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Abstract
Key message  Four QTLs for adult-plant resistance to powdery mildew were mapped in the Zhou8425B/Chinese 
Spring population, and a new QTL on chromosome 3B was validated in 103 wheat cultivars derived from Zhou8425B.
Abstract  Zhou8425B is an elite wheat (Triticum aestivum L.) line widely used as a parent in Chinese wheat breeding pro-
grams. Identification of genes for adult-plant resistance (APR) to powdery mildew in Zhou8425B is of high importance for 
continued controlling the disease. In the current study, the high-density Illumina iSelect 90K single-nucleotide polymorphism 
(SNP) array was used to map quantitative trait loci (QTL) for APR to powdery mildew in 244 recombinant inbred lines 
derived from the cross Zhou8425B/Chinese Spring. Inclusive composite interval mapping identified QTL on chromosomes 
1B, 3B, 4B, and 7D, designated as QPm.caas-1BL.1, QPm.caas-3BS, QPm.caas-4BL.2, and QPm.caas-7DS, respectively. 
Resistance alleles at the QPm.caas-1BL.1, QPm.caas-3BS, and QPm.caas-4BL.2 loci were contributed by Zhou8425B, 
whereas that at QPm.caas-7DS was from Chinese Spring. QPm.caas-3BS, likely to be a new APR gene for powdery mil-
dew resistance, was detected in all four environments. One SNP marker closely linked to QPm.caas-3BS was transferred 
into a semi-thermal asymmetric reverse PCR (STARP) marker and tested on 103 commercial wheat cultivars derived from 
Zhou8425B. Cultivars with the resistance allele at the QPm.caas-3BS locus had averaged maximum disease severity reduced 
by 5.3%. This STARP marker can be used for marker-assisted selection in improvement of the level of powdery mildew 
resistance in wheat breeding.

Keywords  APR · Blumeria tritici f. sp. tritici · STARP marker · Triticum aestivum · Wheat 90K SNP array

Abbreviations
ANOVA	� Analysis of variance
APR	� Adult-plant resistance

BLUEs	� Best linear unbiased estimates
CAPS	� Cleaved amplified polymorphic sequences
QTL	� Quantitative trait locus (loci)
ICIM	� Inclusive composite interval mapping
IT	� Infection type
KASP	� Kompetitive allele-specific PCR
LOD	� Logarithm of odds
MAS	� Marker-assisted selection

Communicated by Hermann Buerstmayr.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s0012​2-018-3058-x) contains 
supplementary material, which is available to authorized users.

 *	 Xianchun Xia 
	 xiaxianchun@caas.cn

1	 Institute of Crop Sciences, National Wheat Improvement 
Center, Chinese Academy of Agricultural Sciences (CAAS), 
12 Zhongguancun South Street, Beijing 100081, China

2	 College of Agronomy, Henan Agricultural University, 63 
Agricultural Road, Zhengzhou 450002, Henan, China

3	 Crop Research Institute, Heilongjiang Academy 
of Agricultural Sciences, Harbin 150086, Heilongjiang, 
China

4	 Zhoukou Academy of Agricultural Sciences, 
Zhoukou 466001, Henan, China

5	 Focom Seed Co. Ltd, 11 Chang Chun Road, 
Zhengzhou 450001, Henan, China

6	 International Maize and Wheat Improvement Center 
(CIMMYT) China Office, c/o CAAS, 12 Zhongguancun 
South Street, Beijing 100081, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00122-018-3058-x&domain=pdf
https://doi.org/10.1007/s00122-018-3058-x


1064	 Theoretical and Applied Genetics (2018) 131:1063–1071

1 3

MDS	� Maximum disease severity
PVE	� Phenotypic variance explained
RFLP	� Restriction fragment length polymorphism
RIL	� Recombinant inbred line
SNP	� Single-nucleotide polymorphisms
STARP	� Semi-thermal asymmetric reverse PCR

Introduction

Wheat is one of the most important staple crops, but its pro-
duction is constrained by many biotic and abiotic factors. 
Powdery mildew, caused by Blumeria graminis f. sp. tritici 
(Bgt), is a devastating rapidly spreading fungal disease that 
affects all aerial plant parts including stems, leaves, glumes, 
and awns. Powdery mildew prevails in many wheat grow-
ing regions of eastern Asia, southeastern USA, northeastern 
Africa, and northern Europe (Saari and Wilcoxson 1974; 
Roelfs 1977; Selter et al. 2014). The severity and preva-
lence of powdery mildew has increased in recent decades 
due to increasing applications of nitrogen fertilizer and irri-
gation (Olesen et al. 2000). Since the 1980s, this disease 
has become widespread in most wheat growing regions of 
China (Li and Zeng 2002) where it affects around 8 mil-
lion ha of wheat annually (Zhao et al. 2013). In comparison 
to chemical control, the use of resistant cultivars is a more 
comprehensive, economical, and environmentally friendly 
approach to control the disease (Petersen et al. 2015).

To date, 85 powdery mildew resistance genes 
(Pm1–Pm58) at 54 loci have been catalogued in wheat (Hao 
et al. 2015; Liu et al. 2017; McIntosh et al. 2017; Wiersma 
et al. 2017). These genes were derived from 20 Triticeae 
species including Triticum aestivum, T. monococcum, T. 
dicoccum, T. spelta, and Aegilops speltoides; 21 loci were 
from T. aestivum. Many of these genes are race-specific 
and the majority of them have lost effectiveness. However, 
adult-plant resistance genes, such as Lr34/Yr18/Pm38, 
Lr46/Yr29/Pm39, and Lr67/Yr46/Pm46, continue to confer 
race-non-specific resistance to powdery mildew (Lillemo 
et al. 2008; Herrera-Foessel et al. 2014; Moore et al. 2015), 
although levels of protection are often less than adequate 
when such genes are deployed alone and they do not control 
the disease at early growth stages.

With recent developments in genotyping arrays, such as 
the high-density wheat 90K SNP chip platform (Wang et al. 
2014), SNP markers are being used increasingly in genetic 
mapping. Due to co-dominance, abundance, and even dis-
tribution of SNP across the genome, high-density genome-
wide genotyping arrays further improve the construction of 
high-resolution genetic maps and QTL mapping. In recent 
years, QTL of different traits were identified from the whole 
genome using the wheat 90K iSelect array, e.g., for wheat 
quality (Colasuonno et al. 2014), flag leaf and grain (Wu 

et al. 2015a, b, 2016), yield and related traits (Gao et al. 
2015), and disease resistance (Liu et al. 2016; Zhang et al. 
2017). In addition, the SNPs from arrays can be transferred 
into KASP (Kompetitive allele-specific PCR, Semagn et al. 
2014; Thomson 2014) or STARP (Long et al. 2017) markers 
that can be easily used in marker-assisted selection (MAS). 
It is expected that the STARP technique, with the major 
advantages of simple assay design, flexible throughputs, 
high accuracy, platform compatibility, and low operational 
costs, will be applied increasingly in MAS and genetic map-
ping (Long et al. 2017).

Wheat cultivar Zhou8425B developed by the Zhoukou 
Academy of Agricultural Sciences in Henan province has 
good resistance to stripe rust, leaf rust, and powdery mil-
dew (http://wheat​pedig​ree.net/sort/show/92642​, ZHOU-
MAI-8425-B in CIMMYT Genebank). It carries all-stage 
resistance genes YrZH84 (Li et al. 2006) and LrZH84 (Zhao 
et al. 2008), and 4 leaf rust APR QTL (Zhang et al. 2017). 
Zhou8425B is an elite wheat cultivar and has been widely 
used as a parent in breeding programs in the Yellow and 
Huai Valleys Autumn-sown Wheat Zone since 1984. More 
than 100 cultivars derived from this line have been grown 
on an accumulated area of more than 33 million ha in China 
during the past 20 years. Although stripe rust and leaf rust 
resistance genes in Zhou8425B were identified previously 
(Li et al. 2006; Zhao et al. 2008; Yin et al. 2009; Xiao et al. 
2011; Zhang et al. 2017), resistance to powdery mildew has 
not been studied. The objective of the present study was to 
identify QTL for APR to powdery mildew in Zhou8425B, 
validate a major QTL on chromosome 3B, and develop a 
tightly linked STARP marker for MAS in wheat breeding.

Materials and methods

Plant materials

The 244 F8 recombinant inbred lines (RILs) derived from 
a cross between Zhou8425B and Chinese Spring were used 
for construction of a whole-genome high-density linkage 
map and QTL mapping. One hundred and three cultivars 
derived from Zhou8425B were used for QTL validation. The 
highly susceptible wheat cultivar Jingshuang 16 was used as 
the susceptible control. The resistant wheat line Zhou8425B 
will be available in CIMMYT Genebank from March, 2018 
on (http://wheat​pedig​ree.net/sort/show/92642​), and it is also 
available in the Genebank of Chinese Academy of Agricul-
tural Sciences by the accession number ZM29072 (http://
www.cgris​.net).

http://wheatpedigree.net/sort/show/92642
http://wheatpedigree.net/sort/show/92642
http://www.cgris.net
http://www.cgris.net
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Powdery mildew tests in the greenhouse

Seedlings of 244 F8 RILs and parents were tested for pow-
dery mildew response in the greenhouse following inocu-
lation with prevalent Bgt isolates E09 and E20 obtained 
from the Plant Protection Institute, CAAS. About 15 seeds 
of each RIL were planted, and the infection types (IT) 
based on a 0–4 scale (Liu et al. 1999) were scored 10 days 
after inoculation when the susceptible control Jingsh-
uang16 showed severe symptoms.

Powdery mildew evaluation in the field

The RILs and parents were evaluated for powdery mildew 
response at the adult–plant stage in the field at Beijing and 
Zhengzhou during the 2014–2015 and 2015–2016 crop-
ping seasons following artificial inoculation. The field tri-
als were conducted in randomized complete blocks with 
three replicates. Each plot consisted of a single 1.5 m row 
with 20 cm between rows. Approximately 50 seeds were 
uniformly sown in each row. The highly susceptible cul-
tivar Jingshuang 16 was planted at every tenth row as a 
control, and also perpendicular and adjacent to the test 
rows as a spreader for even infection.

The highly susceptible cultivar Jingshuang 16 was 
planted in 9 cm × 9 cm (diameter × height) plastic pots 
and inoculated with the virulent isolate E20 at the two-
leaf stage in the greenhouse; the fully infected Jingshuang 
16 seedlings were then transplanted among the spreader 
lines with one pot every 50 cm in the field at the stem 
elongation stage by the end of March. Disease severity on 
each line was scored as the average percentage of leaf area 
covered by powdery mildew. The first assessment occurred 
when the susceptible control Jingshuang 16 was severely 
diseased about 6 weeks after inoculation. The maximum 
disease severity (MDS) for each line was evaluated when 
the disease severity on the control reached a maximum 
level around 1 week later, which was used for subsequent 
analysis.

To validate the effect of the new QTL on chromosome 
3B, 103 cultivars derived from crosses involving Zhou8425B 
were planted at Beijing, and at Zhengzhou and Xingyang in 
Henan province during the 2016–2017 cropping season. The 
field trials and powdery mildew evaluations in the field were 
similar to those described above.

Statistical analysis

Phenotypic correlation coefficients, analysis of variance 
(ANOVA), and t tests were conducted using SAS 9.4 software 
(SAS Institute, Cary, NC). Broad-sense heritability (H2) of 

powdery mildew response was calculated following Nyquist 
and Baker (1991).

QTL analysis

Genomic DNA were extracted from healthy seedling leaves of 
the RILs and parents by the CTAB method (Saghai-Maroof 
et al. 1984). Molecular genotyping was performed using the 
wheat 90K iSelect SNP array and genetic linkage maps were 
constructed. Twenty-one linkage groups corresponding to all 
21 hexaploid wheat chromosomes were assembled from 5636 
high-quality polymorphic SNP markers (Gao et al. 2015). QTL 
analysis was performed by the inclusive composite interval 
mapping with the ICIM-ADD function using the software 
QTL IciMapping 4.1 (Li et al. 2007; Meng et al. 2015). Phe-
notypic values of RILs averaged from three replicates in each 
environment and BLUEs (best linear unbiased estimates) val-
ues of the genetic effects from four environments of RILs by R 
package lme4 (Bates et al. 2015) were used for QTL detection. 
QTL were mapped at a logarithm of odds (LOD) threshold of 
2.5 based on 1000 permutations and a walk speed of 1.0 cM, 
with P = 0.001 in stepwise regression. QTL effects were esti-
mated as the proportion of phenotypic variance explained 
(PVE) by the QTL. Normally, there are minor differences in 
the peaks of LOD contours for a single QTL across different 
environments. The QTL within one-log support confidence 
interval (14 cM) were considered to be the same.

STARP marker design

The STARP marker designed from an SNP tightly linked 
with the 3B QTL included five primers: two AMAS-primers 
(asymmetrically modified allele-specific primers) for specifi-
cally amplifying two alleles from genomic DNA to provide 
priming sites for PEA-primers by six touchdown cycles, two 
universal PEA-primers (priming element-adjustable primers) 
amplifying with the AMAS amplification products to distin-
guish two alleles by gel-free fluorescence signals, and their 
common reverse primer designed from information in the 
GSP website (http://probe​s.pw.usda.gov/GSP/index​.php). PCR 
procedures and conditions followed Long et al. (2017). Gel-
free fluorescence signals scanning and allele separation were 
conducted by microplate reader (Multiscan Spectrum BioTek, 
Synegy/H1) with the Klustercaller 2.24.0.11 software (LGC, 
Hoddesdon, UK).

http://probes.pw.usda.gov/GSP/index.php
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Results

Seedling reactions to powdery mildew 
in the greenhouse

Seedlings of control cultivar Jingshuang 16 were suscepti-
ble (IT 3–4) to powdery mildew. Zhou8425B and Chinese 
Spring were also susceptible to E09 and E20 (IT 3–4). 
Among the 244 RILs, 243 exhibited susceptible infection 
types (IT 3–4), whereas one was highly resistant. This line 
was considered to be a contaminant and was excluded from 
subsequent analysis.

Powdery mildew scores in the field

The MDS of the 243 RILs ranged from 0 to 77% across 
four environments, indicating significant differences among 
genotypes. Zhou8425B and Chinese Spring exhibited aver-
aged MDS scores of 5 and 7%, respectively. Pearson’s cor-
relation coefficients for the population ranged from 0.53 to 
0.73 among four environments (P < 0.01) (Table S1). The 
frequency distribution of powdery mildew MDS in each 
environment with a coefficient of variation of 63.6% showed 
a continuous distribution skewed toward resistance (Figure 
S1), indicating polygenic inheritance and transgressive seg-
regation. Broad-sense heritability of MDS across the four 
environments was 0.80. ANOVA confirmed significant vari-
ation among genotypes, environments, and genotype × envi-
ronment interactions (Table S2), demonstrating both geno-
typic and environmental influences on these traits.

The MDS of 103 derivatives of Zhou8425B were 0–70, 
0–50, and 1–70% in Beijing, Xingyang, and Zhengzhou, 
respectively, with correlation coefficients ranging from 0.45 
to 0.58 among three environments.

QTL for powdery mildew resistance

QPm.caas-1BL.1 in marker interval IWB72835-IWB18787 
identified at Beijing 2016, Zhengzhou 2016, and the aver-
aged value of four environments explained 5.44, 5.69, and 
7.20% of the phenotypic variances, respectively (Fig. 1; 
Table 1). The additive effects were − 2.33, − 3.22, and 
− 2.38, respectively. The resistance allele was derived from 
Zhou8425B. 

QPm.caas-3BS in marker interval IWB21064-IWB64002 
was stably detected in all environments and averaged values, 
explaining 4.36–9.05% of the phenotypic variances, with 
additive effects ranging between − 1.51 and − 3.80. The 
resistance allele was from Zhou8425B.

QPm.caas-4BL.2 located in the region IWB35851-
IWB60096 explained 6.43 and 8.77% of the phenotypic 

variance in Zhengzhou 2016 and the average for four 
environments, with additive effects of − 3.43 and − 2.63, 
respectively. The resistance allele was from Zhou8425B.

Q P m . c a a s - 7 D S  i n  m a r k e r  i n t e r v a l 
IWB41108–IWB53819 was identified in Beijing 2015, 
Zhengzhou 2015, Beijing 2016, and the average of four 
environments, explaining 10.37, 5.20, 4.10, and 4.21% of 
the phenotypic variances, respectively. The additive effects 
were 4.60, 1.15, 2.05, and 1.84, respectively. The resist-
ance allele was contributed by Chinese Spring.

Validation of QPm.caas‑3BS in Zhou8425B 
derivatives

QPm.caas-3BS with the resistance allele from Zhou8425B 
was an important APR QTL for powdery mildew resist-
ance, exhibiting a stable effect in all environments. 
We transferred SNP IWB41105 that was closely linked 
to QPm.caas-3BS into an STARP marker named Str-
IWB41105 (Table 2), and tested 103 Zhou8425B deriva-
tives (Table S3). Student’s t tests indicated that varieties 
with the resistance allele significantly (P < 0.05) reduced 
the average MDS of all environments by 5.3% (Table 3).

Discussion

Comparisons with previous reports

QPm.caas‑1BL.1

There are several reports of QTL for APR to powdery 
mildew mapped on chromosome 1BL. These include 
QPmvt-1BL and QPm.vt-1B detected in the North Ameri-
can winter wheat cultivar Massey and derived line USG 
3209, respectively (Liu et al. 2001; Tucker et al. 2007). 
The pleiotropic APR gene Lr46/Yr29/Pm39 in CIMMYT 
bread wheat line Saar was at a similar position to the 
above two QTL (Lillemo et al. 2008), and they all shared 
the closely linked simple sequence repeat (SSR) locus 
Xbarc80 (Tucker et al. 2007; Lillemo et al. 2008). Never-
theless, our experiment indicated that parents Zhou8425B 
and Chinese Spring did not have Lr46/Yr29/Pm39 as tested 
by the cleaved amplified polymorphic sequences (CAPS) 
marker csLV46G22 (Figure S2), and this pleiotropic QTL 
was also not previously detected in the population for 
leaf rust resistance (Zhang et al. 2017). One of the par-
ents, Zhou8425B (donor of QPm.caas-1BL.1), has win-
ter growth habit which is different from Saar (donor of 
Pm39) having spring growth habit. Therefore, it is likely 
that QPm.caas-1BL.1 is different from Pm39.
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QPm.caas‑3BS

Powdery mildew APR QTL QPm.inra-3B linked with 
Xgwm389 and Xbarc133 and derived from French semi-
dwarf cv. Courtot was identified in one environment (Bougot 
et al. 2006). One major pleiotropic gene Sr2 on chromosome 
3BS was tightly linked with pseudoblack chaff (Kota et al. 
2006), Lr27 (Singh and McIntosh 1984) and a powdery mil-
dew resistance gene (Mago et al. 2011b). QPm.caas-3BS is 
different from the powdery mildew gene co-segregating with 

Sr2, because neither the RILs nor parents have pseudoblack 
chaff and tests with the CAPS marker csSr2 that co-segre-
gates with Sr2 also indicated the absence of Sr2 (Figure S3) 
(Mago et al. 2011a). Moreover, there were no evidence that 
the Hope or H-44 derivatives of Yaroslaw emmer (T. dicoc-
coides) (McFadden 1930) or a derivative was involved in the 
pedigree of Zhou8425B. The proximal SNP markers Bob-
White_c9711_71 (ID: IWB4653) and Excalibur_c6330_1158 
(ID: IWB28189) of QLr.hebau-3BS (Zhang et al. 2017) were 
located at 53–55 cM (Zhang et al. 2017) in the same region 

Fig. 1   QTL mapping of pow-
dery mildew response in the 
Zhou8425B/Chinese Spring 
RIL population grown in four 
environments
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as QPm.caas-3BS. Moreover, QLr.hebau-3BS (in a 14.4 cM 
interval Xbarc147–Xgwm493) and QPm.inra-3B (16.9 cM 
from Xgwm389) are in different chromosomal bins (Sour-
dille et al. 2004). It is thus concluded that QPm.caas-3BS 
is likely a new APR QTL that is pleiotropic with a QTL for 
leaf rust resistance (Zhang et al. 2017).

QPm.caas‑4BL.2

Five QTL for APR to powdery mildew were identified 
near the chromosome 4B centromere in previous studies. 
QPm.ipk-4B and QPm.sfr-4B in the synthetic hexaploid line 

W7984 and Swiss spelt cv. Oberkulmer were detected in 
RFLP (restriction fragment length polymorphism) marker 
intervals Xcdo795–Xbcd1262 and Xpsr593b–Xpsr1112 
(Keller et  al.1999; Börner et  al. 2002). QPm.caas-4BL 
in Israeli wheat Oligoculm was mapped in SSR interval 
Xgwm375–Xgwm251 (Liang et al. 2006). QPm.nuls-4BL 
in wheat line Avocet was between DArT (Diversity arrays 
technology) marker XwPt1505 and SSR marker Xgwm149 
(Lillemo et al. 2008). QPm.caas-4BL.1 located in inter-
val Xgwm149–Xgwm495 in Italian cv. Libellula explained 
an average PVE of 14.7% (Asad et al. 2012). Xgwm149, 
Xgwm375, and the SNP marker BS00109813_51 (ID: 
IWB12434) were adjacent according to the wheat map in 
Zhang et al. (2017). In the present genetic map, QPm.caas-
4BL.2 was flanked by markers IWB35851 and IWB60096 
located at 39.97–42.20  cM and closely linked with 
IWB12434 at position 37.89 cM. Because QPm.ipk-4B and 
QPm.sfr-4B were mapped only with RFLP markers, it is 
difficult to compare the locations with our QTL. QPm.caas-
4BL.2 was mapped in a similar location to the latter three 
QTL and, hence, represents a same gene.

QPm.caas‑7DS

Chromosome 7DS harbors the multi-pathogen resistance 
gene Lr34/Yr18/Pm38 that has shown durable resistance 
for more than 80 years (Krattinger et al. 2009); this gene 
stimulates senescence-like processes in the flag leaf tips and 

Table 1   QTL for maximum 
disease severities of powdery 
mildew by inclusive composite 
interval mapping in F8 lines 
from Zhou8425B/Chinese 
Spring

a QTL overlapping within a one-log support confidence interval was assigned with the same symbol
b Position of QTL on chromosome: cM distance from the top of each map
c Logarithm of odds (LOD) score
d Percentages of phenotypic variance explained by individual QTL
e Additive effect of QTL; positive values indicate that resistance alleles were contributed by Chinese 
Spring, whereas negative values indicate that resistance alleles were contributed by Zhou8425B
f Average of four environments was estimated BLUEs value by in R package lme4

QTLa Environment Positionb Marker interval LODc PVE (%)d Adde

QPm.caas-1BL.1 2016 Beijing 71 IWB72835–IWB18787 3.34 5.44 − 2.33
2016 Zhengzhou 75 IWB72835–IWB18787 4.55 5.69 − 3.22
Averagef 71 IWB72835–IWB18787 5.82 7.20 − 2.38

QPm.caas-3BS 2015 Beijing 55 IWB21064–IWB64002 5.18 6.03 − 3.49
2015 Zhengzhou 43 IWB21064–IWB64002 5.71 9.05 − 1.51
2016 Beijing 47 IWB21064–IWB64002 2.86 4.36 − 2.09
2016 Zhengzhou 48 IWB21064–IWB64002 6.28 7.87 − 3.80
Average 55 IWB21064–IWB64002 6.23 7.10 − 2.38

QPm.caas-4BL.2 2016 Zhengzhou 41 IWB35851–IWB60096 4.26 6.43 − 3.43
Average 41 IWB35851–IWB60096 6.42 8.77 − 2.63

QPm.caas-7DS 2015 Beijing 23 IWB41108–IWB53819 8.47 10.37 4.60
2015 Zhengzhou 31 IWB41108–IWB53819 3.08 5.20 1.15
2016 Beijing 24 IWB41108–IWB53819 2.70 4.10 2.05
Average 23 IWB41108–IWB53819 3.71 4.21 1.84

Table 2   Primer sequences and annotation of STARP marker Str-
IWB41105 linked to QPm.caas-3BS 

a PEA primers can be universally used for any STRAP markers
b [Tail 1], GCA​ACA​GGA​ACC​AGC​TAT​GAC-3ʹ (Long et al. 2017)
c [Tail 2], GAC​GCA​AGT​GAG​CAG​TAT​GAC-3ʹ (Long et al. 2017)

Primer name Sequence

PEA-1a (5′Fam)AGC​TGG​TT(Spacer(C9))GCA​
ACA​GGA​ACC​AGCT(Dabcyl)ATGAC​

PEA-2 (5′Hex)ACT​GCT​CAA​GAG​(Spacer(C9))
GAC​GCA​AGT​GAG​CAGT(Dabcyl)
ATGAC​

AMAS-1 [Tail 1]b ACT​GTG​CTC​TTC​CGT​TCG​
AMAS-2 [Tail 2]c ACT​GTG​CTC​TTC​CGC​CCA​
Reverse CCA​ACC​AAC​TTC​ACT​GAT​ATG​AAA​A
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edges, leading to tip necrosis and functioning resistance in 
the adult plant (Singh 1992; Kolmer et al. 2008). Six other 
QTL were also detected in the position of Pm38, includ-
ing QPm.ipk-7D, QPm.inra-7D.1, Qaprpm.cgb-7D, QPm.
caas-7D, and QPm.caas-7DS in Opata 85, Courtot, Hanxuan 
10, Opata 85, Fukuho-komugi, and Libellula, respectively 
(Börner et al. 2002; Huo et al. 2005; Bougot et al. 2006; 
Liang et al. 2006; Asad et al. 2012). Many previous reports 
indicated that Chinese Spring had Lr34/Yr18/Pm38 (Dyck 
1977; Bossolini et al. 2006; Lagudah et al. 2006, 2009; Krat-
tinger et al. 2009; Wu et al. 2015a, b; Zhang et al. 2017). 
Thus, QPm.caas-7DS should be Pm38 in Chinese Spring.

Implications of QPm.caas‑3BS and QPm.caas‑7DS 
for wheat breeding

The pleiotropic QTL QPm.caas-3BS, significantly reduc-
ing MDS to powdery mildew and leaf rust, could be used 
to develop new cultivars for disease resistance. Aikang 58, 
containing the resistance allele of QPm.caas-3BS and mani-
festing prominent resistance, is an excellent powdery mil-
dew resistance source. Zhoumai 22, the most widely grown 
cultivar in Henan province (Xu et al. 2010; Zou et al. 2017), 
has resistance to stripe rust, leaf rust, and powdery mildew. 
Cultivars Zhoumai 26, Zhoumai 28, Zhoumai 36, Xinmai 
32, Xinmai 36, and Yude 1, all derived from Zhoumai 22, 
carry the 3BS resistance allele and can be used as breeding 
parents.

The pleiotropic APR gene Lr34/Yr18/Pm38 has been 
successfully used in CIMMYT wheat breeding programs 
(Singh 1993; Bahl et al. 1997; Singh et al. 2005; Kolmer 
et al. 2008; Liang et al. 2009; Wu et al. 2010, 2015a, b) 
and in Canada. It is present at high frequency in Chinese 
wheat landraces (85.1% of 422 landraces, Yang et  al. 

2008), and the resistance gene probably originated from 
Chinese landraces (Dakouri et al. 2014). Nevertheless, due 
to ease of selection for major resistance genes in Chinese 
wheat breeding programs, Lr34/Yr18/Pm38 is present in 
relatively few current wheat cultivars (Yang et al. 2008), 
and was not found in any of the 103 Zhou8425B deriva-
tives included in the present study. The accumulation of 
4–5 slow rusting or slow mildewing resistance genes can 
achieve high levels of resistance in wheat cultivars (Singh 
et al. 2000, 2005; Lu et al. 2009). Therefore, it is important 
to combine genes such as QPm.caas-3BS and Pm38 with 
other APR genes in the future especially given that at least 
some of these genes protect against multiple diseases.
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Table 3   t tests of powdery 
mildew MDS for 103 wheat 
varieties derived from 
Zhou8425B

a Genotype tested by the STARP marker Str-IWB41105 closely linked to QPm.caas-3BS. Absence and pres-
ence of resistance allele at QPm.caas-3BS locus are signified by A and B, respectively
b Mean maximum disease severity
c 95% confidence limits for the mean values
d Average of three environments was estimated BLUEs value by in R package lme4
*Significant at P = 0.05

Environment Genotypea Number Mean (%)b 95% CL meanc df t value

2017 Beijing A 46 27.2 22.3–32.0 101 2.26*
B 57 20.4 16.7–24.1

2017 Zhengzhou A 46 27.3 22.3–32.4 101 2.13*
B 57 20.7 16.8–24.6

2017 Xingyang A 46 9.5 7.3–11.7 101 2.15*
B 57 6.6 5.0–8.3

Averaged A 46 21.3 17.5–25.1 101 2.34*
B 57 16.0 13.1–18.8
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