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Abstract
Key message  A 159 bp deletion in ClFS1 gene encoding IQD protein is responsible for fruit shape in watermelon.
Abstract  Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] is known for its rich diversity in fruit size and shape. 
Fruit shape has been one of the major objectives of watermelon breeding. However, the candidate genes and the underlying 
genetic mechanism for such an important trait in watermelon are unknown. In this study, we identified a locus on chromo-
some 3 of watermelon genome controlling fruit shape. Segregation analysis in F2 and BC1 populations derived from a cross 
between two inbred lines “Duan125” (elongate fruit) and “Zhengzhouzigua” (spherical fruit) suggests that fruit shape of 
watermelon is controlled by a single locus and elongate fruit (OO) is incompletely dominant to spherical fruit (oo) with the 
heterozygote (Oo) being oval fruit. GWAS profiles among 315 accessions identified a major locus designated on watermelon 
chromosome 3, which was confirmed by BSA-seq mapping in the F2 population. The candidate gene was mapped to a region 
46 kb on chromosome 3. There were only four genes present in the corresponding region in the reference genome. Four 
candidate genes were sequenced in this region, revealing that the CDS of Cla011257 had a 159 bp deletion which resulted in 
the omission of 53 amino acids in elongate watermelon. An indel marker was derived from the 159 bp deletion to test the F2 
population and 105 watermelon accessions. The results showed that Cla011257 cosegregated with watermelon fruit shape. 
In addition, the Cla011257 expression was the highest at ovary formation stage. The predicted protein of the Cla011257 
gene fitted in IQD protein family which was reported to have association with cell arrays and Ca2+-CaM signaling modules. 
Clear understanding of the genes facilitating the fruit shape along with marker association selection will be an effective way 
to develop new cultivars.

Introduction

Fruit shape is among one of vital characteristic traits for 
horticulture industry that exhibits a broad range of pheno-
typic variation, thus emphasizing its importance in breeding 

program. Many QTLs and genes related to fruit shape have 
been detected or cloned in different crops. In cucumber, 
various QTLs of fruit shape have been genetically mapped 
(Bo et al. 2015; Jiang et al. 2015; Weng et al. 2015). Using 
RIL populations, ten QTLs were identified for fruit length 
(FL), fruit diameter (FD), mature fruit length (MFL), and 
mature fruit diameter (MFD) (Miao et al. 2011). During the 
early cucumber development, seven kinesin genes (CsKF1 to 
CsKF7) were proved to play the key role in exponential cell 
production and enlargement in fruit (Yang et al. 2013). The 
sf1 gene was also proposed for controlling cucumber fruit 
length by regulating gibberellins and cytokinin biosynthesis, 
signal transduction, and auxin signaling (Wang et al. 2017). 
Another study identified 8 QTLs for mature and imma-
ture cucumber fruit length. A major-effect QTL fl3.2 was 
detected, which explained a maximum phenotypic variation 
of 38.87% (Wei et al. 2016). The CsSUM, the homologous 
gene of SUN in tomato, was the candidate gene for cucumber 
spherical fruit (Pan et al. 2017). In tomato, two categories 
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of quantitative trait loci (QTLs) for fruit shape were sug-
gested: One was locule number and flat shape controlled by 
lc (locule number) and fas (fasciated); the other was fruit 
shape controlled by SUN, OVATE, LOCULE NUMBER, and 
FASCIATED (Liu et al. 2002; Xiao et al. 2008; Munos et al. 
2011; Rodriguez et al. 2011; van der Knaap et al. 2014). 
In addition, two suppressors of the ovate mutation (Sov1 
and Sov2) were proved to be regulator of fruit shape. The 
self1 promotes fruit elongation by increasing cell layers in 
the ovary and the QTL fs8.1 together with SUN, OVATE 
also controls tomato fruit shape (Paran and van der Knaap 
2007; Rodriguez et al. 2013; Chusreeaeom et al. 2014; Sun 
et al. 2015). In melon, the andromonoecious (a) was cloned 
and confirmed to control the fruit shape and carpel numbers 
(Boualem et al. 2008). Moreover, other QTLs associated 
with melon fruit shape (FS) were demonstrated by a number 
of QTL mapping (Paris et al. 2008; Fernandez-Silva et al. 
2010; Tomason et al. 2013).

Watermelon [Citrullus lanatus (Thunb.) Matsum. & 
Nakai] belongs to Cucurbitaceae family and is one of the 
most important commercial crops worldwide having 11 
chromosomes and a haploid genome of approximately 
425 Mb (2n = 2x = 22). The genome sequence and the genes 
annotation of watermelon were published in 2013 follow-
ing cucumber and melon (Huang et al. 2009; Garcia-Mas 
et al. 2012; Guo et al. 2013), providing the opportunity to 
apply next-generation sequencing to fine map genes func-
tion. It was considered that watermelon fruit shape was 
controlled by an incompletely dominant gene, resulting in 
elongate (OO), oval (Oo), and spherical (oo) fruits (Weet-
man 1937; Guner and Wehner 2004). Tanaka et al. (1995) 
also determined that spherical (Os) and oval (O+) water-
melon fruits are controlled by a single allele which shows 
incomplete dominance through the cross between a spherical 
fruit inbred line and an oval fruit inbred line. Furthermore, 
Poole and Grimball (1945) also found the same inheritance 
pattern in F2 populations of ‘Peerless’ × ‘Baby Delight’ and 
‘Northern Sweet’ × ‘Dove’. Allele ObE was proposed for 
elongate fruit, which was the dominant; allele ob for oblong 
fruit, which was the recessive, allele ObR (was not the same 
as the o gene for round) for the round fruit (Lou and Wehner 
2016).

Application of next-generation sequencing (NGS) and 
release of draft genome assemblies for two diploid water-
melon inbred lines (97103 and Charleston Gray) (http​://
cucu​rbit​geno​mics​.org/) greatly facilitated the construction 
of many genetic maps of watermelon recently (Sandlin 
et al. 2012; Zhang et al. 2012; Ren et al. 2014; Cheng et al. 
2016). However, only a limited number of QTLs or genes 
have been reported for watermelon fruit shape. Using a con-
sensus map of three mapping populations in watermelon, the 
major QTLs for fruit length (FL), fruit width (FWD), fruit 
shape index (FSI), and fruit weight (FWT) were found to be 

stable across genetic backgrounds and environments. It was 
the first stable QTL for fruit size and shape in watermelon 
(Sandlin et al. 2012). Ren et al. (2014) constructed an inte-
grated genetic map based on four mapping populations, and 
QTLs for fruit weight (FWT), fruit length (FL), fruit width 
(FWD), fruit shape index (FSI), and rind thickness (RTH) 
were detected and co-localized with QTL associated with 
Brix (BRX), suggesting the existence of pleiotropic effects 
on fruit maturity. The fruit shape index is the ratio of fruit 
length and width. There was positive correlation between 
fruit length, fruit width, and fruit shape index. Four QTLs 
associated with fruit shape index (FSI) were also detected 
through a genetic linkage map, and these QTLs explained 
the phenotypic variation of 31.9% (Sandlin et al. 2012; 
Cheng et al. 2016).

Information regarding inheritance pattern of fruit shape 
is elusive and candidate genes controlling the fruit shape 
in watermelon have not been reported yet. In this study, we 
investigated the inheritance of watermelon fruit shape gene 
in F2 population of ‘Duan125’ (elongate fruit) × ‘Zheng-
zhouzigua’ (spherical fruit). We identified a candidate gene 
on chromosome 3 associated with watermelon fruit shape 
(ClFS1) through genome-wide association studies (GWAS) 
of 315 watermelon accessions and bulked-segregant anal-
ysis (BSA) by genotyping a pair of bulked DNA samples 
from two sets of individuals with opposite extreme phe-
notypes (elongate individuals and spherical individuals). 
This is the first report about the candidate gene in control-
ling watermelon fruit shape. This study will open up the 
ways to shorten the breeding period and lead to selection 
of desired fruit shape in breeding program. This work will 
assist in selection of plants with desired fruit shape at the 
early stages of seedling or growth that will ultimately hasten 
the breeding process. This new allele provides a valuable 
tool in understanding the inheritance mechanisms of ClFS1 
in watermelon.

Materials and methods

Plant materials

Seeds of two inbred lines elongate watermelon ‘Duan125’ 
(P1) and spherical watermelon ‘Zhengzhouzigua’ (P2) were 
obtained from National Watermelon and Melon Germ-
plasm Resource Library (Zhengzhou, China) to derive 
F1 population by crossing them. Later, selfing was per-
formed in F1 to raise F2 (Fig. 1). Backcross population was 
obtained by hybridizing F1 with each parent to create BC1P1 
(F1 × Duan125) and BC1P2 (F1 × Zhengzhouzigua).

For segregation analysis, F2 population was grown in two 
experiments conducted in 2016 winter, 2017 spring with 348 
and 420 F2 individuals, respectively. The BC1P1 population 

http://cucurbitgenomics.org/
http://cucurbitgenomics.org/
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(120 plants) and the BC1P2 (238 plants) population were 
investigated only in spring 2017 (Table S1). For each plant, 
the fruit length and width were recorded at mature stage. The 
fruit length and width were measured from ovary formation 
to fruit maturation to calculate shape index in two parents. 
At least ten fruits per genotype were evaluated. All the mate-
rials were grown in the experimental area of ‘Xinxiang’, 
Zhengzhou fruit research institute (Zhengzhou, China).

Bulked‑segregant analysis of DNA

DNAs were isolated using the CTAB method (Porebski 
et al. 1997) from fresh leaves of F2 plants in the 2016 win-
ter for BSA-seq and CAPS marker analysis. Two DNA 
pools, elongate watermelon fruit pool (E-pool) and spheri-
cal watermelon fruit pool (S-pool), were constructed by 
mixing an equal amount of DNAs from 30 elongate water-
melon plants and 30 spherical watermelon plants. Pair-end 
sequencing libraries (read length 100 bp) with insert size of 
around 500 bp were prepared for sequencing with an Illu-
mina Genome Analyzer IIx machine. The short reads from 
E-pool and S-pool were aligned to the ‘97103’ reference 
genome (Guo et al. 2013) with the BWA software (Li and 
Durbin 2009). Alignment files were converted to SAM/BAM 

files using SAM tools (Li et al. 2009), and then applied to 
the SNP-calling filter ‘Coval’ previously developed (Abe 
et al. 2012) to increase SNP-calling accuracy. SNP-index 
was calculated for all the SNP positions. We excluded SNP 
positions with SNP-index of < 0.6 and read depth < 6 from 
the two sequences, as these may represent spurious SNPs 
called due to genomic repeat sequence, sequencing, or align-
ment errors.

Two parameters, SNP-index and Δ (SNP-index) (Abe 
et al. 2012; Takagi et al. 2013) were calculated to identify 
candidate regions for watermelon fruit shape QTL. An SNP-
index is the proportion of reads harboring the SNP that are 
different from the reference sequence. Δ (SNP-index) was 
obtained by subtraction of SNP-index of E-pool from that of 
S-pool. Thus, SNP-index = 0 if the entire short reads contain 
genomic fragments from mutation line; SNP-index = 1 if 
all the short reads are from reference genome ‘97103’. An 
average of SNP-index of SNPs located in a given genomic 
interval was calculated using a sliding window analysis with 
1 Mb window size and 10 kb increment. The SNP-index 
graphs for E-pool and S-pool, as well as corresponding Δ 
(SNP-index) graph were plotted.

To generate confidence intervals of the SNP-index 
value under the null hypothesis of no QTL, we carried out 

Fig. 1   Materials of two different 
fruit shapes in watermelon. 
a Ovary of elongate water-
melon ‘Duan125’. b Matured 
fruit of elongate watermelon 
‘Duan125’. c Ovary of spherical 
watermelon ‘Zhengzhouzigua’. 
d Matured fruit of spherical 
watermelon ‘Zhengzhouzigua’
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computer simulation. We first made two pools of progeny 
with a given number of individuals by random sampling. 
From each pool, a given number of alleles corresponding to 
the read depth were sampled. We calculated SNP-index for 
each pool and derived the Δ (SNP-index). This process was 
repeated 10,000 times for each read depth and confidence 
intervals were generated. These intervals were plotted for all 
the genomic regions that have variable read depths.

GWAS

A total of 315 watermelon accessions which contained dif-
ferent fruit shape were re-sequenced and 2.3T data were 
obtained which had 85.42% average genome coverage and 
9.24 × average sequence depth. The watermelon accessions 
were genotyped using 4,661,625 evenly spaced SNPs. The 
association between fruit shape and each SNP was tested 
using a unified mixed model (Yu et al. 2006; Zhang et al. 
2010). This mixed linear model included principal compo-
nents (Price et al. 2006) as a fixed effect to account for popu-
lation structure, kinship matrix (Loiselle et al. 1995), as well 
as to explain the familial relatedness. Utilizing the Bayesian 
information criterion, a backward elimination procedure was 
implemented to determine the optimal number of princi-
pal components to include in the mixed model (Schwarz 
1978). The false discovery rate was controlled at 5% using 
the Benjamini and Hochberg (1995) procedure. A likelihood 
ratio-based r2 statistic was used to assess the goodness of fit 
of each SNP (Sun et al. 2010). All analyses were conducted 
using the Genome Association and Prediction Integrated 
Tool software package (Lipka et al. 2012).

Fine mapping through CAPS markers

Watermelon genome sequence was obtained from the water-
melon database (http​://www.icug​i.org); the sequence was 
compared with the re-sequenced data to identify SNPs via a 
filter pipeline (Takagi et al. 2013). To minimize the genetic 
interval for fine mapping and to verify the accuracy of BSA-
Seq, The 298 cleaved amplified polymorphic sequences 
(CAPS) markers were developed based on SNPs generated 
from BSA-seq (Table S2).

The PCR was carried out in a total volume of 10 μL 
containing 5 μL 2× Power Taq PCR Master Mix (BioTeke, 
China), 0.5 μL of 10 μM per primer, 1 μL of 200 ng of 
genomic DNA, and 3 μL RNase-free water. All amplifi-
cations were performed on a EasyCycler (Analytik Jena, 
Germany) under the following conditions: 5 min at 95 °C; 
28 cycles of 30 s at 94 °C, 30 s at 56 °C, 50 s at 72 °C, 
and a final extension step at 72 °C for 10 min. Amplified 
PCR products were digested using suitable restriction 
endonucleases according to the manufacturer’s instructions 
at 37 or 65 °C for 4–10 h. The digests were resolved by 

electrophoresis in 1.0% agarose gel or PAGE gel and visual-
ized on a Versa Doc (Bio-Rad) after staining with ethidium 
bromide (EB).

Candidate gene prediction and testing marker 
for linkage to fruit shape of watermelon

The predicted genes in the mapping interval were down-
loaded from the watermelon database (http​://www.icug​
i.org/). All predicted genes were sequenced and aligned 
to elongate and spherical watermelon to check the bases’ 
difference and to obtain the candidate gene. The candidate 
gene function was retrieved through NCBI (http​s://blas​t.ncbi​
.nlm.nih.gov/Blas​t.cgi). An indel marker (Table S3) was 
developed according to the candidate gene sequence and 
tested on 100 F2 individuals in 2017 spring. Marker was also 
tested to confirm the linkage on 105 watermelon progenies 
which contain 95 spherical watermelons and 10 elongate 
watermelons.

Real‑time PCR analysis for candidate gene 
expression

The ovaries and fruits from different developmental stages 
and others tissues from flowering stage were collected for 
RNA extraction to analyse the gene expression. Total RNA 
was extracted using the plant total RNA purification kit 
(GeneMark, China) following the manufacturer’s instruc-
tions. The cDNA was synthesized with reverse transcriptase 
M-MLV (RNase H-) following the manufacturer’s instruc-
tions (Takara, Japan).

The primers of candidate gene and reference gene Actin 
(Kong et al. 2015) used in quantitative reverse transcrip-
tion polymerase chain reaction (qRT-PCR) were designed 
based on Cucurbit Genomics Database (http​://www.icug​
i.org) (Table S3). Expression levels of the target gene were 
evaluated by qRT-PCR using a LightCycler480 RT-PCR 
system (Roche, Swiss). All reactions were performed using 
the SYBR Green real-time PCR mix according to the manu-
facturer’s instructions. Each 20 μL RT-PCR reaction mixture 
containing 1 μL cDNA, 1 μL forward primer (10 μM), 1 μL 
reverse primer (10 μM), 10 μL 2× SYBR Green real-time 
PCR mix, and nuclease-free water to final volume of 20 μL 
was preheated at 95 °C for 5 min, followed by 45 cycles 
of 95, 60, and 72 °C for 30 s. High-resolution melting was 
performed under the following conditions: 1 min at 95 °C, 
1 min at 40 °C, 1 s at 65 °C, and continuous at 95 °C. All 
experiments were performed in triplicate. The raw data of 
qRT-PCR were analyzed using LCS480 software 1.5.0.39 
(Roche, Swiss) and the relative expression was determined 
using the 2−ΔΔCT method (Livak and Schmittgen 2001).

http://www.icugi.org
http://www.icugi.org/
http://www.icugi.org/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.icugi.org
http://www.icugi.org
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Results

Inheritance of fruit shape and changes of fruit 
shape index in watermelon

The watermelon fruit has three major kinds of shapes: 
elongate, oval, and spherical. We defined the fruit shape 
index of > 1.8, 1.4–1.6, and 1.0–1.1, for elongate, oval, and 
spherical fruit, respectively. Segregation ratio of watermelon 
fruit shape (ClFS1) between two F2 populations in 2 years 
is presented in Table S1. All fruits length and width were 
measured to calculate the fruit shape index at fruit ripen-
ing stage. The ClFS1 in the four segregating populations 
(F2-2016 Winter, F2-2017 Spring, BC1P1-2017 Spring, and 
BC1P2-2017 Spring) showed that the elongate fruit allele 
was incompletely dominant over the spherical fruit. The χ2 
test showed the segregation ratio of two F2 populations was 
in accordance with 1:2:1 (Table S1), suggesting that ClFS1 
was controlled by a single gene with incomplete dominance 
in this population.

To evaluate the effect of ClFS1 on development, fruit 
shape index was monitored during fruit development in two 
parents. The dynamics of the fruit shape index in elongate 
and spherical watermelon followed the similar pattern from 
2 days before anthesis (DBA) in ovaries to fruit ripening 
with the highest value occurring at anthesis stage which was 
3.15 and 1.43, respectively (Fig. 2). The fruit shape index of 
elongate and spherical watermelon was stable from 25 day 
post-anthesis (DPA) to fruit ripening, which was 1.83 and 
1.02, respectively (Fig. 2). However, the final fruit shape 
index of both elongate and spherical watermelon was sim-
ilar to the respective shape index recorded 2 days before 
anthesis.

GWAS identifies ClFS1 gene located on chromosome 
3

GWAS utilized a total of 315 watermelon accessions 
including elongate, oval, and spherical fruit shape to cap-
ture maximum genetic diversity, and was genotyped with a 
high-density, genome-wide coverage 4,661,625 and evenly 
spaced SNPs. To reduce the incidence of false-positive 
signals, a unified mixed linear model that controls popula-
tion structure and familial relatedness was used (6PC + K 
(for 6 Principal Components and Kinship); Yu et al. 2006) 
to test associations between fruit shape index and 421,101 
of the 4,661,625 SNPs with minor allele frequency > 5%.

The difference of tenfold was calculated through the 
analysis of natural variation of watermelon fruit shape 
across the diversity panel coupled with a 85% (broad-
sense) heritability, revealing that the observed natural 
variation is largely dictated by genetic variation across 
the population rather than environmental factors (Harjes 
et al. 2008; Chandler et al. 2013). GWAS profiles among 
315 varieties identified the major locus of 26.32–27.94 Mb 
designated on watermelon chromosome 3 which might 
control watermelon fruit shape (Fig. 3). All the SNPs 
information in this interval is listed in Table S4. The 
strongly associated SNPs were located at 26,783,440 and 
26,847,336 bp and the two SNPs were within the coding 
region of Cla011249 and Cla011257, respectively (Fig. 3; 
Table S4).

Fig. 2   Dynamic changes of fruit shape index between elongate and 
spherical watermelon during the ovary and fruit development. At 
least three fruits per stage were evaluated

Fig. 3   Locus of watermelon fruit shape was identified through 
GWAS. Manhattan plot of genome-wide association for watermelon 
fruit shape showed that the region of 26.32–27.94 Mb on watermelon 
chromosome 3 controlled the fruit shape
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ClFS1 gene located on chromosome 3 
through BSA‑seq

We constructed F2 population by crossing elongate water-
melon ‘Duan125’ and spherical watermelon ‘Zhengzhouzi-
gua’ (Fig. 1). A total of 30 extreme elongate individuals 
(E-pool) and 30 extreme spherical individuals (S-pool) from 
the F2 population in 2016 winter were selected and mixed 
to generate two pools. We sequenced the two pools on the 
Illumina HiSeq™ PE150 platform. A total of 30.1 GB of 
raw data were generated for both pools, with approximately 
30 × depth and more than 99% coverage for each. The 
high-throughput sequencing resulted in 102,832,531 and 
108,242,182 short reads from E-pool and S-pool, respec-
tively. Data were aligned to ‘97103’ watermelon reference 
genome (http​://www.icug​i.org) and 304,565 SNPs were 
identified between two pools. Each identified SNP was used 
to compute an SNP-index. Using 1 kb sliding window, an 
average SNP-index was calculated in a 1 Mb interval. SNP-
index graphs of E-pool and S-pool were generated by plot-
ting the average SNP-index against the position of each slid-
ing window in the ‘97103’ watermelon genome assembly. 
Graph for Δ(SNP-index) was plotted and computed against 

the genome positions by combining SNP-index of E-pool 
and S-pool (Fig. 4a).

The region on chromosome 3 from 23.52 to 28.83 Mb 
displayed a higher average than 0.5 Δ (SNP-index) (Fig. 4a, 
b) and was significantly different from 0 of Δ (SNP-index) 
value at 95% significance level. The results showed that 
there was a candidate gene controlling watermelon fruit 
shape in that region.

Analysis of the CAPS markers narrowed down ClFS1 
to a 46 Kb interval

To confirm the watermelon fruit shape locus detected by 
BSA-seq and GWAS, 768 F2 individuals from the 2016 win-
ter and 2017 spring (Table S1) were analyzed. We developed 
298 CAPS markers from chromosome 3 and screened the F2 
segregating population for polymorphic analysis (Table S2). 
Only six recombinant individuals were obtained between 
markers CAPS0158 and CAPS0165. Since no reliable SNPs 
were found in the region between the two markers, further 
fine mapping was unfeasible. Therefore, the ClFS1 gene 
was delimited in the region between markers CAPS0158 

Fig. 4   Genetic mapping of the 
fruit shape gene ClFS1 in water-
melon. a Δ(SNP-index) graph 
of BSA-seq analysis. b Locus at 
the interval of 23.52–28.83 Mb 
on chromosome 3 was identi-
fied to control watermelon 
fruit shape. c Examination of 
recombinants in F2 refined 
the location of ClFS1 in an 
interval defined by two markers 
CAPS0158 and CAPS0165, 
which was a 46 kb interval

http://www.icugi.org
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and CAPS0165, corresponding to 26.817 and 26.863 Mb 
(46 kb interval) on chromosome 3 (Fig. 4c).

Identification of ClFS1 gene

According to the watermelon genome database (http​://www.
icug​i.org/), four putative genes were annotated in 46 kb 
interval (Table S5). DNA sequences of these four genes were 
obtained from the elongate fruit ‘Duan125’ and spherical 
fruit ‘Zhengzhouzigua’ parents. The CDS of Cla011257 
represented a 159  bp indel (530–688  bp) between the 
two parents (Fig. 5a, b), while no sequence changes were 
found in the other three genes between the two parents. The 
analysis of Cla011257 protein sequence of ‘Duan125’ and 
‘Zhengzhouzigua’ showed that 53 amino acids were deleted 
in elongate watermelon ‘Duan125’ (Fig. 5b). We proposed 
that Cla011257 is the candidate gene for fruit shape in 
watermelon.

To verify this hypothesis, we analyzed the nucleotide 
polymorphism of Cla011257 between two watermelon ref-
erence genomes spherical fruit ‘97103’ and elongate fruit 
‘Charleston Gray’ (http​://www.icug​i.org/). A 159 bp dele-
tion was also checked in ‘Charleston Gray’ compared with 
‘97103’ (Fig. 6a), which was the same as above results. 
Furthermore, deletion of 53 amino acids was found in 
‘Charleston Gray’ in the same region as above. The blast 
alignment to tair (http​s://www.arab​idop​sis.org/) showed that 
Cla011257 is highly homologous to AT3G16490 in Arabi-
dopsis genome which encodes IQD26 proteins (Fig. 6). 
Network analysis of IQD26 protein in Arabidopsis thaliana 

(http​s://stri​ng-db.org/) showed that many IQD family mem-
bers were associated with microtubule arrays and Ca2+-CaM 
signaling modules (Burstenbinder et al. 2017) and also had 
interaction with each other (Fig. 6b). Therefore, it further 
suggested that the Cla011257 might be the candidate gene 
controlling watermelon fruit shape.

Expression analysis of Cla011257 
during watermelon fruit development

The expression pattern of Cla011257 was investigated using 
RT-PCR at flowering stage in different tissues that includes 
root, stem, young leaf, male flower, and flower bud; we also 
determined the expression level in ovary, pericarp, and flesh 
at different developmental stages of fruit in elongate and 
spherical plant parents. The primers for Cla0112557 and 
reference gene Actin are listed in Table S3. Cla011257 had 
the highest expression level in ovaries formation stage in 
two parents. The expression level of Cla011257 in elongate 
watermelon was almost threefold more than spherical water-
melon at this stage (Fig. 7). During different developmental 
stages of fruit, transcript level of Cla011257 was signifi-
cantly lower in other tissues as compared to ovaries in the 
formation stage (Fig. 7).

An indel marker was developed to check 
watermelon fruit shape

An indel marker was developed according to the 159 bp 
sequence of Cla011257. The primer for this marker is listed 

Fig. 5   Identification of watermelon fruit shape gene Cla011257. a 
Structure of Cla011257 gene. Open and gray boxes represent untrans-
lated regions (UTRs) and exons, respectively, while lines denote 
introns. b Confirmation of the deletion in elongate watermelon by 
sequencing. The red dotted line indicates the 159  bp deletion from 
ACT to TCC. c Co-segregation of the fruit shapes phenotype and the 

159 bp deletion of Cla011257 in F2 population. Genotyping by PCR 
revealed that 25 elongate fruit individuals were dominant homozy-
gous (Hom) for the deletion and the 48 oval fruit individuals were 
heterozygous (Het), whereas 27 spherical fruit individuals were 
recessive homozygous (Null) (color figure online)

http://www.icugi.org/
http://www.icugi.org/
http://www.icugi.org/
https://www.arabidopsis.org/
https://string-db.org/
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in Table S3. To verify this marker, 100 individuals including 
the six recombinant individuals were selected in F2 popula-
tion to check the polymorphism. The result confirmed that 
25 elongate individuals were homozygous dominant and 48 
oval individuals were heterozygous, whereas 27 spherical 
individuals were homozygous recessive, consistent with the 
phenotype (Fig. 5c). This marker was used to screen 105 
watermelon accessions, which contained 10 elongate and 
95 spherical fruits (Table S6). As expected, the genotypes 
perfectly matched the phenotype in spherical and elongate 
watermelon (Table S6). These results indicated that the 
Cla011257 might control watermelon spherical fruit shape 

and the deletion of 159 bp in Cla011257 may result in the 
fruit elongation during evolutionary process.

Discussion

The conventional QTL mapping method is a laborious and 
time-consuming process that the molecular markers are 
developed and every individual is genotyped and pheno-
typed in a mapping population. NGS-assisted BSA is less 
laborious, much cheaper, and has no population size limita-
tion for genotyping work, because it provides an effective 

Fig. 6   Analysis of nucleotide 
polymorphisms and pro-
tein function prediction. a 
Nucleotide polymorphisms of 
Cla01257 among four water-
melon genomes including two 
watermelon reference genomes 
‘97103’ (spherical fruit) and 
‘Charleston Gray’ (elongate 
fruit). The 159 bp deletion was 
also found in two reference 
genomes. b Network analy-
sis of IQD26 protein which 
was blasted to high sequence 
consistency with Cla011257 in 
A. thaliana (http​s://stri​ng-db.
org/) showed that many IQD 
family members had interaction 
each other

Fig. 7   Relative expression 
level of Cla011257 during the 
different tissues and different 
development stages of ovary 
between elongate and spherical 
watermelons

https://string-db.org/
https://string-db.org/
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and simple method to identify molecular markers linked to 
target genes/QTLs controlling the traits by genotyping only 
a pair of bulked DNA samples from two sets of individuals 
with distinct or opposite extreme phenotypes (Takagi et al. 
2013; Yang et al. 2013). In this study, we employed this 
method together with GWAS to identify a candidate gene 
for fruit shape in watermelon.

As an important cucurbit crop throughout the world, 
watermelon presents different fruit shapes including elon-
gate, oval, and spherical (Guo et al. 2013). However, the 
genetic pattern and the developmental mechanisms of 
watermelon fruit shape are not justified yet. Previously, the 
inheritance of the watermelon fruit shapes had been contro-
versial, some researchers claimed that it was controlled by 
a single gene (O), and others thought that it was determined 
by a number of QTLs together (Tanaka et al. 1995; Guner 
and Wehner 2004; Sandlin et al. 2012; Zhang et al. 2012; 
Ren et al. 2014; Cheng et al. 2016). In our 2 year study, we 
found that watermelon fruit shape was controlled by a sin-
gle, incompletely dominant gene resulting in fruit that are 
elongate (OO), oval (Oo), and spherical (oo).

Limited number of QTLs was identified in watermelon 
for fruit shape in the previous studies (Sandlin et al. 2012; 
Zhang et al. 2012; Ren et al. 2014; Cheng et al. 2016). 
Assuming that the QTLs belonged to the same QTL loci, 
the common genetic mechanisms could be shared underlying 
the fruit shape. Ren et al. (2014) identified three consensus 
QTLs for fruit length, fruit width, and fruit shape index on 
chromosome 3 of watermelon genome by constructing an 
integrated genetic map based on four mapping populations. 
Similarly, there were six QTLs for fruit length, fruit width, 
and fruit shape index on a genetic linkage map (Cheng et al. 
2016). In this study, watermelon fruit shapes were divided 
into three distinct categories (elongate, oval, and spherical) 
by measuring fruit shape index and gene was located to a 
single locus on chromosome 3. To identify ClFS1 gene, we 
performed a combinatorial approach by integrating BSA-seq 
in an F2 population and GWAS in 315 watermelon acces-
sions. The same locus on chromosomes 3 in watermelon 
genome was mapped using the GWAS- and NGS-assisted 
BSA approach (Figs. 3, 4). The BSA-seq was utilized for 
genome-wide identification of SNPs between two bulked 
pools, which had been used to develop molecular mark-
ers in gene mapping (Lee et al. 2014; Ramirez-Gonzalez 
et al. 2015). The ClFS1 gene was delimited in the region 
of 26.817–26.863 Mb on chromosome 3 using 298 CAPS 
markers (Fig. 3c; Table S2). Sequence annotation analy-
sis showed that there are four putative genes in this region 
(Table S5). Sequences alignment between elongate plant and 
spherical plant showed that the CDS of Cla011257 repre-
sented a 159 bp deletion in elongate watermelon (Fig. 5a, b). 
The same 159 bp deletion was also checked in two water-
melon reference genomes ‘Charleston Gray’ (elongate) 

and ‘97103’ (spherical) (Fig. 6a). Based on the deletion, 
an indel marker was developed to test the polymorphism 
among 105 watermelon accessions. Results identified that 
Cla011257 was the candidate gene for watermelon fruit 
shape (Table S6).

The critical role of cell division and cell enlargement 
in fruit shape has been demonstrated (Ando and Grumet 
2010; Wang et al. 2017). In cucumber, the cell number 
and cell size in short cucumber fruit was lower than that of 
length, possibly due to abnormalities in auxin signaling in 
short fruit (Wang et al. 2017). Fruit development in many 
horticultural crops can be divided into three phases: ovary 
development, cell division, and cell expansion (Marcelis and 
Hofman-Eijer 1993). Cell division typically occurs about 
3 day post-pollination and cell enlargement persists through-
out the development of fruit, whereas ovary development 
occurred at pre-pollination (Marcelis and Hofman-Eijer 
1993). In melon, it had been confirmed that the mature fruit 
shape exhibited a high correlation with the ovary and the 
fruit shape could be determined before pollination of ovary 
(Perin et al. 2002; Eduardo et al. 2007; Wei et al. 2016). In 
the present study, we noticed the similar mechanism that 
watermelon fruit shape can be predicted at the stage of ovary 
formation. The highest expression pattern of ClFS1 had been 
detected at the stage of ovary formation, and the expression 
level of elongate fruit was almost threefold higher than that 
of spherical fruit (Fig. 7), suggesting that the fruit shape was 
predominantly determined by ovary and the high expres-
sion of ClFS1 at the stage of ovary formation resulted in the 
watermelon fruit shape difference.

Genetic variants and genes mutation started from rare 
ones of very low frequency that occurred in one or few 
individuals in a given population, and these rare vari-
ants were turned into common ones through evolutionary 
forces such as selection, migration, and genetic drift. Even 
though there has been a great progress in several crops and 
model plants in generating comprehensive maps of genome 
variation (Lam et al. 2010; Chia et al. 2012; Qi et al. 2013; 
Lin et al. 2014). It had been reported that the watermelon 
genome speciation event occurred 15–23 million years ago 
(Guo et al. 2013). In the existing watermelon germplasm 
resources, most of the wild watermelons are spherical. In 
our study, the Cla011257 had the same sequence as the 
reference genome of ‘97103’ bearing spherical fruit and a 
159 bp deletion was detected in another reference genome 
of ‘Charleston Gray’ which has elongate fruit. Analysis 
of 105 watermelon accessions showed that the consist-
ency between genotype and phenotype of Cla011257 
was 100% in spherical watermelon (Table S6). The most 
likely reason was that the ClFS1 genetic variant resulted 
in fruit shape variation during the process of watermelon 
evolution. When watermelon genome occurred, the ClFS1 
determined spherical fruit and was recessively inherited. 
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The 159 bp deletion of ClFS1 led to elongated fruit; inher-
itance was dominant and easy in descendant.

Phylogenetic analysis showed that Cla011257 des-
ignated as ClFS1 have high sequence identity with 
AT3G16490 in Arabidopsis genome which belongs to 
IQD protein family. Network analysis of IQD26 protein 
in A. thaliana (http​s://stri​ng-db.org/) showed that many 
IQD family members which have been proved to be asso-
ciated with microtubule arrays and Ca2+-CaM signaling 
modules (Burstenbinder et al. 2017) have close interaction 
with each other (Fig. 6b). In tomato, the SUN control-
ling elongate fruit encodes a member of the IQD family 
of calmodulin-binding proteins which interacts with both 
calmodulin/calmodulin-like proteins (CaM/CMLs) and 
kinesin light-chain-related protein-1 (KLCR1); the IQD 
proteins can be recruited to microtubules through CaM/
CMLs and KLCR1 (Abel et al. 2005; Xiao et al. 2008; 
Burstenbinder et al. 2013). The SUN gene led to elongate 
fruit by decreasing cell number in septum mediolateral 
and increasing cell number in proximal–distal direction of 
pericarp in tomato (Wu et al. 2011). Research in Arabidop-
sis showed that IQD domain families regulated cell shape 
and growth through the integrating CaM-dependent Ca2+ 
signaling and possibly other signal transduction pathways 
during plant development (Burstenbinder et al. 2017). IQD 
family may provide an assortment of versatile platform 
proteins that facilitate and specify CaM/CML dynam-
ics during Ca2+ signaling at the cell periphery, on the 
cytoskeleton, and in the cell nucleus (Charpentier and Old-
royd 2013). Auxin could regulate the expression of IQDs, 
suggesting that plant growth and development regulation 
is the function of cellular auxin and calcium signaling (Cai 
et al. 2016). In this study, the different watermelon fruit 
shapes may be due to the ClFS1 that provide a bridge of 
Ca2+ signaling, resulting in the difference of auxin level 
in cells.

Discovery of watermelon fruit shape gene provides a 
good entry point to explain the genetic mechanisms of fruit 
development as well as providing fundamental insights into 
the domestication and selection history of watermelon. The 
results of this study demonstrated the candidate gene of 
watermelon fruit shape (ClFS1) Cla011257, an indel marker 
was developed which can be used to identify the fruit shape 
at the seedling stage. In addition, the current results will be 
useful in marker-assisted breeding for selection of desired 
traits at early stage of seedling.
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