 2015). Based on the assessment of the available space 
between single berries, the descriptor “OIV204 (cluster den-
sity)” is applicable to score the cluster compactness (OIV 
2015). Furthermore, cluster architecture can be assessed by 
measuring cluster architecture sub-traits, e.g., the length of 
single rachis internodes (Shavrukov et al. 2004) or berry size 
and number (Rist et al. 2018; Kicherer et al. 2013). These 
measurements of single sub-traits can be assembled into CA 
factors, e.g., the ratio of cluster weight by length (Tello and 
Ibáñez 2014).

Although environmental and management conditions affect 
CA traits (Li-Mallet et al. 2016; Tello and Ibáñez 2017), their 
expression is also under genetic control. Houel et al. (2013) 
studied the genetic variability of berry size in a wide range 
of grapevine genotypes and found an immense variation of 
berry volume. For berry weight, Ban et al. (2016) detected the 
genetic influence in the offspring of a hybrid cross. Genetic 
characterization of 140 F1 individuals from a table grape 
cross-population indicated significant genotypic effects for 
all of the 23 CA traits under investigation (Correa et al. 2014). 
Shavrukov et al. (2004) compared four grapevine genotypes 
and found that rachis size variation is due to rachis cells size 
variation. Tello et al. (2015) compared 125 genotypes in an 
association genetic study and described major variations 
concerning the lengths of the rachis and secondary branches. 

Fanizza et al. (2005) detected genetic variation in the offspring 
of a table grape cross associated with berry number per cluster. 
Wine grapes and table grapes belong to different gene pools 
and show, among other characteristics, considerable varia-
tions in berry and cluster architecture sub-traits (Migicovsky 
et al. 2017). The authors revealed genetic differences asso-
ciated with bigger berries and less dense clusters in table 
grapes as compared to wine grapes. Di Genova et al. (2014) 
compared a genetic draft sequence of the table grape cultivar 
“Sultanina” with the reference genome for grapevine derived 
from an inbred line of “Pinot Noir,” a wine grape cultivar. In 
total, 2000 genes were found affected by structural variants. 
Among these genes, more than 50 genes are associated with 
the GO (gene ontology) term “anatomical structure develop-
ment” (GO:0048854) providing a source of genetic diversity 
potentially involved in cluster architecture differences. Grim-
plet et al. (2017) compared clones with loose or compact CA 
of the same cultivar (near-isogenic lines). These authors found 
470 genes differentially expressed (two loose clones vs. two 
compact clones). More specifically, compact clones showed 
a higher gene activity in genes involved in the production of 
cellular material and in genes of the cell cycle network. Shiri 
et al. (2018) performed a co-expression experiment with a 
compactly clustered table grape variety along the development 
from pre-flowering to pre-harvest. The authors identified gene 
expression networks with influence on cluster architecture via 
regulation of gibberellin abundance.

In this study, detailed phenotyping and statistics of CA 
sub-traits classified the investigated sub-traits according to 
their impact on the overall grade of compactness/openness. 
The linkage of phenotypic characteristics of CA with molec-
ular markers identified quantitative trait loci (QTLs). These 
QTLs should be involved in the manifestation of multiple 
sub-traits that contribute to CA. A transfer of the genetic 
positions of the QTLs to the physical map by projection 
of the confidence interval-flanking markers onto the refer-
ence genome of PN40024 (12x) revealed clusters of overlap-
ping confidence intervals from QTLs of strong impact on 
CA traits. The elucidated genomic regions, i.e., the novel 
knowledge about linked molecular markers, restrict the size 
of genomic regions for investigation in further studies. The 
here presented LODmax-associated markers for cluster archi-
tecture sub-traits are first steps to marker-assisted selection 
and could be further evaluated for their transferability in 
molecular breeding for cultivars with loose clusters.

Materials and methods

Plant material

The parents and 151 F1 genotypes from a controlled cross 
of GF.GA-47-42 × “Villard Blanc” (G × V) were used in 
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this work. The vines were located in two neighboring vine-
yards at the Institute for Grapevine Breeding Geilweiler-
hof (N49°21.675, E8°04.433). In the first vineyard (vine-
yard 1), for each of the individual 151 F1 genotypes two 
vegetatively propagated clones were planted on their own 
roots with 1.8 m row spacing and 0.9 m plant spacing in 
the year 2000. The second vineyard (vineyard 2) with eight 
additional clonal replicates (made from wooden cuttings 
grafted on rootstock SO4) was planted in 2010. Here, the 
vines were grown with 2 m (row) × 1 m (plant) spacing. 
The vines underwent “Guyot pruning” with 10 to 12 buds 
remaining and were grown in a vertical shoot position trellis 
system. An integrated pesticide spray program according to 
best practice policies for viticulture (BMELV 2010) protects 
the plantation.

The maternal parent, the fungus-resistant breeding line 
GF.GA-47-42, and the paternal parent, the fungus-resistant 
white wine cultivar “Villard Blanc”, exhibit reduced cluster 
densities according to OIV204 as evaluated over 3 years at 
six plants each (Online Resource 1). The resulting segre-
gating population includes transgressive phenotypes with 
extreme differences in CA. Two genotypes were excluded 
from the evaluation process since they showed no or unu-
sually poor fruit set during consecutive growing seasons. 
Moreover, the population provides 45 plants with female 
flowers and 106 plants with hermaphrodite flowers.

Sampling

Phenotypic investigations used 3 to 12 clusters per genotype 
harvested from different vines per season. In the year 2013, 
12 samples came from two vines, while in the years 2014 
to 2017, three to six independent samples originated from 
different vines (Table 1). When the first vines of the popula-
tion reached véraison the clusters were inspected two times 
per week. To avoid the loss of berries during harvest and 
transport of the clusters the samples were harvested when 
the clusters showed characteristics of maturity, but were 
not overripe. At this time, the berries had a sugar content 
of ~ 10° to 20° Brix. The clusters were strictly sampled from 
the basal insertions of three central shoots on the fruit cane. 
The analyzed clusters were cut directly at the connection 
with the shoot and stored at 5 °C until use.

Investigated sub‑traits

In total, data for 19 sub-traits of cluster architecture (Table 1) 
collected for at least two growing seasons entered this study. 
During the seasons of 2013 and 2014 pilot studies gener-
ated data for 12 and 8 CA traits, respectively. In the seasons 
of 2015 and 2016, data collection covered 16 sub-traits. 
Measurements assessed 3 to 12 biological replications per 
genotype and season. Pedicel measurements encompassed 

at least 60 pedicels per genotype. Cluster compactness was 
evaluated according to OIV204 descriptor in five classes 
(i.e., 1, 3, 5, 7 and 9) from grade 1 = very loose to grade 
9 = very dense. A panel of four trained experts did an inde-
pendent OIV204 rating to reduce the impact of subjectiv-
ity. Subsequently, the mode value of the four ratings was 
used. Image-based Berry Analysis Tool (BAT) generated 
data on berry volume and berry number according to the 
description in Kicherer et al. (2013). The BAT segmenta-
tion algorithm, trained with destemmed berries in BBCH79 
condition as ground truth data, is able to recognize berries 
when presented on a standardized picture. Once the berries 
are individually identified, the number and the size of ber-
ries are estimated. In addition, all pictures were personally 
inspected and manually interpreted if the automatic assess-
ment was not plausible. The length measurements of rachis-
related sub-traits were determined using ImageJ (Schneider 
et al. 2012). Pictures of the rachis were taken together with 
a size standard to transform the pixel-based image data into 
SI-unit-based length values. The size standard was meas-
ured using the “straight line tool”, and the cluster architec-
ture was measured using the “segmented line tool”. The 
peduncle length was measured from the cutting edge to 
the insertion of a wing or tendril, respectively. The wing 
length was measured from its insertion to the point where 
the pedicels separate. The rachis length was measured from 
the first lateral insertion to the end of the spike without the 
terminal pedicel. Laterals were measured from their inser-
tion at the main rachis without the terminal pedicel. Rachis 
internodes were measured from the middle of the flanking 
nodes. Rachis diameter was measured in the middle of the 
second internode. Pedicels were measured from dyad or 
triad junctions to the contact surface where the berries have 
been removed. Gravimetric measurements were taken using 
an electronic balance, with deviance = 0.1 g (EMB 3000-1 
KERN & SOHN GmbH, Balingen, Germany). °Brix meas-
urements used an electronic refractometer (DWN2 Risun, 
Beijing, China).

Statistics

Statistical analyses applied R software, version 3.4.1 (R 
Core Team 2017), and various packages as described below. 
The significance level of measurement results was set at 
p < 0.05 as obtained by one-way ANOVA, if not stated oth-
erwise. Data quality and model assumptions were checked 
by inspecting normal Q–Q plots, density distributions and 
scatter plots.

Measures of 16 cluster architecture sub-traits recorded in 
2015 (n = 851) and 2016 (n = 896) at vineyard 2 (Table 1) 
were analyzed by: (i) correlation analysis between cluster 
architecture traits, (ii) principle component analysis (PCA) 
to reflect the influence of flower sex (FS) and growing 
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season on the cluster architecture traits and (iii) random 
forest models and cumulative link models to assess the 
effect and relative importance of cluster architecture traits 
on visual compactness. Some genotypes did exhibit some 
missing data for different reasons: In 2015 for example, 
berry rot caused 37% missing data for “total berry volume” 
and “mean berry volume” and in 2016, “shoulder length” 
could not be recorded in 13% of the data since not all of the 
progeny plants produced a shoulder in each cluster. How-
ever, overall, the amount of missing values was less than 
5%. Since the presence of missing data does not allow the 
comparison of statistical models with the “Akaike informa-
tion criterion” (AIC), multiple imputations using chained 
equations were calculated with the R-package “mice” (van 
Buuren and Groothuis-Oudshoorn 2011). The averaged 
results of five imputations were used after visual compari-
son of the density distributions and the range of original and 
implemented data. Since metric data and ordinal data, i.e., 
measurements of rachis architecture sub-traits and the ordi-
nal OIV204 descriptor scores for cluster compactness, were 
considered in this work, Kendall’s Taub correlation coef-
ficient was used to perform a correlation analysis using the 
R-package “cormat” (Kassambara 2017) (Online Resource 
2). A principle component analysis based on covariance was 
applied to the scaled cluster architecture traits of 2015 and 
2016 using the R-packages “factoMineR” (Lê et al. 2008) 
and “factoextra” (Kassambara 2017). Only variables with 
a Kendall’s Taub correlation coefficient < 0.8 were used 
(Online Resource 2). To assess whether the data contain 
any inherent grouping structure with respect to flower sex 
(FS) and growing season (2015 and 2016) the clustering 
tendencies in the PCA scores were statistically evaluated by 
computing the Hopkins statistics (Ho) with the R-package 
“clustertend” (Han et al. 2012). Ho > 0.5 would indicate a 
significant cluster within a dataset (Han et al. 2012).

Random forest (RF) models and cumulative link models 
(CLMs) with scaled data assessed the effect and the rela-
tive importance of 15 cluster architecture traits measured in 
2015 and 2016 (Table 1). Additionally, the effect of flower 
sex and year on OIV204 ranking was assessed. The random 
forests were established for an ordinal response (OIV204 
descriptor) using the function “cforest” of the R-package 
“party” (Hothorn et al. 2006; Strobl et al. 2007, 2008). It 
utilizes the commonly applied random forest method intro-
duced by Breiman (2001) (for a recent overview of the meth-
odology, see Boulesteix et al. 2012). Prediction accuracy 
measurement for response levels with uniform distances was 
performed with ranked probability scores (RPS), appropri-
ate for ordinal response variables, as described in Janitza 
et al. (2016). Variable importance measurements (VIMs) 
for RF were performed with RPS-based VIMs. Hence, the 
incorporated ordering information, contained in the ordinal 
responsive variable, was respected in the VIM calculation, 

i.e., the accelerating compactness in five classes from 1 to 
9. To further study the model performance, RF calcula-
tions were repeated four times, using error rate (ER), mean 
standard error (MSE), mean absolute error (MAE) and RPS 
to compare the prediction accuracy contained in the VIM 
results. Cumulative link models for ordinal response were 
fitted with the same explanatory variables as in random for-
est using the R-package “ordinal” (Christensen 2018). The 
model selection was performed in a two-step procedure (due 
to processing time) and based on an information-theoretic 
approach (Burnham and Anderson 2002) using the R-pack-
age “glmulti” (Calcagno and de Mazancourt 2010). In a first 
step, various candidate models with up to eight different 
main terms were fitted and compared using the “Akaike 
information criterion” (AIC) (Burnham and Anderson 
2002), where a lower AIC indicates a better fit. All vari-
ables with a model-averaged importance of > 0.75 were used 
in a second step to fit candidate models with main terms 
and two-way interactions, which were compared via AIC 
as above. The models within a range of delta AIC < 2 were 
used for interpretation of effects. The relative importance of 
explanatory variables was then assessed by fitting models 
where each explanatory variable was removed at a time and 
calculating the delta AIC relative to the best model. The 
more the delta AIC rises, the more important is the variable 
that was removed from the model. The overall error rate 
and rank-wise error rate indicated the prediction quality of a 
CLM. In order to assess the collinearity between the predic-
tor variables of the best models we calculated the variance 
inflation factors (VIFs) with the R-package “car” using the 
function “vif” (Fox and Monette 1992).

Genetic evaluation

As described in Zyprian et al. (2016) a genetic map has been 
established based on 546 molecular markers. This map and 
the corresponding parental maps provided the basis in this 
work for the identification of QTLs related to the sub-traits 
of cluster architecture.

Quantitative trait locus analysis

Quantitative trait locus (QTL) analysis applied the software 
tool MapQTL6.0 (van Ooijen 2009). The determination of 
segregation of trait-linked markers and QTL detection used 
the interval mapping (IM) procedure with a mapping step 
size of 1 cM. Based on a permutation test with 1000 itera-
tions a linkage group-specific “logarithm of the odds” (LOD) 
threshold was calculated (with p < 0.05). Additionally, an IM 
with flower sex as co-variable was computed. Regions that 
exceeded the LG-wide LOD threshold were recorded as QTL. 
This work considered QTLs that have been: (i) reproduced 
at least three times; or (ii) reproduced two times, but were 
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physically co-located to other QTLs for two seasons and were 
found accumulated with overlapping confidence intervals on 
the reference genome; or (iii) identified in other crosses than 
in G × V according to literature references (Correa et al. 2014; 
Marguerit et al. 2009). For each QTL, the maximum LOD 
score, the percentage of explained phenotypic variation and 
the extension of the confidence intervals (in cM) are recorded.

The molecular markers in direct neighborhood to the 
LODmax − 1 positions delimited the confidence intervals. 
These flanking markers were used to project the QTL regions 
on the grapevine reference genome of (PN40024)12x V2 
(Canaguier et al. 2017) as retrieved from https​://urgi.versa​illes​
.inra.fr/Speci​es/Vitis​/Data-Seque​nces/Genom​e-seque​nces. The 
physical position of proximate confidence intervals assessed 
the accumulation of cluster architecture-linked QTLs.

Gene set enrichment analyses

The projection of confidence intervals for cluster architec-
ture QTLs on the physical regions of the reference genome 
(PN40024) 12x V2 delimits gene sets that were statistically 
associated with cluster architecture-related traits. Genes 
contained in these confidence intervals were transferred to 
the protein classification system (PANTHER) via the gene 
ontology consortium online platform (Ashburner et al. 2000; 
The Gene Ontology Consortium 2017) available at http://
geneo​ntolo​gy.org/. The redundancy of annotated biologi-
cal functions assigned to the genes within these confidence 
intervals was then compared to the redundancy of biological 
functions in the total set of genes of the reference genome. 
Significantly overrepresented or underrepresented (p < 0.05 
Fisher’s exact with FDR multiple test correction) gene ontol-
ogy (GO) terms were assessed using PANTHER, version 
13.1, as described in Mi et al. (2017). The enriched GO term 
was used to prioritize the search for candidate genes from 
multiple QTLs.

Weather records

Climate data were acquired in approx. 500 m distance to 
the trial fields with the records of the meteorological station 
88 Siebeldingen type AME 16, 192 m sea level, longitude 
8.047925770315487, and latitude 49.216499765308136. 
Data were downloaded from http://www.am.rlp.de.

Results

Evaluation of cluster compactness according 
to descriptor OIV204

The parental varieties of the G × V population were rated 
for their cluster density according to OIV descriptor 204 

during the three seasons from 2015 to 2017. The maternal 
genotype GF.GA-47-42 showed a loose cluster architecture 
(mode for OIV204 = 3). The paternal type of the population, 
“Villard Blanc”, showed a very loose (mode for OIV204 = 1) 
cluster structure. The OIV204 scorings of the F1 individuals 
of the G × V population covered all classes from 1 = very 
loose (Fig. 1a) to 9 = very compact (Fig. 1b). The F1 progeny 
showed a mode value for OIV204 between 3 and 5 in the 
years 2013, 2015, 2016 and 2017. In 2015 the probability 
for a lower OIV204 score was significantly higher (p > 0.001 
Pearson’s Chi-square test) as compared to 2016 (Fig. 1c). In 
addition, genotypes with female flowers showed significantly 
smaller OIV204 scores (p < 0.001; Pearson’s Chi-square test) 
during consecutive seasons (Fig. 1c).

Cluster architecture sub‑traits and their correlation

All CA sub-traits and corresponding notations are presented 
in Table 1. Correlation analysis (Online Resource 2) indi-
cated the highest correlation for the CA sub-traits cluster 
weight and berry weight (tau-b = 1). OIV204 and berry 
traits were in general slightly positively correlated (tau-
b = 0.1 − 0.4), while rachis traits were slightly negatively 
correlated to OIV204 (tau-b = − 0.1 − 0.2) in 2015 and 2016. 
The correlation of berry weight/rachis weight with OIV204 
was positive (tau-b = 0.3 and 0.4) during the two consecutive 
years. The correlation among the various rachis sub-traits 
was found less pronounced (− 0.1 to 0.5), but stable over the 
2 years. Quite in contrast, the correlation among berry traits 
varied between years. In 2015, the correlation between total 
berry volume and berry number or mean berry volume was 
tau-b = 0.4 and 0.7, while in 2016, it was tau-b = 0.7 and 0.3. 
Hence, total berry volume appeared to be determined by 
the components berry number and single berry volume in a 
contrasting way in the 2 years. The correlation between the 
cluster architecture sub-traits that determine OIV204 (i.e., 
rachis length, shoulder length, cluster weight, berry number, 
mean berry volume and pedicel length, see below) was gen-
erally weak and ranged between tau-b 0.0 and 0.3, with the 
exception of cluster weight and berry number (tau-b = 0.6) in 
2015 and 2016 and RL and SL (tau-b = 0.5) in 2016 (Online 
Resource 2).

Identification of major components of cluster 
architecture and influence of flower sex

The OIV204 scores showed some influence of flower sex, 
indicating a shift toward higher OIV204 scores in the her-
maphrodite vs. female genotypes (Fig. 1c). Therefore, a 
PCA was applied to the measurements of the 15 sub-traits 
recorded in 2015 and 2016. The PCA identified five main 
components that explained 69% of the variation in the data. 
Principal component 1 (PC1) and principal component 2 

https://urgi.versailles.inra.fr/Species/Vitis/Data-Sequences/Genome-sequences
https://urgi.versailles.inra.fr/Species/Vitis/Data-Sequences/Genome-sequences
http://geneontology.org/
http://geneontology.org/
http://www.am.rlp.de
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(PC2) explained 47% of the variation. PC1 was associated 
with berry features cluster weight, total berry volume, berry 
number and the rachis features rachis weight and shoulder 
length (Fig. 2). The contribution to PC1 was as follows: 
cluster weight (18.5%), total berry volume (17.3%), berry 
number (15.2%), rachis weigh (13.7%) and shoulder length 
(7.0%). PC2 was positively associated with rachis traits 
with a contribution of rachis length (17.7%), rachis diam-
eter (14.2%), shoulder length (10.6%) and rachis weight 
(7.9%). PC2 was negatively related to the ratio of berry 
weight to rachis weight (20.1%) and the OIV204 score 

(10.9%) (Fig. 2). PCA scores displayed a pattern depending 
on flower sex and year. PC1 displayed higher scores for the 
year 2016 vs. 2015, indicating higher berry weight and vol-
ume in 2016. PC2 displayed higher scores for female geno-
types, indicating elongated rachis sub-traits. However, the 
separation of the concentration ellipses of the PCA scores 
was moderate as indicated by Ho of 0.13.

Identification of cluster architecture sub‑traits 
that predict cluster compactness

The sub-traits (aligned according to their relevance for 
cluster architecture) pedicel length < rachis weight < mean 
berry volume < berry weight/rachis weight < shoulder 
length < berry number < flower sex < total berry vol-
ume < rachis length < cluster weight are important variables 
that predict OIV204 according to random forest (Table 2). 
The application of the four different prediction accuracy 
estimates ER, MSE, MAE and PRS for the VIM calculation 
showed no influence on the importance rank order (Online 
Resource 3).

CLMs for the prediction of OIV204 showed that the 
sub-traits pedicel length < shoulder length < berry num-
ber < rachis length < cluster weight had the largest impacts 
(in ascending order) on compactness levels (OIV204 values) 
of the 149 F1 genotypes of the cross-population when the 
season was included as predictor variable (Table 2). MBV 
was an important predictor variable, when the variable 
season was not included. The collinearity of the predictor 
variables in the selected models was quite low. The vari-
ance inflation factor values ranged between 1.09 for pedicel 
length and 3.38 for cluster weight. All sub-traits that reflect 
berry features were positively related to compactness, while 
all sub-traits measuring rachis features showed negative rela-
tionship to OIV204 scores (Online Resource 4). Genotypes 
with female flower organs and samples from 2015 showed 
a higher probability to be loosely clustered as compared to 
samples from 2016 and hermaphroditic flowered genotypes, 
respectively (Online Resource 4). The interaction between 
berry number and cluster weight was a predictor in CLMs 
regardless of whether season was in the model (Table 2). 
The overall error rate was 0.42 and 0.44 for the CLMs with-
out and with season as additional predictor variable. A com-
parison of the error rates across OIV204 categories showed 
that the prediction accuracy for class three and five (loose to 
medium cluster architecture) was considerably higher than 
for the compact levels (Online Resource 5). The majority of 
the genotypes (over 70%) were member of these two classes 
(3 and 5), where the ER was 0.39 and 0.32, respectively.

According to the random forest VIM results berry weight/
rachis weight and total berry volume were important sub-
traits for cluster compactness, but were not included in the 
CLMs as predictor variable. Due to these inconsistencies, 

Fig. 1   Variation of cluster architecture in the cross-population 
GF.GA-47-42 × “Villard Blanc” during two seasons and between the 
flowering types female and hermaphrodite. The OIV descriptor 204 
for compactness scores from a 1 = very loose, where rachis and pedi-
cels are visible, to b 9 = very compact, where berries are non-circu-
larly deformed (scale bar = 35 mm). c Histogram showing the relative 
frequency (density) of OIV204 scorings in 46 female and 103 her-
maphroditic F1 genotypes from the GF.GA-47-42 × “Villard Blanc” 
cross measured at BBCH85 in 2015 and 2016
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the sub-traits total berry volume and berry weight/rachis 
weight were not considered for further analysis. The sub-
traits rachis diameter and rachis weight contributed weakly 
and inconsistently to CLMs when main effects only were 

fitted, but were not important when interactions were fitted. 
Interestingly, the sub-traits length of the first lateral, length 
of the second lateral and peduncle length were of minor 
importance.

Fig. 2   Principal component 
analysis of cluster architecture 
sub-traits recorded in 2015 
and 2016. The biplot shows 
the first principal component 
(PC1) where berry sub-traits 
are dominant contributors and 
the second principal component 
(PC2) representing mainly 
rachis sub-traits. The scaled 
cluster architecture trait values 
of the principal components 1 
and 2 display 47% of the total 
variance. Concentration ellipses 
indicate the location of 95% of 
the data. a Separated by the year 
(growing season). b Separated 
by flower sex. For notation of 
sub-traits see Table 1

Table 2   Importance of cluster architecture sub-traits for the OIV204 compactness descriptor using random forest and cumulative link models. 
For sub-trait abbreviations see Table 1

Predictor variables in bold confirm the high importance in random forest and cumulative link models. The modeling was performed without (−
season) or with season as explanatory variable (+season)
a Random forest for ordinal response produced with the “cforest” function of the R-package “party”; bcumulative link models for ordinal response 
using all predictor variables with the R-package ordinal; ccumulative link models with trait–trait interaction for ordinal response using predic-
tor variables with a model-averaged importance value > 0.75 as determined in b; dranked probability score prediction accuracy used for variable 
importance measurements; edelta AIC, when the predictor was removed from the model. For further details see text

Dataset 15/16 −season 15/16 +season 15/16 −season 15/16 +season 15/16 −season 15/16 +season

Model type RFa RF CLM-fullb CLM-full CLM-redc CLM-red
Measure RPS-VIMd RPS-VIM Δ-AICe Δ-AIC Δ-AIC Δ-AIC
Season – 0.014 – 157.6 – 156.6
FS 0.037 0.036 99.6 98.9 84.6 82.9
BN 0.021 0.025 50.8 27.1 61.7 46.5
BW_RW 0.014 0.016 – – – –
CW 0.073 0.074 114.5 137.1 135.6 236.9
L1I 0.001 0.001 – – – –
L2I 0.001 0.001 – – – –
MBV 0.011 0.009 98 – 93.6 –
PED 0.006 0.006 8.4 13.2 10.7 13.8
PL 0.002 0.002 – – – –
RD 0.004 0.003 9.6 – – –
RL 0.058 0.057 135 143.3 125.5 132.3
RW 0.008 0.009 11.5 – –
SL 0.013 0.017 20 51.9 22.3 46.1
TBV 0.056 0.05 – – – –
BN:CW – – – – 33 42.5
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QTL detection

Mean values of the cluster architecture sub-traits measure-
ments recorded in the years 2013 to 2017 were applied for 
QTL analysis using interval mapping (IM) on the genetic 
constitutions of 149 F1 individuals and the consensus map 
of G × V (Zyprian et al. 2016).

IM detected 24 QTLs for CA sub-traits reproducibly 
(Online Resource 6). These QTLs were found on the fol-
lowing 10 linkage groups (LGs): LG1 (pedicel length a, 
pedicel length b, rachis weight, peduncle length, total berry 
volume), LG2 (cluster weight, rachis length, shoulder length, 
OIV204), LG3 (mean berry volume, shoulder length, rachis 
length), LG10 (cluster weight, berry number), LG11 (pedicel 
length), LG12 (cluster weight, mean berry volume), LG14 
(peduncle length), LG15 (OIV204), LG17 (mean berry vol-
ume, cluster weight, OIV204) and LG18 (cluster weight, 
pedicel length).

With respect to the presence of 45 female and 106 her-
maphroditic individuals in the population, flower sex was 
used as a co-variable in an explorative additional calculation 
of “IM + FS.” This approach yielded six additional QTLs on 
LG3 (pedicel length), LG10 (berry number, berry weight), 
LG14 (wing), LG17 (berry number) and LG18 (berry number) 
cluster architecture traits (Online Resource 6). Remarkably, 
three QTLs for berry number and one for berry weight were 
identified newly by application of flower sex as a co-factor 
for IM. Furthermore, a QTL for cluster complexity, i.e., the 
presence/absence of a shoulder at the cluster, was repro-
duced using flower sex as co-factor in an IM. In total, 30 
QTLs for traits related to CA were reproducibly detected 
over two to four seasons (Online Resource 6).

The QTLs identified by IM and IM + co-variable (flower 
sex) showed no significant differences for the average 
LODmax values, the size of the average confidence inter-
val (CI) and the explained phenotypic variance (Online 
Resource 7). The sub-traits rachis length, mean berry 
volume, berry number, cluster weight and pedicel length 
show high contribution to cluster density (Table 2). QTLs 
for these important traits were reproducible over three 
seasons (Table 3). For the sub-trait shoulder length, also 
statistically important, QTLs were reproducible over two 
seasons. Notably, the QTL found on LG2 for shoulder 
length was linked for two seasons with the same LODmax 
marker (VVIB23_312) than the one found for rachis length 
(Table 3). The major QTL for OIV204 cluster compactness 
was identified on LG2 in the vicinity of marker GF02-12 
with an average impact explaining 20% of the variance of 
the OIV204 scores and LODmax of 11.07. For berry-related 
sub-traits the average maximum explained variance (15%) 
was found with a QTL on LG10 for berry weight associated 
with marker VRZAG7. The major QTL for rachis-related 
sub-traits was found on LG1 for peduncle length correlated 

to the SNP marker 55553gene_1_GF_WRKY. This QTL 
explains on average 24% of the phenotypic variance and had 
a LODmax value of 10.79 (Online Resource 6).

Relevant QTLs accumulate in eight clusters

Based upon the multivariate statistical analysis of the CA 
data described above, the rachis features (rachis length, 
shoulder length and pedicel length) and specific berry sub-
traits (cluster weight, berry number, mean berry volume) 
showed high impact on OIV204. For these traits of promi-
nent importance, 19 QTLs were detected reproducibly. In 
addition, four QTLs for compactness according to OIV204 
scores were identified. The major QTLs were found on LG2 
(rachis length, cluster weight), LG3 (rachis length), LG11 
(pedicel length), LG17 (mean berry number) and LG18 (berry 
number). On average, the QTLs for these traits explained 
approximately 14% of the total variance (ranging from 11 
to 18%) (Table 3 and Online Resource 6). Beside the QTL 
for pedicel length on LG11, correlated to marker VMC6C3, 
all other high-impact QTLs were co-located in groups with 
two to four different QTLs for CA sub-traits. To facilitate the 
application of these new findings in marker-assisted grape-
vine breeding, these QTLs were analyzed to check whether 
they are spatially concentrated in a specific region of a chro-
mosome. To this purpose the confidence intervals (posi-
tions of LODmax − 1) of the 23 QTLs were projected on the 
reference genome from PN40024 12x v2 (Canaguier et al. 
2017) and screened for overlaps. This approach identified 
eight genomic regions where QTLs of cluster architecture 
shared the same stretch of genomic sequence as confidence 
interval. Twenty QTLs were co-located in reference to the 
PN40024 sequence (Table 4). These eight clusters cover all 
major QTLs for architecture sub-traits with high impact on 
compactness and explain 87% of the variance.

Gene set enrichment analyses

The genomic regions of the eight QTL clusters for sub-traits 
of cluster architecture enclose 3691 annotated genes. Using 
gene ontology categories related to biological processes for 
a GO term enrichment analysis, 3462 of the genes (93.8%) 
could be successfully assigned to a category. 229 genes 
could not be mapped to the protein database. Significant 
GO term enrichments were found in all confidence interval-
associated gene subsets except in the cluster on LG2. Reduc-
ing the gene subset on LG2 to genes enclosed in the central 
2 Mb range of the confidence interval showed that the GO 
term “regulation of microtubule-based process” was 50 
times overrepresented in this region. VIT_202s0025g04960 
was one of the GO-term-associated genes. It encodes a cell-
cycle-regulated microtubule-associated protein. Moreover, 
this approach revealed 45 overrepresented GO terms in 
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the gene subsets when compared to the GO annotations of 
all genes in the reference genome, including the category 
“response to auxin.” The terms “ion transport,” “anion 
transport” and “response to endogenous stimulus” were 
overrepresented in two clusters. In total, 219 genes (Online 
Resource 8) were assigned to at least one of the significantly 
overrepresented GO classes (p < 0.05 Fisher’s exact test).

Discussion

The segregating population

A population segregating for the trait of interest and a link-
age map for this population are prerequisite for QTL anal-
ysis. The genetic map of the G × V population used here 
has been elaborated earlier and was already successfully 
applied to detect QTLs affecting resistance to pathogens 
and ripening traits of grapevines (Zyprian et al. 2016). 

The loose cluster architecture (CA) inherent to the par-
ent GF.GA-47-42 (G; OIV204 = 3) and the very loose CA 
of the parent “Villard Blanc” (V; OIV204 = 1) suggested 
that the G × V population could segregate for CA. Indeed, 
the F1 genotypes exhibited variable and even transgressive 
phenotypes, showing OIV 204 density scores from very 
loose (1) to very dense (9). The paternal grandparent vari-
ety Seibel 6468 showed significantly lower rachis length 
and a higher mean berry volume in comparison with the 
parental varieties (data not shown). This could be used for 
a genetic determination of the transgressive phenotypes. 
The field plantation of the population was established in 
2000 and in a multiplied form in 2010. The phyllotaxic 
phase shift inherent to grapevine development from juve-
nile to adult plants was completed at the time of investiga-
tion. Therefore, any phenotypic bias due to juvenile anom-
alism was avoided. The CA segregation pattern could be 
verified for consecutive seasons and thus was exploited for 
the detection of reproducible QTLs associated with CA.

Table 3   Important results of 
QTL analysis

Main QTLs for compactness and for major cluster architecture sub-traits in 149 F1 individuals of the seg-
regating population of the cross GF.GA-47-42 × “Villard Blanc” calculated with interval mapping (IM) and 
interval mapping with flower sex as co-factor (FS)
a QTL calculation method: interval mapping (IM) or interval mapping using flower sex as co-variable 
(IM + FS); bposition on linkage group (LG); ctrait and season for calculated QTL; dgenetic position of the 
LODmax marker in centimorgan (cM) on the consensus map (Zyprian et al. 2016); elogarithm of the odds 
value (LOD); fpercentage of explained phenotypic variance

Calculation methoda LGb Trait/seasonc LODmax 
positiond 
(cM)

LOD valuee % Explained phe-
notypic variancef

Marker name

IM 2 OIV204_15 13.003 11.07 29 GF02_12_170
IM 2 OIV204_16 13.003 5.32 15.2 GF02_12_170
IM 2 OIV204_17 13.003 6.65 18.6 GF02_12_170
IM 2 RL_14 12.027 3.07 9.3 VVIB23_312
IM 2 RL_15 12.027 4.09 12.4 VVIB23_312
IM 2 RL_16 12.027 3.98 11.6 VVIB23_312
IM 2 SL_15 12.027 2.64 8.1 VVIB23_312
IM 2 SL_16 12.027 2.93 8.6 VVIB23_312
IM + FS 10 BN_14 69.861 3.47 10.1 VRZAG7_106
IM + FS 10 BN_15 69.861 3.09 8.9 VRZAG7_106
IM + FS 10 BN_16 69.861 6.27 17.4 VRZAG7_106
IM 10 CW_14 69.861 2.96 8.9 VRZAG7_106
IM 10 CW_15 69.861 5.03 14.4 VRZAG7_106
IM 10 CW_16 69.861 4.02 11.8 VRZAG7_106
IM 11 PED_13 3 7.64 23.6 VMC6C3
IM 11 PED_14 0 5.06 14.8 VMC6C3
IM 11 PED_15 3 6.57 19.1 VMC6C3
IM 11 PED_16 0 5.49 15.6 VMC6C3
IM 17 MBV_14 27.514 5.03 14.9 VRZAG15
IM 17 MBV_15 27.514 5.92 17 VRZAG15
IM 17 MBV_16 27.514 4.68 13.6 VRZAG15
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Table 4   Physical position of markers related to the maximum LOD value of QTLs for cluster architecture traits and their physical confidence 
interval region on the reference genome PN40024 (12x) V2

QTL cluster QTLs in V × B Physical position on PN40024 12X V2 (bp)

LG QTL cluster/traits in 
cluster

Calculation method Trait/season Marker name LODmax marker Confidence 
interval upper 
limit

Confidence 
interval lower 
limit

1 CL_1
OIV204 + PEDa

IM OIV204_16 SNP1241_207FEM 12.608.167 10.569.689 19.375.466
IM OIV204_17 SNP1241_207FEM 12.608.167 10.569.689 19.375.466
IM PED_14 SNP1241_207FEM 12.608.167 5.948.674 19.375.466
IM PED_15 SNP1241_207FEM 12.608.167 5.948.674 19.375.466

2 CL_2
RL + SL + CW + OIV204

IM RL_14 VVIB23_312 4.807.391 2.068.206 5.632.401
IM RL_15 VVIB23_312 4.807.391 2.068.206 5.632.401
IM RL_16 VVIB23_312 4.807.391 2.068.206 5.000.200
IM SL_15 VVIB23_312 4.807.391 2.068.206 8.335.117
IM SL_16 VVIB23_312 4.807.391 2.068.206 5.632.401
IM CW_13 GF02_12_170 5.012.979 2.068.206 4.993.382
IM CW_14 GF02_12_170 5.012.979 2.068.206 5.632.401
IM OIV204_15 GF02_12_170 5.012.979 4.807.391 5.084.681
IM OIV204_16 GF02_12_170 5.012.979 2.068.206 5.000.200
IM OIV204_17 GF02_12_170 5.012.979 2.068.206 5.084.681

3 CL_3.1
PED + MBV

IM MBV_13 1044J09FFEM 1.900.405 1.900.405 609.887
IM MBV_14 1044J09FFEM 1.900.405 1.900.405 609.887
IM + FS PED_13 1044J09FFEM 1.900.405 1.900.405 609.887
IM + FS PED_15 1044J09FFEM 1.900.405 1.900.405 609.887
IM + FS PED_16 1044J09FFEM 1.900.405 1.900.405 609.887

CL_3.2
SL + RL

IM SL_15 GF03_07_273 16.500.873 9.542.014 20.541.773
IM RL_15 GF03_07_236 16.500.873 9.542.014 20.541.773
IM RL_16 GF03_07_236 16.500.873 9.542.014 20.541.773
IM SL_16 GF03_07_236 16.500.873 9.542.014 20.541.773

10 CL_10
CW + BN

IM CW_14 VRZAG7_106 23.172.655 21.301.493 23.172.655
IM CW_15 VRZAG7_106 23.172.655 21.301.493 23.172.655
IM CW_16 VRZAG7_106 23.172.655 16.604.597 23.172.655
IM + FS BN_14 VRZAG7_106 23.172.655 21.301.493 23.172.655
IM + FS BN_15 VRZAG7_106 23.172.655 9.424.409 23.172.655
IM + FS BN_16 VRZAG7_106 23.172.655 21.301.493 23.172.655

12 CL_12
MBV + CW

IM CW_15 GF12_07 22.414.306 18.369.473 23.795.082
IM MBV_13 GF12_09_87 23.246.484 22.414.306 23.795.082
IM CW_13 GF12_09_83 23.246.484 23.246.484 23.795.082
IM MBV_14 GF12_09_83 23.246.484 18.369.473 23.795.082
IM MBV_16 GF12_09_83 23.246.484 20.203.052 23.795.082
IM MBV_15 SNP1119_176CMZ 23.795.082 20.203.052 23.795.082

17 CL_17
OIV204 + CW
+MBV +BN

IM MBV_15 SCU_06 3.290.363 38.382 6.588.726
IM CW_16 VvEDS1gene_1GF 3.930.996 6.588.726 17.980.880
IM + FS BN_16 VvEDS1gene_1GF 3.930.996 8.686.027 9.613.080
IM MBV_16 VRZAG15 6.588.726 38.382 8.686.027
IM MBV_14 VRZAG15 6.588.726 38.382 8.686.027
IM CW_15 VRZAG15 6.588.726 3.290.363 8.686.364
IM OIV204_15 EDS1_CF_SNP1837GF 8.686.027 6.588.726 9.613.080
IM OIV204_16 EDS1_CF_SNP1837GF 8.686.027 6.588.726 9.613.080
IM OIV204_17 EDS1_CF_SNP1837GF 8.686.027 6.588.726 3.930.996
IM + FS BN_15 EDS1_CF_SNP1837GF 8.686.027 6.588.726 9.613.080
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Stability and interrelationship of cluster 
architecture sub‑traits

The compactness of the cluster is the result of an interac-
tion of multiple cluster architecture sub-traits (Rist et al. 
2018; Tello et al. 2015; Correa et al. 2014; Shavrukov 
et al. 2004). This study used 16 different sub-traits for the 
statistical evaluation of the individual contribution to clus-
ter compactness in two consecutive growing seasons. The 
correlation analysis among them showed high variation 
concerning the intensity and the direction of correlations 
between individual cluster architecture sub-traits and to 
the official OIV204 descriptor.

Seasonal conditions had an impact regarding the berry 
traits, i.e., total berry volume correlated with berry num-
ber and mean berry volume but in a divergent manner for 
the two seasons of 2015 and 2016 (Online Resource 2). To 
further assess the seasonal impact on the berry sub-traits 
even the traits with stronger correlation were considered 
in principal component analysis. Here again the berry-
related sub-traits were more affected by the season com-
pared to the rachis-related sub-traits. Climate conditions 
from budburst to flowering on to harvest affected berry 
number. However, the weather conditions recorded for 
this period did not provide evident differences (recorded 
as monthly average for air and ground temperature or for 
photoactive radiation) during the first weeks of growth 
and inflorescence development. Nevertheless, 2016 had 
50% more days with rainfall compared to 2015 and there-
fore provided less favorable conditions for berry set dur-
ing this time period. However, the berry number in 2016 
was higher than in 2015. The Hopkins statistics value for 
clustering tendency was far below the threshold that would 
indicate a cluster within the dataset of measured cluster 
architecture sub-traits. This supports our assumption of a 
quantitative multiple trait genetic determinism.

The complexity of cluster architecture

Cluster density (as characterized by OIV descriptor 204) 
is a highly complex trait since it depends on the interac-
tion of multiple berry and rachis sub-traits. Several previ-
ous studies concern the variability of CA sub-traits. Fanizza 
et al. (2005) reported berry number variation. The average 
berry size is highly variable from 0.5 to 11.5 cm3 according 
to Houel et al. (2013). Shavrukov et al. (2004) highlighted 
rachis internodes’ length as major contributor to CA varia-
tion. Gabler et al. (2003) and Sarooshi (1977) reported vari-
ation in CA due to elongated pedicels. Complexity of CA, 
i.e., the presence or absence of a “shoulder” segregated in 
a cross from table and wine grapes (Marguerit et al. 2009). 
In addition, the contribution of sub-traits to overall CA 
appeared to be variable among Vitis cultivars (Tello et al. 
2015). In agreement with the findings of Migicovsky et al. 
(2017) this study here showed that there is a negative cor-
relation of sugar content with mean berry volume evident 
in 2015 and in 2016 data (Online Resource 2 and Fig. 2). 
Hence, an important step of this work was to determine the 
sub-traits that substantially contribute to the CA phenotype 
in the given G × V cross.

Determination of the most relevant sub‑traits 
to predict cluster architecture

Forests of regression trees and automated multi-model infer-
ence using CLMs with the CA dataset predicted the com-
pactness level (OIV204) with CA sub-traits. Explorative, 
random forest VIM calculations gave an overview of the 
importance of single sub-traits for OIV204 prediction. The 
assessment of the prediction accuracy as described in Jan-
itza et al. (2016) using four different prediction performance 
measures showed no impact on the VIM order (Online 
Resource 3). Hence, in subsequent CLMs the prediction 

Note that the confidence intervals of several cluster architecture traits traverse the same physical region on a chromosome

Table 4   (continued)

QTL cluster QTLs in V × B Physical position on PN40024 12X V2 (bp)

LG QTL cluster/traits in 
cluster

Calculation method Trait/season Marker name LODmax marker Confidence 
interval upper 
limit

Confidence 
interval lower 
limit

18 CL_18
BN + CW + PED

IM CW_15 VMC2A3 948.244 948.244 6.487.637
IM CW_16 SCU_10 4.520.661 321.045 6.487.637
IM + FS BN_16 SCU_10 4.520.661 3.362.208 5.605.673
IM + FS BN_15 VV_18_6624520FEM 6.720.583 5.539.873 9.582.805
IM PED_14 VMCNG1B09 5.645.610 3.362.208 9.582.805
IM PED_15 VMCNG1B09 5.645.610 3.362.208 9.582.805
IM PED_16 VMCNG1B09 5.645.610 3.362.208 9.582.805
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accuracy was measured straightforward with the calcula-
tion of the error rate. This revealed that the models had a 
lower error rate if the compactness was lower, i.e., in season 
2015, in the group of female phenotypes and the group with 
loose cluster OIV204 rankings (Online Resource 5). One 
possibility may be that the subjective visual classification of 
compactness might be less accurate with increasing levels 
of compactness which leads to a reduced predictive power 
of the models.

Nevertheless, within the available CA sub-traits, the best 
CLMs to predict the OIV204 descriptor consisted of the pre-
dictors rachis length, shoulder length, cluster weight, berry 
number, mean berry volume and pedicel length. Therefore, 
these traits were of major importance for genetic analysis. 
Notably, the derived measures berry weight/rachis weight 
and total berry volume were not included as predictor vari-
ables in the best CLMs. Instead, the models used for the 
ranking of the sub-traits considered original measurements 
as predictor variables only. The variance inflation factors 
for the unassembled variables in the obtained best models 
were quite low (between 1.09 and 3.38). The obtained val-
ues were considered to be low enough to assume no bias 
due to collinearity (Hair et al. 2010). However, expressed 
as variable importance value based on regression trees or 
as delta AIC value elaborated with a leave-one-out model 
comparison, the importance of these sub-traits in the mod-
els for compactness was diverse. In this study, rachis length 
and cluster weight showed the highest impact followed by 
the total berry volume. Tello et al. (2015) reported rachis 
length and berry number as highly correlated to OIV204 
scorings in a wide range of cultivars over three growing 
seasons. Tello and Ibáñez (2014) combined up to six sub-
traits to form compactness indices. In their work, the indices 
showing the highest correlations with the visual OIV204 
classification contained the sub-traits cluster weight, rachis 
length, berry number and pedicel lengths (among others). 
Their findings are supporting our modeling results where 
the same traits show large effects on ordinal OIV204 values. 
Among cluster architecture sub-traits with elevated impor-
tance for compactness, pedicel length was least important 
in this study. Nevertheless, it is important enough to be 
recognized as determining factor for cluster compactness 
(Table 2). In Tello et al. (2015) the sub-trait pedicel length 
produced the highest correlation with cluster compactness 
in one of three seasons. However, the authors found a low 
relevance of pedicel length to the overall compactness in 
their study. Although our work in general corresponds to 
the findings of Tello et al. (2015) the study presented here 
revealed a higher likelihood for open cluster with longer 
pedicels (Online Resource 4). Supporting our notion, Gabler 
et al. (2003) reported that pedicel length showed impact on 
cluster architecture. The same was found by Sarooshi (1977) 
after growth regulator treatment. Additionally, on LG1, the 

co-localization of QTLs for compactness (OIV204) with 
QTLs for pedicel length supports the importance of pedicel 
length for compactness on genetic level (Fig. 3).

In the work of Shavrukov et al. (2004) rachis internode 
length was the main determinant of cluster openness of 
compact wine grape varieties (“Riesling” and “Chardon-
nay”) compared to openly structured table grape cultivars 
(“Exotic” and “Sultanina”). This is not in line with our find-
ings where the length of the first and second internodes (esti-
mated with 149 F1 genotypes of the G × V population) was 
not important for the prediction of compactness (OIV204 
classes) with random forest and cumulative link models. 
Moreover, in their work they could not find significantly dif-
ferent pedicel lengths, discriminating compact and open cul-
tivars, whereas in this study, elongated pedicel lengths raise 
the likelihood of showing loose cluster architecture (Online 
Resource 4). Together, this suggests that table grapes achieve 
their cluster openness with divergent sub-trait contributions 
or the highly diverse set of F1 genotypes was highlighting 
other genetic determinants of cluster architecture sub-traits 
than the wine grape versus table grape comparison.

QTLs for cluster architecture

The overall aim of this study was to reveal QTLs for cluster 
architecture to deduce cluster architecture-associated mark-
ers for marker-assisted selection (MAS) in grapevine breed-
ing. Due to the complexity of the trait “cluster architecture”, 
several QTLs with various levels of contribution to the phe-
notypic variance were expected. Indeed, this investigation 
revealed an elevated number of 30 QTLs for cluster architec-
ture sub-traits (Table 3 and Online Resource 6). The statisti-
cal evaluation of 16 cluster architecture sub-traits recorded 
in 2015 and 2016 (~ 1700 data points per trait) showed that 
six of the cluster architecture sub-traits had high impact on 
the compactness level of the cluster (OIV204).

Focusing on these statistically most relevant sub-traits 
for cluster architecture berry number, cluster weight, mean 
berry volume, pedicel length, rachis length and shoulder 
length reduced the number to 24 QTLs for close investiga-
tion (Table 3 and Online Resource 6). Many QTL regions 
accumulate in specific genomic regions. The confidence 
intervals of 21 QTLs were co-located on the reference 
genome in eight genomic regions (Table 4). This fact of clus-
tered QTLs alleviates the task to deduce trait-linked markers 
for assays of applicability in grapevine breeding for loose 
cluster architecture. An overview of cluster architecture-
related QTLs is shown in Online Resource 6.

On LG1, limited by the markers VVIN61 and 
VMC2B3, a cluster of the QTLs for OIV204 and pedi-
cel length (PEDa) was detected. Pedicel length is a pre-
dictor variable in the majority of the linear models. The 
LODmax-associated marker for OIV204 and for pedicel 
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length was SNP1241_207FEM. This SNP is located in 
the mRNA sequence of the gene VIT_201s0026g02580. 
The gene product, a “zinc finger DOF5.2-like” protein, is a 
plant-specific transcription factor of the DOF (DNA-bind-
ing One Zinc Finger) family. In the model plant A. thali-
ana, Fornara et al. (2015) reported that an alteration in the 
expression level of cycling DOF factors affected flower-
ing and growth. However, besides VIT_201s0026g02580, 
there are 718 more genes encompassed in the confidence 
interval of the QTL; 39 of them are also found in the GO 
enrichment (Online Resource 8). In addition, LG1 har-
bors a second QTL for pedicel length (PEDb) associ-
ated with the LODmax marker GF01-24. Approximately 
700 kb downstream of GF01-24 Marguerit et al. (2009) 
also reported a QTL for pedicel length, which was asso-
ciated with the marker IRT1f in their study. Costantini 
et al. (2008) described a QTL for berry weight on LG1 

in a table grape cross, associated with AFLP marker 
“mCACeATC4.” The AFLP technique of this marker 
prevents a precise determination of the position on the 
reference genome, but the closest SSR marker on their 
consensus map was VVIF52 at 23 Mb. In this region a 
QTL for peduncle length was found in the G × V cross 
during three seasons, but with different LODmax positions 
(Online Resource 6).

Incorporated on LG2, the confidence intervals of the 
QTLs found for rachis length, shoulder length, cluster 
weight and OIV204 were co-located between the markers 
GF02-07 and VMC5G7. The associated LODmax marker for 
rachis length and shoulder length was VVIB23. The QTLs 
for cluster weight and OIV204 share GF02-12 as common 
LODmax marker. In a former study Marguerit et al. (2009) 
found the region close to marker VVIB23 on LG2 associated 
with rachis sub-traits in their interspecific cross of “Cabernet 

Fig. 3   Graphical overview of co-located QTLs linked to cluster archi-
tecture sub-traits. Physical position for confidence interval regions of 
QTLs related to sub-traits of cluster architecture projected onto the 
reference genome of grapevine PN40024 12x V2. In orange the loca-
tion of confidence interval clusters for QTLs calculated with interval 

mapping. In green the location of confidence interval clusters deter-
mined with contribution of interval mapping and interval mapping 
+ flower sex as co-variable during QTL calculation. For trait abbre-
viations see Table 1. For positions and details see Table 4 and Online 
Resource 6
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Sauvignon” × V. riparia “Gloire de Montpellier,” e.g., rachis 
length, rachis length combined with peduncle length and the 
presence/absence of a wing.

The markers GF02-07 and VVIB23 are linked to clus-
ter architecture sub-traits and also closely linked to flower 
sex. Using the offspring of a cross, performed with a root-
stock cultivar and a wine grape breeding line, Fechter et al. 
(2012) pinpointed genetic determinants of flower sex within 
a 143 kb region between the markers VVIB23 and GF02-12. 
Marguerit et al. (2009) found a high association of flower sex 
to the marker VVIB23 in their cross. Analyzing exclusively 
the 103 hermaphroditic individuals of the G × V popula-
tion (omitting the 46 female F1-individuals) no QTL was 
detectable in this region. A QTL calculation based on the 
paternal map (data not shown) did not show any QTL for 
cluster architecture in this genomic region, either. How-
ever, the QTL calculation using the maternal map showed 
QTLs for OIV204, rachis length and shoulder length in this 
region spanning the confidence interval between the mark-
ers VVIB23 and GF02-12 (data not shown). This indicates 
maternal heredity of these QTLs for cluster architecture 
sub-traits on LG2. This finding is consistent with a genetic 
determination for elongated rachis sub-traits and more open 
cluster architecture in female genotypes as visible in the 
PCA calculation at PC2 (Table 1 and Fig. 2).

An interval mapping using flower sex as co-variable 
detected a QTL for pedicel length on LG3. The marker 
GF03-09 was the upper limit of the LODmax − 1 confidence 
interval, and the marker 1044j09FEM was the lower limit 
and the LODmax marker at the same time (1,9 Mb). As far as 
we know, this is the first report for cluster architecture QTLs 
in this genomic region. Nevertheless, the confidence interval 
for this QTL harbors 170 genes; 34 of them were reported 
as differentially expressed between loosely and compactly 
clustered “Tempranillo” clones in a study of Grimplet et al. 
(2017). Moreover, it displays the additional power of IM 
using a co-variable (flower sex) for QTL calculation since 
the pedicel length QTL was not detectable without the appli-
cation of this co-variable.

The QTL for pedicel length shares its LODmax marker 
with the one for mean berry volume on LG3. In grapevine, 
the berry size and seed number are directly related. This 
correlation results likely from the fact that gibberellins pro-
duced by seeds are required to promote berry growth during 
late berry development (Coombe 1960, 1973; Perez et al. 
2000). This study here did not record seed number, but an 
elevated phytohormone concentration could also be the rea-
son for longer pedicels. Gourieroux et al. (2016) discussed 
that phytohormones released by grape ovaries may promote 
the elongation of the rachis so that adequate space becomes 
available for the growing berries.

LG3 carries a second QTL cluster delimited by the mark-
ers VCHR03a and 2018J24 at around 16.5 Mb. This cluster 

covers the QTLs for rachis length and shoulder length. Both 
QTLs shared GF03-07 as LODmax marker. In the cross-pop-
ulation used by Marguerit et al. (2009), it was possible to 
detect QTLs for rachis length and length of the first rachis 
internode also on LG3, but in a different region at ~ 7.8 Mb. 
It remains to be explored whether these two loci correspond.

On LG10, the application of interval mapping calculation 
with flower sex as co-factor identified co-localized QTLs for 
berry number and cluster weight. Depending on the season 
the upper limit of the confidence interval varied considerably 
between 9.42 and 21.30 Mb. The lower limit and the LODmax 
were stable at marker VRZAG7 positioned at 23.17 Mb. The 
varying range of the confidence intervals over the seasons is 
probably a result of the influence of climate conditions on 
the development of berry traits, which requires two consecu-
tive years for the full cycle [as discussed in Li-Mallet et al. 
(2016) or in Tello and Ibáñez (2017)]. This QTL cluster also 
encloses further QTLs for berry weight in 2015 and 2016, 
rachis weight in 2015 and 2016 and total berry volume in 
2014 and 2016. In this region, with QTLs for berry-related 
sub-traits of cluster architecture, Tello et al. (2016) found 
two SNPs at around 19.17 Mb associated with the length 
of the first lateral. LG10 also contains QTLs for shoulder 
length between ~ 5 and ~ 15 Mb in the G × V cross. Associ-
ated with the marker VMC2A10 (5.98 Mb) Marguerit et al. 
(2009) detected QTLs for peduncle, rachis and rachis inter-
node length on LG10 in the interspecific cross in their work. 
Their QTL was co-localized with AGAMOUS, a floral organ 
development gene. As a key finding of their work Shiri et al. 
(2018) have recently reported that AGAMOUS is involved 
in the compactness of table grape clusters.

On LG12, the QTLs for mean berry volume and cluster 
weight co-localized between 17.92 and 23.76 Mb. Within 
this 5.84-Mb-wide region, an additional QTL for OIV204 
was detected, but only in the season of 2017. During 2 years 
(2015 and 2016) the LODmax for the QTL for OIV204 
was located also on LG12, but at different positions of 
VV_12_3836836FEM (3.88 Mb) and VV_12_6764538FEM 
(6.05 Mb), respectively. Trying to explain the positional shift 
of the OIV204 QTL in the year 2017, the climatic conditions 
around the time of flowering were compared between the 
three seasons (14 days pre-bloom until 14 days post-bloom 
counted from the median of the flowering time range of a 
given season). The most prominent climatic event between 
the seasons was a heavy rain storm on June 3, 2017 (31 l/
m2 in 6 h), at the beginning of the flowering time of the 
cross-population with the potential to affect the pollination 
rate. Such an event could have influenced the expression of 
the trait. Interestingly, Costantini et al. (2008) reported a 
QTL for berry weight in the region of the confidence inter-
val for OIV204 at 5.44 Mb. Berry weight is significantly 
correlated with OIV204 in the population investigated here 
over 2 years. Assuming that the QTL for OIV204 reported 
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here is influenced by berry weight Costantini et al. (2008) 
may thus have indirectly confirmed the position of the QTL 
for OIV204 in the range of 3.88-6.05 Mb by their finding. 
In the work of Tello et al. (2016) a SNP associated with 
cluster compactness was located in this region also, directly 
supporting the QTL position for OIV204 in the upper third 
of the chromosome.

On LG17, QTLs for berry number, cluster weight, mean 
berry volume and OIV204 were found between the LODmax 
markers SCU06 (3.29  Mb) and UDV092 (9.61  Mb) in 
this work. Several studies using populations with diverse 
genetic background reported QTLs for cluster architecture 
traits in this chromosomal region. Fanizza et al. (2005) 
found a QTL for berry number associated with an AFLP 
marker (17mCTG eATC8) at the very top of LG17. Correa 
et al. (2014) reported a QTL for rachis traits linked to the 
marker VMC2H3 at 3.68 Mb. Linked to the marker VVIN73 
(5.63 Mb), Doligez et al. (2013) reported a QTL for berry 
weight. Marguerit et al. (2009) reported VVIN73 as LODmax 
marker for rachis internode length. Hence, the region on 
LG17 seems to be strongly engaged in the genetic determi-
nation of cluster architecture. The fact that the same marker 
was linked to rachis as well as to berry traits, in two different 
studies, could probably be explained by the dependency of 
rachis traits on the manifestation of flower and berry traits 
as explained in Gourieroux et al. (2016). With the resolution 
of QTL analysis it is not feasible to dissect underlying candi-
date genes for single sub-traits. It remains elusive to suggest 
a pleiotropic effect of a locus on several phenotypic features. 
Indeed, the proximity of QTLs for berry- and rachis-related 
sub-traits in this region provides the opportunity for marker-
assisted selection. It may be possible to take advantage of 
this situation by applying a small range of molecular mark-
ers from this QTL region to select less berry volume with 
large rachis features tagging several traits that might be 
co-inherited.

On LG18, the confidence interval of the QTL for clus-
ter weight flanks the confidence interval for the QTL for 
pedicel length. Both confidence intervals were co-located 
additionally with the confidence interval for berry number, 
when flower sex was used as a co-factor in IM calculation. 
This QTL-saturated region is flanked by markers VMC2A3 
(0.95 Mb) and VV18_8582805FEM (9.58 Mb). In addition, 
the sub-trait QTLs for berry weight and rachis weight were 
co-located in this cluster.

Several recent reports for cluster architecture sub-traits 
identified QTLs on LG18. In the studies of Correa et al. 
(2014), Doligez et al. (2013), Costantini et al. (2008) and 
Cabezas et al. (2006) the marker VMC7F2 at 30.31 Mb was 
linked to berry volume, berry weight and seed traits. In the 
close vicinity of this marker Tello et al. (2016) reported a 
SNP in the 5′UTR of a MADS-box SEEDSTICK encoding 
gene correlated with ramification length. Correa et al. (2014) 

could show the linkage of rachis node number to the markers 
VMC2A7 and VMCNG2F12 at 13.39 and 22.85 Mb. Down-
stream of this region, in proximity of the marker UDV108, 
they reported the QTL position for berry number and berry 
number after gibberellic acid treatment.

On LG18, all so far reported QTLs for berry-related 
cluster architecture sub-traits from table grape crosses were 
located at the lower arm of the group. Quite in contrast, the 
QTLs detected in this work were exclusively located on the 
upper arm of LG18. Doligez et al. (2013) used three cross-
populations to investigate the coupling of berry size and seed 
content. Two of these were table grape crosses and one was 
a wine grape cross. Only in the cross of wine grape cultivars 
they found a QTL for berry sub-traits, also on the upper arm 
linked to marker VVIN83 at 10.67 Mb.

Survey of GO classes enriched in the QTL cluster 
regions

Looking at the highly enriched GO classes and the corre-
sponding annotated genes reveals six groups of GO-term-
related genes enriched between 30- and 90-fold in the QTL 
clusters for cluster architecture-associated traits (Online 
Resource 8). The first group comprises a set of genes encod-
ing a component of menaquinone biosynthesis, a 2-oxog-
lutarate decarboxylase hydro-lyase magnesium ion binding 
protein and a gene encoding naphthoate synthase, enriched 
45-fold in the QTL cluster on chromosome 1. These genes 
are involved in the formation of co-factors for the electron 
transfer machinery of photosystem I (PSI) (Gross et al. 
2006). At a similar level of enrichment (36-fold) there are 
copper transporter systems encoded in cluster 3.2. Copper 
is a crucial element in electron transport, but may also be 
implicated in other processes like free radical elimination, 
signaling and hormone perception (Sancenón et al. 2003). It 
remains to be elucidated whether electron transfer systems 
of PSI are particularly involved in cluster architecture deter-
mination. The role of copper transporters may be ambiguous 
with the possibility to contribute to PSI or to participate 
in signaling during cellular development. In cluster 2 there 
is a strong enrichment (50-fold) for genes encoding a cell-
cycle-regulated microtubule-associated protein and arma-
dillo repeat-containing kinesin-like protein 2. The products 
of these genes are involved in cell division and intracellular 
transport along microtubuli using motor proteins like kine-
sins. This function is in line with the strong enrichment (90-
fold) of as yet uncharacterized proteins assigned to the GO 
classes for bidirectional movement of large protein com-
plexes along microtubules (GO:0035721 and 42073) found 
in cluster 10. These functions are intrinsic to cell develop-
ment and may be an important part of the formation of the 
cluster architecture sub-traits. The genes strongly enriched 
(37-fold) in cluster 18 encode flavonol synthase (FLS1), an 



1175Theoretical and Applied Genetics (2019) 132:1159–1177	

1 3

iron-binding light-responsive oxidoreductase that contrib-
utes to flavonoid biosynthesis. It acts on dihydroflavonols 
to yield quercetin, kaempferol and myricetin in grapevine. 
These substances serve as UV protectants. Five FLS genes 
have been shown to be expressed in flower buds and flow-
ers of grapevine. Two FLS genes keep on being expressed 
from véraison (the transition point of berry growth from 
hard, green berries to berry softening and sugar accumula-
tion) to harvest stage (Fujita et al. 2006). Heijde and Ulm 
(2012) reported enhanced FLS expression after UV-B pho-
ton perception by the UV-B photoreceptor (UVR8) pathway 
in A. thaliana. Also Hayes et al. (2014) reported for A. thali-
ana that the perception of UV-B radiation was maintained 
with the UVR8-mediated UV-B responses. They could link 
the UVR8 pathway to growth patterns, i.e., shade avoid-
ance responses in Arabidopsis thaliana by antagonizing the 
phytohormones auxin and gibberellin. Nevertheless, how a 
higher level of UV protectants may be beneficial for a more 
loosely structured inflorescence remains to be revealed. 
The cluster 3.1 contains a prominent group of SAUR fam-
ily proteins and auxin-induced genes in 33.5-fold enrich-
ment. SAURs (“Small Auxin Up” RNAs) are early auxin-
responsive genes that play a role in the regulation of plant 
cell growth (cell expansion and cell division). The plant-
specific SAUR genes are generally present in tandem arrays 
with high redundancy and arranged in large genomic blocks 
due to segmental duplications of very closely related genes. 
These genes are induced by auxins, but may also be regu-
lated by brassinosteroids, gibberellins, abscisic acid and 
jasmonate. They are involved in cell differentiation and pat-
terning. The SAURs also respond to environmental condi-
tions (light, drought) and may modulate auxin transport (Ren 
and Gray 2015). From all the genes enriched in the QTL 
clusters, this block in cluster 3.1, together with the finding 
of highly enriched intracellular microtubule-guided trans-
porter functions involved in cell development in the cluster 
on chromosome 2, provides the best candidates to explain 
different growth patterns that result in the phenotypes of 
loose or compact cluster architecture traits. However, their 
functional relevance awaits further investigation.

Conclusions

The combination of statistical methods, i.e., correlation anal-
ysis, PCA, RF and CLM modeling, enabled the determina-
tion of the most relevant sub-traits that determine cluster 
architecture in the evaluated G × V cross. For those highly 
effective sub-traits of cluster architecture, it was possible to 
identify 19 reproducible QTLs. As compared to literature 
references, some QTLs already reported could be verified 
and new QTLs in yet unreported regions became accessible. 
Co-localized QTLs determined 87% of the total phenotypic 

variation of traits with high impact on cluster architecture 
detected in this study. Projection of confidence intervals of 
co-localized QTLs onto the reference genome for grape-
vine (PN40024) revealed eight QTL clusters, and the QTL 
clustering facilitates marker deduction for MAS. GO term 
enrichment analysis suggested accumulation of genes related 
to biological functions as first ideas on the molecular basis 
underlying the phenotype of cluster architecture.
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