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Abstract
Key message A key candidate gene, GRMZM2G110141, which could be used in marker-assisted selection in maize 
breeding programs, was detected among the 16 genetic loci associated with waterlogging tolerance identified through 
genome-wide association study.
Abstract Waterlogging stress seriously affects the growth and development of upland crops such as maize (Zea mays L.). 
However, the genetic basis of waterlogging tolerance in crop plants is largely unknown. Here, we identified genetic loci for 
waterlogging tolerance-related traits by conducting a genome-wide association study using maize phenotypes evaluated 
in the greenhouse under waterlogging stress and normal conditions. A total of 110 trait-single nucleotide polymorphism 
associations spanning 16 genomic regions were identified; single associations explained 2.88–10.67% of the phenotypic 
variance. Among the genomic regions identified, 14 co-localized with previously detected waterlogging tolerance-related 
quantitative trail loci. Furthermore, 33 candidate genes involved in a wide range of stress-response pathways were predicted. 
We resequenced a key candidate gene (GRMZM2G110141) in 138 randomly selected inbred lines and found that varia-
tions in the 5ʹ-UTR and in the mRNA abundance of this gene under waterlogging conditions were significantly associated 
with leaf injury. Furthermore, we detected favorable alleles of this gene and validated the favorable alleles in two different 
recombinant inbred line populations. These alleles enhanced waterlogging tolerance in segregating populations, strongly 
suggesting that GRMZM2G110141 is a key waterlogging tolerance gene. The set of waterlogging tolerance-related genomic 
regions and associated markers identified here could be valuable for isolating waterlogging tolerance genes and improving 
this trait in maize.

Introduction

Waterlogging is an important abiotic stress leading to losses 
in crop production (Bailey-Serres et al. 2012). During its 
lifecycle, maize (Zea mays L.) frequently encounters water-
logging stress due to poor drainage and/or long periods of 
rainfall (Visser et al. 2003). Waterlogging of soil directly 
results in reduced levels of oxygen in tissues and gas dif-
fusion between cells (Voesenek and Bailey-Serres 2013), 

which restrict aerobic respiration and result in a decrease 
in soil pH (Fukao and Bailey-Serres 2004; Setter et  al. 
2009). To survive under waterlogging conditions, numer-
ous morphological, transcriptional, and metabolic changes 
are induced in plants (Bailey-Serres and Colmer 2014; Bai-
ley-Serres and Voesenek 2008; Lee et al. 2011; Nanjo et al. 
2011; Narsai et al. 2009; Zou et al. 2010), which ultimately 
influence growth and vigor and alter growth parameters such 
as morphological and biomass-related traits.

Identifying waterlogging tolerance-related quantitative 
trait loci (QTL) is challenging. However, these QTL have 
direct applications in maize breeding. Using markers tightly 
linked to waterlogging tolerance, it is possible to transfer 
tolerance genes to less tolerant lines to develop hybrids with 
high tolerance to waterlogging. To date, more than 100 QTL 
conferring waterlogging tolerance have been mapped on all 
10 maize chromosomes. Since the availability of oxygen 
in roots under waterlogging conditions is vital for plant 
survival, plants have evolved suites of adaptive traits that 

Communicated by Antonio Augusto Franco Garcia.

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s0012 2-018-3152-0) contains 
supplementary material, which is available to authorized users.

 * Fazhan Qiu 
 qiufazhan@mail.hzau.edu.cn

1 National Key Laboratory of Crop Genetic Improvement, 
Huazhong Agricultural University, Wuhan 430070, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00122-018-3152-0&domain=pdf
https://doi.org/10.1007/s00122-018-3152-0


2300 Theoretical and Applied Genetics (2018) 131:2299–2310

1 3

ensure gas exchange while avoiding oxygen loss (Colmer 
and Voesenek 2009). Approximately 14 QTL for root aer-
enchyma formation were mapped onto all 10 maize chro-
mosomes except chromosome 4 (chr4) and chr6 (Mano and 
Omori 2008; Mano et al. 2007, 2008, 2012). In addition, 
two QTL for adventitious root formation were mapped to 
chr4 and chr8 (Mano et al. 2005), and one locus for barrier 
formation against radial oxygen loss was mapped to chr3 
(Watanabe et al. 2017). The differential responses of plants 
to waterlogging directly affect root and shoot growth, as well 
as leaf senescence. Eighteen QTL for root length (Osman 
et al. 2013; Qiu et al. 2007; Zhang et al. 2012), 24 QTL 
for plant height (Osman et al. 2013; Qiu et al. 2007; Zhang 
et al. 2012), and two QTL for leaf injury (LI) (Mano et al. 
2006, 2012) were mapped to different genomic loci on the 
10 maize chromosomes. These changes ultimately affect 
biomass-related traits. Many QTL for biomass-related traits 
have also been identified and mapped in maize, including six 
QTL for root fresh weight, 14 QTL for root dry weight, three 
QTL for shoot fresh weight, 15 QTL for shoot dry weight, 
and 11 QTL for total dry weight (root dry weight and shoot 
dry weight) (Mano et al. 2006; Osman et al. 2013; Qiu et al. 
2007; Zhang et al. 2012). Moreover, more than 14 QTL for 
yield and yield-related traits, such as root lodging, brace 
root, and stem lodging under waterlogging conditions in the 
field have been mapped (Zaidi et al. 2015).

These studies have produced large amounts of data that 
pave the way to understanding the genetic basis of water-
logging tolerance. However, in practice, breeders prefer to 
select traits with high heritability and easily identified char-
acteristics or indicators. Therefore, morphological charac-
teristics and yield-related traits are usually used as indicators 
of waterlogging tolerance, although examining physiologi-
cal and developmental traits could well reveal the intrinsic 
biological characteristics of waterlogging tolerance. It is 
challenging to map/clone candidate genes that are directly 
associated with these traits. Comparative transcriptome/
proteome analysis of plants under waterlogging conditions 
is usually performed to identify candidate genes primarily 
involved in signaling, transcription, and efficient anaerobic 
ATP production. Such analyses have demonstrated that many 
candidate genes encoding proteins of unknown function are 
involved in plant survival under low-oxygen conditions in 
Arabidopsis thaliana and maize (Lee et al. 2011; Mustroph 
et al. 2010; Narsai et al. 2011; Yu et al. 2015; Zou et al. 
2010).

Maize germplasm collections consisting of inbred lines 
have abundant genetic diversity and rapid linkage disequi-
librium (LD) decay, making maize an ideal crop for genome-
wide association study (GWAS) (Yan et al. 2011). An asso-
ciation panel consisting of a global germplasm collection of 
368 maize inbred lines was recently assembled (Yang et al. 
2010; Li et al. 2013) and was successfully used to dissect the 

genetic basis of complex agronomic traits, such as oil bio-
synthesis and metabolic diversity in maize kernels (Li et al. 
2013; Wen et al. 2014), as well as drought tolerance at the 
seedling stage (Liu et al. 2013; Mao et al. 2015; Wang et al. 
2016). In the present study, we used this association panel 
to (i) estimate the phenotypic variability of morphological 
and biomass-related traits of seedlings under waterlogging 
conditions, (ii) identify waterlogging tolerance-associated 
variants and potential candidate genes, and (iii) develop 
molecular markers for improving waterlogging tolerance. 
The results of this study improve our understanding of the 
genetic basis of waterlogging tolerance and should facilitate 
the identification of desirable alleles for the genetic improve-
ment of waterlogging tolerance in maize.

Materials and methods

Plant materials and growth conditions

Seed of the 368 inbred lines comprising the association 
panel (Fu et al. 2013; Li et al. 2013) were planted in a green-
house with a controlled temperature (~ 28/22 °C day/night 
cycle), a 14-h/10-h light/dark cycle, and 70% average humid-
ity. The growth substrate and waterlogging treatment were 
similar to those described previously (Qiu et al. 2007; Zhang 
et al. 2012). Briefly, 12 uniform seedlings of each line were 
planted in a plastic pot (20 cm in diameter and 30 cm deep) 
containing 3.5 kg quartz sand and 630 mL sterile deionized 
water. Two independent planting experiments were con-
ducted using a randomized complete-block design with three 
replicates. The waterlogging treatment was carried out at the 
second-leaf stage by maintaining a 2–3-cm water layer above 
the quartz sand surface for 6 days (d). A parallel experiment 
that ensured normal growth was conducted as a control.

Phenotypic evaluation and statistical analysis

To evaluate the phenotypic responses of the inbred lines 
to waterlogging stress, seven seedling traits including plant 
height (PHT, cm), root length (RL, cm), shoot fresh weight 
(SFW, g), root fresh weight (RFW, g), shoot dry weight 
(SDW, g), root dry weight (RDW, g), and total dry weight 
(TDW, g, TDW = SDW + RDW) under control and water-
logging conditions were measured after 6 d of waterlog-
ging stress. Leaf injury (LI) was scored only in plants under 
waterlogging conditions, as it was not observed under con-
trol conditions. The LI index was scored as described by 
Mano and Omori (2013) to determine the degree of leaf 
chlorosis. If a given seedling did not show leaf chlorosis, 
it was given an LI score of 0. If ~ 50% of the first leaf of a 
given seedling was chlorotic, it was given an LI of 0.5. A 
plant with a completely chlorotic first leaf was scored as 1.0, 
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and a plant with a completely chlorotic first leaf and a 50% 
chlorotic second leaf was given a score of 1.5. Sampling, 
drying, and measurements were performed using previously 
described methods (Qiu et al. 2007). Briefly, the seedlings 
were carefully removed from the pot, and the roots were gen-
tly washed under running water. RL was measured from the 
coleoptilar node to the tip of the longest root, and PHT was 
measured from the coleoptilar node to the tip of the long-
est leaf. The roots were then separated from the plant, and 
RFW and SFW of each replicate per genotype for control 
and waterlogging treatment were measured, after which the 
plant tissues were rapidly transferred into an oven and dried 
until a constant weight was achieved. The average value of 
12 seedlings was calculated to represent the trait phenotype 
of a line for one replicate, and the average value of three 
replicates per genotype was calculated to represent the trait 
phenotype under control or treatment conditions. Addition-
ally, the seven secondary traits of each genotype were cal-
culated based on the phenotypic value of a given trait under 
waterlogging condition to that under control treatment (e.g., 
RPHT = PHTtreatment/PHTcontrol), which revealed substantial 
genotypic responses to waterlogging stress. These secondary 
traits were defined as relative phenotypes, such as RPHT for 
relative phenotype of PHT, RRL for RL, RSFW for SFW, 
RRFW for RFW, RSDW for SDW, RRDW for RDW, and 
RTDW for TDW.

To evaluate the effect of waterlogging stress on plant 
phenotypes in the association panel, the mixed model was 
performed as follow: phenotype ~ T + (1|G) + (1|E) + (1|G*
T) + (1|G*E) (T, treatment; G, genotype; E, environment; 
G*T, interaction of G and T; G*E, interaction of G and E), 
in which statistical significance of factor T was evaluated 
using Wald test, and significance of the other factors was 
evaluated using the likelihood ratio test (LRT). The average 
phenotype of seven seedling traits under control and treat-
ment conditions, seven secondary traits, and LI phenotype 
in each environment were used to estimate best linear unbi-
ased prediction (BLUP) of these traits via mixed models, in 
which G and E were set as a random effect, and the heritabil-
ity (H2) of these trait was separately calculated as H2 = δg

2/
(δG

2 + δE
2/n + δe

2/nr) (δG
2 genetic variance; δE

2 environment vari-
ance; δe

2 error; n number of experiments, and r number of 
replicates). These statistical analyses were conducted using 
the lme4 package in R software (R Development Core Team 
2013; version 3.4.4; http://www.r-proje ct.org/).

Genome‑wide association study (GWAS)

GWAS was performed using BLUP data for seven secondary 
traits and LI phenotype via a compressed mixed linear model 
(cMLM) using TASSEL software (v3.0), which accounts 
for population structure (Q matrix) and familial kinship 
(K matrix) (Yu et al. 2005; Zhang et al. 2010). The 56,110 

genomic SNPs (single nucleotide polymorphisms) from the 
MaizeSNP50 BeadChip (Li et al. 2012a, b) and 525,105 SNPs 
from transcriptomic sequencing (Fu et al. 2013) with a minor 
allele frequency (MAF) of ≥ 5% were merged. The merged 
data sets included 558529 SNPs that were used to perform 
the GWAS analyses with the inbred lines in the association 
panel. The standard cMLM was applied using default settings 
(P3D for variance component analysis; compression level set 
to optimum level), in which Q and K matrix were estimated as 
previously described (Fu et al. 2013). Briefly, a total of 16,338 
SNPs with < 20% missing data and MAF > 5% were used to 
estimate population structure and kinship coefficient (Fu et al. 
2013). The population structure was inferred by STRU CTU RE 
(Pritchard et al. 2000), and the kinship matrix was calculated 
using the method of Loiselle et al. (Loiselle et al. 1995). The 
equation of standard MLM for GWAS could be expressed as: 
y = Wv + Xβ + Zu + e, where y is a vector of a phenotype; v and 
β are unknown fixed effects representing marker effects and 
non-marker effects, respectively; and u is a vector of size n 
(number of individuals) for unknown random polygenic effects 
having a distribution with mean of zero and covariance matrix 
of G = 2 Kδa

2, where K is the kinship (co-ancestry) matrix with 
element kij (i, j = 1, 2,…, n) calculated from either a set of 
genetic markers or pedigrees and δa

2 is an unknown genetic 
variance. W, X and Z are the incidence matrices for v, β, and 
u, respectively, and e is a vector of random residual effects 
that are normally distributed with zero mean and covariance 
R = Iδe

2, where I is the identity matrix and δe
2 is the unknown 

residual variance (Zhang et al. 2010). The  Me (effective num-
ber of independent markers) method, implemented in Genetic 
type 1 error calculator (GEC) software, was used to estimate 
the  Me for the 558,529 SNPs (Li et al. 2012a, b), and a uni-
form threshold was set to declare the significance of trait–SNP 
associations using a Bonferroni correction for multiple tests 
(p ≤ 1/Me). The proportion of genotypic variance explained 
(PVE) by a single SNP was estimated via cMLM using TAS-
SEL3.0. The extent of local linkage disequilibrium (LD) for 
each significant SNP and all other SNPs on the same chro-
mosome was also evaluated through TASSEL3.0, in which 
each significant SNP was set as a covariate factor. A genomic 
locus where the LD between the significant SNP and nearby 
SNPs decayed to r2 = 0.2 was defined as a local LD-based 
QTL interval. All significant SNPs with overlapping genomic 
regions were classified into a QTL interval. The genes associ-
ated with these SNPs were summarized and annotated using 
the MaizeGDB (www.Maize GDB.org).

Association analysis of candidate gene 
GRMZM2G110141

To evaluate the genetic diversity of a candidate gene 
GRMZM2G110141 associated with LI phenotype, four 
pairs of primers (Table S1) were designed to amplify the 

http://www.r-project.org/
http://www.MaizeGDB.org
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promoter (1 kb), 5′- and 3′-UTR (untranslated region) 
and all introns and exons of this gene in 138 randomly 
selected inbred lines from the association panel using the 
B73 genome sequence as a reference (http://www.maize 
gdb.org/, version 5b.60). All amplified sequences were 
aligned using MEGA version 5 (http://www.megas oftwa 
re.net/). Nucleotide polymorphisms including SNPs and 
InDels were identified, and variants with MAF ≥ 5% were 
used for association analysis. Variants significantly asso-
ciated with the LI index were identified using the cMLM 
model as mentioned before.

Detection of desirable alleles in two recombinant 
inbred line populations

Four maize inbred lines (B73, BY804, BY815, and K22) 
were applied to construct recombinant inbred lines (RILs), 
and a total of 181 RILs derived from B73 × BY804 (popu-
lation1, pop1) and 197 RILs derived from BY815 × K22 
(population2, pop2) were generated (Liu et al. 2017; Pan 
et al. 2017), which were genotyped at GRMZM2G110141 
using gene-specific primers (Table S1). Polymorphisms 
were visualized using a Fragment Analyzer™ (AATI, North 
Brunswick, NJ USA). Waterlogging treatment of maize 
seedlings was conducted as described before. The LI indi-
ces of the parental lines and RILs were scored after 6 d of 
waterlogging stress. The alleles associated with low LI were 
designated as desirable alleles, and statistical analysis was 
performed via ANOVA.

The mRNA abundance analysis of GRMZM2G110141

The mRNA abundance of the candidate gene 
GRMZM2G110141 under normal and waterlogging con-
ditions was assayed in 43 inbred lines that were randomly 
selected from the 138 resequenced samples. Root samples 
were separately collected from seedlings grown under 
normal (0 h), 4 h stress (4 h), and 3 d stress (3 d) treat-
ment. Roots from five seedlings were pooled for RNA 
extraction using TRIZOL reagent (Invitrogen, Gaithers-
burg, MD, USA). Total RNA was treated with RNase-free 
DNase (Invitrogen). The purified RNA was used to syn-
thesize single-stranded cDNA using recombinant M-MLV 
reverse transcriptase (Invitrogen). Quantitative reverse-
transcription PCR (qRT-PCR) was performed using gene-
specific primers (Table S1) with 2 × iTaq™ Universal SYBR 
Green Supermix (BioRad, Hercules, CA, USA). ZmActin1 
(GRMZM2G126010) was employed as the internal control 
to normalize the expression data. Relative mRNA abundance 
were calculated according to the  2−ΔΔCT (cycle threshold) 
method (Livak and Schmittgen 2001).

Results

Waterlogging stress leads to extensive phenotypic 
variations in the association panel

To estimate the effect of genotype in maize plants under 
waterlogging stress, we measured the phenotypes of eight 
traits under control and waterlogging conditions. The 
phenotypic values of each trait fit a normal distribution. 
Relative phenotypic values for root-related traits such 
as RRL, RRFW, and RRDW were seriously affected by 
waterlogging (Fig. 1a), and RL, RFW, and RDW decreased 
by more than 20% under waterlogging compared to nor-
mal condition, whereas shoot-related traits such as PHT, 
SFW, and SDW decreased by less than 8% in response 
to waterlogging (Table 1). The LI varied from 0 to 2.2, 
showing abundant variation (Fig.  1b, Supplementary 
Fig. 1). Statistical analysis (Table 1) demonstrated that 
all traits studied significantly differed among genotypes, 
indicating that the variance of these traits is genetically 
controlled. The relative phenotypic values of morphologi-
cal- and biomass-related traits were significantly positively 
correlated between any two traits, including RPHT, RRL, 
RSFW, RRFW, RSDW, RRDW, and RTDW, whereas LI 
was significantly negatively correlated with seven other 
traits (Table S2). Heritability values from 0.691 to 0.967 
were obtained for the measured traits and relative pheno-
typic values under control and waterlogging conditions 
(Table S3).

Identification of significant loci 
for waterlogged‑related traits through GWAS

To identify waterlogging tolerance-associated loci, we 
performed a GWAS using the cMLM model that simul-
taneously control Q and kinship matrix, and 110 trait-
SNP associations across the eight traits with a cutoff 
of p ≤ 3.99 × 10−6 (1/Me) were identified (Figs. S2, S3, 
Table S4), in which  Me value was computed using the 
methodology described by Li et  al. (2012a, b). These 
SNPs were mainly distributed on chr1, 2, 4, 5, 6, and 7. 
The PVE by single SNP ranged from 2.88 to 10.67%, 
and 69 SNPs had a PVE of > 5%. A total of 75 SNPs 
were significantly associated with the relative pheno-
typic values of biomass-related traits (RRFW, RSFW, 
RRDW, RSDW, and RTDW), and 12 SNPs were signifi-
cantly associated with the relative phenotypic values of 
morphological-related traits (RPHT and RRL). We iden-
tified 23 SNPs on chr6 associated with LI, which had 
the highest PVE. Moreover, six SNPs were associated 
with two different traits: chr4.S_185037528 on chr4 was 

http://www.maizegdb.org/
http://www.maizegdb.org/
http://www.megasoftware.net/
http://www.megasoftware.net/
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associated with RSDW and RTDW, and the five other 
SNPs on chr5 were associated with RSFW and RTDW. 
Under more stringent criteria (p ≤ 0.01/Me = 3.99 × 10−8), 
we identified five trait–SNP associations on chr4, 6, 7, 
and 10. Of these, chr4.S_185037528, chr4.S_183906006, 

ch r 6 . S _ 1 5 0 5 9 2 8 5 0 ,  ch r 7 . S _ 1 0 9 3 2 9 2 1 9 ,  a n d 
chr10.S_121414571 are located within GRMZM2G151516 
(encoding the chloroplastic protein kinase APK1B), 
GRMZM5G829928 (encoding PTAC6; plastid tran-
scriptionally active 6), GRMZM2G110141 (encoding 

Fig. 1  Phenotypic variation in waterlogging tolerance-related traits in 
the maize diversity panel. a Boxplot of the relative phenotypic value 
for the seven morphological and biomass traits analyzed. RPHT, rela-
tive phenotypic value for PHT; RRL for RL; RSFW for SFW; RRFW 
for RFW; RSDW for SDW; RRDW for RDW and RTDW for TDW. 
b Distribution of leaf injury across the 368 diverse maize accessions 

under waterlogging stress. The relative phenotypic value of each 
trait was calculated based on the phenotypic value of a given trait 
under waterlogging conditions compared to control treatment (e.g., 
RPHT = PHTtreatment/PHTcontrol). RL root length, PHT plant height, 
RFW root fresh weight, SFW shoot fresh weight, RDW root dry 
weight, SDW shoot dry weight, TDW total dry weight

Table 1  Mean values of eight 
measured traits under control 
and waterlogging conditions 
and the effect of waterlogging 
stress on these phenotypic traits

LI leaf injury, RL root length, PHT plant height, RFW root fresh weight, SFW shoot fresh weight, RDW 
root dry weight, SDW shoot dry weight, TDW total dry weight. Mixed model was performed with genotype 
and genotype (G) × treatment (T) as random effects
*p < 0.05, **p < 0.01, ***p < 0.001; NA not analyzed, ns not significant
a The phenotypic values of the traits under control and waterlogging conditions are shown; values represent 
the mean values for all accessions
b Reduction ratio relative to the control
c Likelihood ratio test (LRT) was used to evaluated the significance
d Wald Test was used to evaluated the significance
e G × T effect for LI was not analyzed, since none of the control plants showed any symptoms

Trait Controla Waterlogginga Reduction (%)b Genotypec Treatmentd G × Tc

LI 0 1.16 NA *** *** NAe

RL (cm) 29.91 23.85 20.26 *** *** ns
PHT (cm) 24.29 22.48 7.46 *** *** **
RFW (g) 1.091 0.824 24.43 *** *** ***
SFW (g) 0.937 0.863 7.87 *** *** **
RDW (g) 0.091 0.07 23.26 *** *** ***
SDW (g) 0.099 0.095 3.28 *** ** ***
TDW (g) 0.189 0.161 14.74 *** *** ***
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DUF1682 family protein, a protein of unknown func-
tion), GRMZM2G092525 (encoding a protein whose 
expression is responsive to nematode infection), and 
GRMZM2G087824 (encoding an expressed protein of 
unknown function), respectively.

We evaluated the extent of the local LD of each signifi-
cant SNP identified by GWAS (Fig. S4). The average value 
was 10.9 Mb. The most extensive LD decay was found on 
chr4, which ranged from 20 to 55.05 Mb, with an average 
of 51.01 Mb. However, the average LD decay was only 
4.58 Mb, except on chr4. We merged the significant lead-
ing SNPs detected in the association panel for all traits and 
found 16 loci where multiple significant GWAS signals clus-
tered in local LD-based QTL regions (r2 > 0.2), which repre-
sented 16 waterlogging-associated genomic loci: we named 
these loci QTL1 to QTL16 (Table 2). The average locus 
interval was 16 Mb. Five loci were covered by more than 10 
significant SNPs, and 14 loci were supported by more than 
one significant SNP. These QTL are distributed on all chro-
mosomes except chr3 and 8. Moreover, 14 loci co-localized 

with at least one previously identified QTL and seven loci 
co-localized with at least three QTL (Table 2, Table S5) 
(Mano et al. 2005, 2006, 2007, 2008, 2012; Osman et al. 
2013; Qiu et al. 2007; Zaidi et al. 2015; Zhang et al. 2012).

Identifying a favorable allele of GRMZM2G110141 
for waterlogging tolerance

Because QTL12, covering 23 LI-associated SNPs and 
the most significant LI-associated SNP (p = 1.79E−08) 
(Table S4), closely co-localized with a previously reported 
QTL (Osman et al. 2013), we further analyzed this QTL. 
We analyzed the haplotype block in the 100-kb genomic 
region flanking the most significant LI-associated SNP. 
We identified four blocks in this region, including block#2 
and block#4, which covered a 67-kb and 6-kb genomic 
region, respectively, each encoding two genes (Fig. 2). The 
most significant SNP (chr6.S_150592850) is involved in 
block#4 and is located in gene GRMZM2G110141 (Fig. 2). 
Expression profiling of four candidate genes revealed that 

Table 2  Information about 16 LD-based loci associated with waterlogging stress and comparisons with previously identified QTL

Multiple # signals denote the number of co-localized QTL
a Genomic loci are in reference to LD SNPs
b Chromosome
c Most significant SNP for each locus
d Physical position of peak SNP based on the maize B73 reference sequence version 5b.60 (www.maize gdb.org)
e p value of peak SNP was estimated by cMLM simultaneously controlling for Q and K
f The extended physical regions where the  r2 between nearby SNPs and peak SNP decayed to 0.2 for each locus
g Total number of significant SNPs in the QTL interval
h Trait associated with significant SNPs in the corresponding genomic loci
i Phenotypic variation explained by each locus in the corresponding QTL intervals
j Represents co-localization with previously identified waterlogging-related QTL (Mano et al. 2005, 2006, 2007, 2008, 2012; Osman et al. 2013; 
Qiu et al. 2007; Zaidi et al. 2015; Zhang et al. 2012)

Locia Chrb Peak  SNPc SNP  Positiond p  valuee Interval (Mb)f No.g Traith PVE (%)i Co-localizationj

QTL1 1 chr1.S_28641587 28641587 2.63E−06 27.15–27.48 3 RPHT 7.16–7.21 #
QTL2 1 chr1.S_51157643 51157643 2.45E−07 47.54–50.29 11 RRDW 4.99–6.40 ##
QTL3 2 PZE-102107516 136621788 1.62E−07 128.02–132.57 2 RRL 4.50–4.69 #
QTL4 2 chr2.S_236663275 236663275 3.87E−07 223.60-–227.80 11 RRDW 5.06–5.21
QTL5 4 chr4.S_185037528 185037528 1.52E−08 147.63–203.45 14 RTDW,RSDW 3.94–7.60 ######
QTL6 4 chr4.S_233330808 233330808 3.90E−06 212.52–232.52 1 RTDW 4.05 #
QTL7 5 chr5.S_59040371 59040371 8.11E−07 49.36–60.13 3 RRFW 4.12–5.94 ##
QTL8 5 PZE-105067126 69325453 4.23E−08 60.74–71.70 21 RSFW, RSDW, RTDW 2.94–6.73 ###
QTL9 5 chr5.S_99928658 99928658 2.27E−06 86.20–104.40 1 RTDW 5.17 #
QTL10 5 chr5.S_159288653 159288653 4.93E−07 151.81–152.00 2 RRDW 4.10–4.10
QTL11 6 chr6.S_103857926 103857926 1.07E−06 60.7–137.40 2 RTDW 4.32–4.50 ########
QTL12 6 chr6.S_150592850 150592850 1.79E−08 142.58–144.62 23 LI 6.60–10.67 #
QTL13 7 chr7.S_109329219 109329219 3.15E−08 96.61–111.91 6 RRL, RSDW 2.66–5.44 ####
QTL14 7 chr7.S_143632586 143632586 1.11E−07 132.62–141.34 3 RPHT 3.01–4.34 ####
QTL15 9 chr9.S_149164064 149164064 1.12E−07 139.66–143.25 5 RRFW 4.71–5.25 ###
QTL16 10 chr10.S_121414571 121414571 3.80E−08 104.34–127.24 2 RSDW 5.44–7.18 ####

http://www.maizegdb.org
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GRMZM2G110141 was highly expressed in seedling leaves, 
seedling roots, and the leaf meristem (Fig. S5), indicating its 
importance for seedling development. Furthermore, 12 SNPs 
in GRMZM2G110141 were found to be associated with LI 

(Table S4). Therefore, we resequenced a 3.2-kb genomic 
fragment containing GRMZM2G110141 in 138 randomly 
selected inbred lines. A total of 128 SNPs and 20 insertion/
deletions (InDels) were detected. We again analyzed the 

Fig. 2  Genomic location of the SNP locus associated with LI, and haplotype block analysis of chromosome 6. Genes within these regions are 
indicated in the diagram. LI leaf injury
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association of each polymorphism with LI using the cMLM 
model and calculated the pairwise LD of these polymor-
phisms (Fig. 3a). The variants within the 5′-UTR (21 SNPs 

and 3 InDels) were significantly associated with LI (Bonfer-
roni threshold p < 6.76 × 10−5), and these 24 LI-associated 
variants were mapped within a LD block (Fig. 3b). The 138 

Fig. 3  Natural variations in GRMZM2G110141 are significantly 
associated with waterlogging tolerance in maize. a Association analy-
sis of genetic variation in GRMZM2G110141 with waterlogging tol-
erance in maize. A schematic diagram of the 3.2-kb genomic region 
of GRMZM2G110141, including the promoter, 5′-UTR, three exons, 
two introns, and 3′-UTR. The locations of the start codon and stop 
codon are labeled as ATG and TAA, respectively. The region of the 
5′-UTR is highlighted by a red rectangle. The p value is shown on a 
–log10 scale. b The pattern of pairwise LD of DNA polymorphisms in 
the promoter region and 5′-UTR. c Haplotypes of GRMZM2G110141 
in maize genotypes BY815, BY804, JIAO51, K22, TY11, and B73 
(reference genome). The site of the start codon (ATG) is designated 
as “+1.” A total of 24 DNA polymorphisms are significantly associ-
ated with maize waterlogging tolerance and are located in the 5′-UTR 

of GRMZM2G110141. These polymorphisms are shaded red. The 
CAAT-box, CAAAT-box, and TAT CCA T/C-motif are different cis 
elements in the 5′-UTR. The location of the primer (indicated by a 
blue arrow) was used for genotyping the InDel polymorphism of 
GRMZM2G110141. d Comparison of LI for Hap1 and Hap2 in the 
138 resequenced lines. e Comparison of GRMZM2G110141 expres-
sion between the waterlogging-tolerant and sensitive alleles. The 
gene expression levels were determined in the roots of 43 randomly 
selected lines under control, 4  h stress, and 3  d stress conditions. 
Hap1 represents tolerant alleles and Hap2 represents sensitive alleles. 
N is the genotype numbers of the two alleles. Statistical significance 
was determined by analysis of variance (ANOVA). LI leaf injury, 
Hap haplotype
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maize genotypes were classified into two haplotype (Hap) 
groups based on the significant variants (p < 6.76 × 10−5) 
(Fig. 3c). Hap1 had a significantly lower LI than Hap2 
(p = 1.25E−10), and Hap1 was therefore designated as 
the favorable/tolerant allele (Fig. 3d), which could explain 
26.2% of the phenotypic variation. Notably, some variants 
in the LD, such as SNP-329, SNP-275, SNP-271, and SNP-
269, occurred in three motifs (CAAT-box, CAAAT-box, 
and TAT CCA T/C-motif), which are important cis-acting 
elements in regulating gene expression. Moreover, three 
InDels (InDel-131, InDel-106, and InDel-75) resulting in a 
13-bp deletion were also found in the tolerant lines. These 
results suggest that 5′-UTR variants of GRMZM2G110141 
might lead to changes in gene expression, in turn altering the 
tolerance of the inbred lines to waterlogging stress.

To test the hypothesis, we measured the relative mRNA 
abundance of GRMZM2G110141 using qRT-PCR in 
plants under well-watered (control, before waterlogging 
treatment), short-term (4 h), and long-term (3 d) water-
logging stress in 43 randomly selected inbred lines. The 
mRNA abundance of GRMZM2G110141 was signifi-
cantly higher in Hap1 than in Hap2 under stress conditions 
(Fig. 3e). Moreover, under short-term (4 h) and long-term 
(3 d) waterlogging conditions, the mRNA abundance of 
GRMZM2G110141 was significantly negatively corre-
lated with LI (4 h, r = − 0.577, p = 0.030; 3 d, r = − 0.562, 
p = 0.037) but was not significantly correlated with LI under 
normal conditions (r = − 0.402, p = 0.314) (Fig. S6), indicat-
ing that the differences in GRMZM2G110141 expression 
contribute to the variance in LI in these inbred lines under 

waterlogging stress. Therefore, the variants in the 5′-UTR of 
GRMZM2G110141 might be the important causal variation 
conferring waterlogging stress tolerance in maize seedlings.

GRMZM2G110141 alleles can be used to identify 
waterlogging‑tolerant genotypes

We designed a pair of PCR primers flanking the three 
InDels (13 bp) within the 5′-UTR to distinguish the alleles 
of GRMZM2G110141 (Fig. 3c). We analyzed two RIL 
populations (pop1 and pop2) and their parents to estimate 
the effect of the haplotype. Both BY804 and BY815 harbor 
GRMZM2G110141 alleles of the Hap1 genotype, whereas 
those of B73 and K22 are of the Hap2 genotype. The ampli-
cons were 148-bp and 161-bp long for Hap1 and Hap2, 
respectively (Fig. S7). We compared the waterlogging tol-
erance of the four parental lines and RILs derived from these 
lines (Fig. 4). After 6 d of waterlogging stress, the LI of lines 
harboring Hap1 was significantly lower (0.31 for BY804 and 
0.34 for BY815) than that of lines harboring Hap2 (1.19 for 
B73 and 1.34 for K22) (Fig. 4). Each line in pop1 and pop2 
was genotyped by PCR and also subjected waterlogging 
stress treatment for 6 d. We determined the LI of each line 
and identified 88 and 102 lines with the Hap1 genotype and 
93 and 95 lines with the Hap2 genotype in pop1 and pop2, 
respectively. The average LI index of RILs with Hap1 was 
0.46 in pop1 and 0.52 in Pop2 (Fig. 4), which were signifi-
cantly lower than those of lines with Hap2 in pop1 (1.15) 
and pop2 (1.21), respectively (p < 0.01) (Fig. 4). These 
results suggest that Hap1 of GRMZM2G110141 might be 

Fig. 4  Favorable alleles of GRMZM2G110141 improve waterlogging 
tolerance in maize. a Phenotypic responses of B73 and BY804 to 6 d 
of waterlogging stress. b Phenotypic responses of K22 and BY815 to 
6 d of waterlogging stress. c Leaf injury (LI) indices of B73, BY804, 
Hap1, and Hap2 in pop1. d LI of K22, BY815, Hap1, and Hap2 in 

pop2. N indicates the genotype numbers of the two alleles. Statisti-
cal significance was determined by analysis of variance (ANOVA). 
pop1, population 1 derived from a cross between B73 and BY804; 
pop2, population 2 derived from a cross between K22 and BY815; 
Hap haplotype
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an allele that confers waterlogging tolerance, which could 
therefore be used to improve this trait in maize.

Discussion

Genetic architecture of waterlogging 
tolerance‑related traits in maize

Waterlogging stress severely impairs the growth and devel-
opment of land plants. Tolerance to waterlogging is a com-
plex process that is not only determined by induced adaptive 
traits (Colmer and Voesenek 2009) but is also influenced by 
environmental factors, such as temperature and the duration 
of flooding. Here, we analyzed the genetic architecture of 
waterlogging tolerance-related traits in maize seedlings via 
GWAS. We identified 110 trait–SNP associations located 
within 16 genomic loci defined by an LD-based QTL inter-
val (p < 1/Me = 3.66 × 10−6) (Table 2, Table S4), and a total 
of 76 trait–SNP associations were also identified under 
more stringency level (p < 1/N = 1.79 × 10−6). This number 
is markedly higher than the number of loci previously dis-
covered in a GWAS using 144 inbred lines from Chinese 
germplasm (Table S6) (Zhang et al. 2012), mainly due to the 
diversity of the germplasms used, marker density, and popu-
lation size (Table S6), which directly affect the detection 
power of association mapping (Yan et al. 2011). Moreover, 
we used the  Me method to declare the significance thresh-
old for trait–SNP associations in the present study, which 
considered the LD among SNPs that were not independent 
among tests (Li et al. 2012a, b). However, the Bonferroni 
method used in a previous study (Zhang et al. 2012) failed to 
consider the LD among SNPs, leading to an overly conserva-
tive p value correction (Pahl and Schafer. 2010).

The cross-validation of the mapping results from GWAS 
and linkage mapping provides important clues to screen vital 
target loci for waterlogging tolerance. Approximately 87.5% 
of loci identified in our GWAS were co-localized with at 
least one previously identified QTL (Mano et al. 2005, 2006, 
2007; Mano et al. 2008, 2012; Osman et al. 2013; Qiu et al. 
2007; Zaidi et al. 2015; Zhang et al. 2012) and seven loci 
(QTL5, 8, 11, 13, 14, 15, and 16) co-localized with at least 
three QTL (Table 2, Table S5), indicating that these seven 
loci are the most important QTL hotspots associated with 
waterlogging tolerance, which would become the key tar-
get loci to be applied to screen candidate genes and genetic 
improvement in future. On the other hand, two loci (QTL4 
on chr2 and QTL10 on chr5) did not co-localize with previ-
ously identified QTL, suggesting that these loci might be 
new genetic loci that function in waterlogging tolerance. 
These data demonstrate that our GWAS platform is suffi-
ciently robust to detect a number of genomic loci associated 
with waterlogging tolerance.

The stress signaling was sensed and transmitted to whole 
plants although the waterlogging stress was imposed on the 
root system. Here we used eight root- and leaf-related traits 
to characterize waterlogging tolerance variation, which may 
reflect different aspects of seedlings response after water-
logging stress. Our GWAS analysis indicated that different 
loci may control different response. For example, QTL8 on 
chr5 is associated with RSFW, RSDW, and RTDW, and two 
QTL associated with PHT (Osman et al. 2013) were also 
detected in this locus, suggesting that QTL8 might con-
trol plant height; QTL5 on chr4 is associated with RSDW 
and RTDW, and previously identified QTL in this locus 
are associated with adventitious root formation, root/shoot 
dry weight, plant height, and LI (Mano et al. 2005, 2012; 
Osman et al. 2013; Qiu et al. 2007), suggesting that QTL5 
affects the development of the whole plant; QTL11 on chr6 
is associated with RTDW, and five QTL associated with 
plant height, root/shoot dry weight, root/shoot fresh weight, 
and total dry weight were found at this locus, demonstrating 
that QTL11 controls biomass-related genetic loci; QTL14 on 
chr7 is associated with RPHT, while previously identified 
QTL are primarily associated with root-related traits such as 
root angle and root lodging (Zaidi et al. 2015). These results 
also provide evidence that the root system directly senses 
waterlogging and determines the level of plant tolerance to 
stress, which is genetically controlled in maize. Moreover, 
these QTL associated with specific trait, such as QTL8 con-
trolling PHT, would help in our understanding of the genetic 
basis and provide valuable information for breeding.

Markers developed from GRMZM2G110141 could be 
used to improve waterlogging tolerance in maize

The polymorphic SNPs of the association panel were 
mainly detected based on RNA sequencing dataset from 
maize kernels (Fu et al. 2013). These SNPs are directly 
located within functionally important genes. In the current 
study, we identified 33 candidate genes associated with 
significant SNPs (Table S4), most of which are involved 
in a wide range of molecular functions, such as sucrose 
metabolism (GRMZM2G477236), stress responses 
(GRMZM2G335618), and signaling (GRMZM5G822947) 
and are responsive to waterlogging stress (Bailey-Serres 
et al. 2012; Yu et al. 2015; Zou et al. 2010). Molecular 
markers linked to functional loci could be developed to 
screen hybrid and inbred lines for the presence of favora-
ble alleles. The favorable alleles could then be transferred 
from one inbred line to another via backcross breeding 
using marker-assisted selection to improve waterlogging 
tolerance in maize. Thus, we focused on the most signifi-
cant peak associated with LI on chr6. Four candidate genes 
located within the peak SNP span two LD blocks, and 
only GRMZM2G110141 was highly expressed in seedling 
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leaves and roots (Fig. 2). Although this gene was anno-
tated as encoding a protein of unknown function, previ-
ous transcriptome and proteome studies have revealed that 
numerous proteins with no known biological function are 
involved in low-oxygen survival in Arabidopsis and maize 
(Lee et al. 2011; Mustroph et al. 2010; Yu et al. 2015; Zou 
et al. 2010). Resequencing and analysis of favorable alleles 
of GRMZM2G110141 associated with the most significant 
SNP further indicated that the sequence variation in the 
5′-UTR affects waterlogging tolerance in the natural popu-
lation (Fig. 3). The data from two RILs helped confirm 
the notion that Hap1 is a favorable allele for waterlog-
ging tolerance (Fig. 4). The functional markers derived 
from GRMZM2G110141 could be used as direct targets 
to genetically improve waterlogging tolerance in maize 
seedlings on a large scale via high-throughput genotyping.

Conclusion

In the present study, a complex genetic architecture under-
lying natural variation of waterlogging tolerance in maize 
seedlings was unraveled through GWAS. A large panel 
coupled with a high density of SNPs enabled us to detect 
dozens of significant association loci. Previously identified 
QTL were summarized and compared with our GWAS sig-
nals to check their validity. As a result, we found that most 
of the LD-based QTL interval derived from GWAS signal 
could co-localize with at least one previously identified 
QTL. A total of 33 candidate genes that involved in wide 
range of stress-response pathway were associated with sig-
nificant SNPs, and the key candidate GRMZM2G110141 
was further validated via resequencing, analysis of mRNA 
abundance and confirmation of favorable alleles in two 
RILs. Our study provide some clues to the strategic con-
cept of genetic improvement of waterlogging tolerance, 
and the hotspot association regions and candidate genes 
identified might open the door to help create waterlogging-
tolerant varieties of maize.
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