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Abstract
Key message GWAS on multi-environment data identified genomic regions associated with trade-offs for grain weight 
and grain number.
Abstract Grain yield (GY) can be dissected into its components thousand grain weight (TGW) and grain number (GN), but 
little has been achieved in assessing the trade-off between them in spring wheat. In the present study, the Wheat Association 
Mapping Initiative (WAMI) panel of 287 elite spring bread wheat lines was phenotyped for GY, GN, and TGW in ten envi-
ronments across different wheat growing regions in Mexico, South Asia, and North Africa. The panel genotyped with the 
90 K Illumina Infinitum SNP array resulted in 26,814 SNPs for genome-wide association study (GWAS). Statistical analysis 
of the multi-environmental data for GY, GN, and TGW observed repeatability estimates of 0.76, 0.62, and 0.95, respectively. 
GWAS on BLUPs of combined environment analysis identified 38 loci associated with the traits. Among them four loci—6A 
(85 cM), 5A (98 cM), 3B (99 cM), and 2B (96 cM)—were associated with multiple traits. The study identified two loci that 
showed positive association between GY and TGW, with allelic substitution effects of 4% (GY) and 1.7% (TGW) for 6A 
locus and 0.2% (GY) and 7.2% (TGW) for 2B locus. The locus in chromosome 6A (79–85 cM) harbored a gene TaGW2-6A. 
We also identified that a combination of markers associated with GY, TGW, and GN together explained higher variation for 
GY (32%), than the markers associated with GY alone (27%). The marker-trait associations from the present study can be 
used for marker-assisted selection (MAS) and to discover the underlying genes for these traits in spring wheat.

Abbreviations
WAMI  The wheat association Mapping Initiative
BLUPs  Best linear unbiased predictions
MLM  Mixed linear models
GLM  Generalized linear models

Introduction

Wheat (Triticum aestivum L.) provides 20% of the total calo-
ries and 20% of plant-derived protein to the world popu-
lation (Food and Agricultural Organization of the United 
Nations, 2010). However, the production levels need to be 
increased by 70% to meet the projected food requirements 
by 2050 (Ray et al. 2012). Even though progress has been 
made through conventional breeding approaches in increas-
ing genetic gains of grain yield (GY) of spring bread wheat, 
it is less than 1% per year (Sharma et al. 2012; Aisawi et al. 
2015; Crespo-Herrera et al. 2017). To meet the predicted 
demand, it is important to complement the conventional 
approaches through molecular breeding for complex traits 
(Reynolds and Langridge 2016). Even though GY is the 
most important trait in any plant breeding program, there 
still exists a large gap in understanding the genetic and 
molecular mechanism of the trait and its components (Val-
luru et al. 2014).

Linkage mapping and genome-wide association stud-
ies (GWAS) are two methods widely used to identify and 
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understand the genetic basis of complex traits (Zhu et al. 
2008). Grain yield is a complex trait determined by multiple 
quantitative trait loci (QTL) that interact with each other and 
with the environment (Sehgal et al. 2017). Genetic analysis 
to identify the genomic region for GY is often subjected 
to genotype-by-environment interaction (G × E) due to the 
complex nature of the trait. A recent study has shown the 
phenotypic plasticity for GY in the US Great Plains ranged 
from 1.3 to 5.3 Mg ha−1 (Grogan et al. 2016). To discover 
the genetic basis of grain yield it is important to have multi-
environmental experiments conducted. In those studies, 
the identified QTL are constitutive—when consistently 
detected across most environments—or adaptive—when 
only detected in specific environmental conditions (Vargas 
et al. 1998).

Until a decade ago, QTL mapping was the first choice 
for genetic analysis to understand complex traits like GY 
(Quarrie et al. 1994, 2006; Kato et al. 1999; Kirigwi et al. 
2007) but the trend has moved to GWAS due to less time 
required for population development and higher mapping 
resolutions (Zhang et al. 2010; Huang et al. 2010; Suku-
maran et al. 2012). GWAS was used to identify genomic 
regions associated with GY and related traits in several 
populations (Sonah et al. 2015; Maccaferri et al. 2016; Val-
luru et al. 2017). Genomic regions related to plant devel-
opment—phenology and plant height—were identified in 
chromosomes 1AL, 1BS, 2AL, 2BS, 2BL, 4BL, 5BL, and 
6AL, with constitutive QTL on chromosomes 5BL and 6AL 
(Ain et al. 2015). Our previous study in temperate irrigated 
environments in Mexico identified genomic regions related 
to GY and yield components in chromosomes 5A (98 cM) 
and 6A (77–85 cM) (Sukumaran et al. 2015a).

Genes and QTLs associated with thousand grain weight 
(TGW) have been studied in bread wheat (Ramya et al. 2010; 
Zanke et al. 2014; Kumar et al. 2015; Simmonds et al. 2016; 
Brinton et al. 2017a). A region responsible for grain weight 
was fine mapped in chromosome 7D using introgression 
lines in winter wheat (Röder et al. 2008). However, the 
most studied gene affecting TGW in wheat is TaGW2-6A an 
orthologue of the OsGW2 gene, a RING-type E3 ubiquitin 
ligase in rice that influences grain width and weight (Su 
et al. 2011; Yang et al. 2012; Zhang et al. 2013; Jaiswal et al. 
2015). This gene has two haplotypes—Hap-6A-A and Hap-
6A-G—detected in the promotor region (Su et al. 2011). 
However, the superior effect of both haplotypes in different 
germplasms were reported. For instance, Hap-6A-A is supe-
rior allele in Chinese germplasm, increasing 3 g of TGW (Su 
et al. 2011) but another report suggested Hap-6A-G is the 
superior allele (Zhang et al. 2013). When this gene has an 
insertion in the eighth exon it reduces the protein sequence 
from 424 to 328 amino acids, it is responsible for large ker-
nel in a European wheat variety (Yang et al. 2012). QTLs 
have been identified for grain number (GN), but none of 

them was studied in detail in spring wheat (Börner et al. 
2002; Kuchel et al. 2007). A QTL mapping approach was 
used to identify a locus in chromosome 1B, which controls 
GN, and a locus in 7B associated with TGW without sig-
nificant reduction in grain number (Griffiths et al. 2015). 
Overall, there has been little effort on dissecting the TGW 
and GN trade-off in spring wheat.

In general, GY is positively associated with GN, the posi-
tive association with TGW is less profound, and the two 
components themselves are usually negatively correlated. 
The aims of this study were (1) to identify genomic regions 
associated with GY, GN, and TGW in an elite spring wheat 
panel in diverse environments; (2) to identify sets of mark-
ers associated with GY and components that maximize the 
probability of identifying high GY wheat lines; and (3) iden-
tify specific markers for TGW and GN independent of GY, 
those can be used to maximize TGW and GN (e.g. increas-
ing TGW while increasing GY and GN).

Materials and methods

Plant material

The plant material used in the study was the Wheat Associa-
tion Mapping Initiative (WAMI) panel, which consisted of 
287 spring bread wheat lines assembled from several of the 
CIMMYT’s wheat international nurseries distributed around 
the world; Elite Spring Wheat Yield Trials (ESWYT); Semi-
arid Wheat Yield Trials (SAWYT), and High Temperature 
Wheat Yield Trials (HTWYT) (Lopes et al. 2012). In the 
WAMI panel, several studies were conducted; GWAS for GY 
and yield components in temperate irrigated environments 
(Sukumaran et al. 2015a), genomic regions for adaptation 
to density (Sukumaran et al. 2015b), identification of earli-
ness per se (eps) locus (Sukumaran et al. 2016), markers 
for grain yield in moisture stress environments (Edae et al. 
2014), QTLs for spike ethylene (Valluru et al. 2017), and 
candidate gene association mapping for drought tolerance 
(Edae et al. 2013). The population structure of the panel is 
loosely based on 1B.1R translocation as well as pedigree 
of lines, e.g. lines crossed with and derived from elite lines 
like Pastor, Weebil, and Baviacora are in high frequency in 
this panel (Lopes et al. 2015; Sukumaran et al. 2015a). The 
WAMI population has a low range of phenology; range of 
9 days for heading and 35 cm for plant height, when grown 
under temperate irrigated conditions in Mexico (Lopes et al. 
2015; Sukumaran et al. 2015a).

Phenotyping

The WAMI population was phenotyped in 31 major wheat 
growing areas in Bangladesh, India, Pakistan, Nepal, 
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Sudan, and Mexico in 2009–2010 and 2010–2011 growing 
seasons (Lopes et al. 2012, 2015; Sukumaran et al. 2015b). 
We used a subset of the data—ten environments—from 
this, based on heritability estimates (Table 1); Bangladesh 
Agricultural Research Institute (BARI), Joydebpur, Indian 
Agricultural Research Institute (IARI), Indore (India I), 
National Wheat Research Program (NWRP) Bhairahawa, 
Rupandehi (Nepal B), National Agricultural Research 
Centre (NARC), Islamabad, (PAK I), Sudan Wad Medani 
(Sudan W), and CIMMYT’s experimental station, Campo 
Experimental Normal E. Borlaug (CENEB), Sonora 
Mexico (Mex), where I, D, H, and HD denotes, irrigated, 
drought, heat, and heat + drought conditions, respectively. 
These environments were diverse in terms of rainfall, heat 
stress, drought stress, and solar radiation patterns (Suku-
maran et al. 2017). Minimum and maximum temperatures 
and coordinates of the environments were described in 
earlier publications (Sukumaran et al. 2016). The experi-
mental design at each site was an α-lattice with two repli-
cations. Blocks were arranged based on the heading date 
of the materials. Checks were included as entry number 
50, 100, 150, and 200 to verify any planting errors.

Several traits were recorded and among them three traits 
were analyzed in the present study: GY, GN, and TGW 
using standard protocols (Sayre et al. 1997; see Pask et al. 
2012). At most locations, plants were sown on flat beds 
generally of 2.5–3.0 m length with 4–6 rows (20–25 cm 
between rows) providing total harvestable area > 3 m2 
(Reynolds et al. 2017). Grain number was estimated from 
GY and TGW. Days to heading (DH) was recorded when 
50% of the spikes in a plot had emerged from the boot leaf 
(Zadoks stage 59) from days of emergence and was used 
as a co-variate in the analyses (Zadoks et al. 1974). The 

phenotypic data for each environment and trait, as well 
as the genomic data, is available from the link http://hdl.
handle.net/11529/10714.

Genotyping and statistical analysis

Genotyping of the panel with the 90 K Illumina Infinitum 
SNP array and SNP processing are described in an earlier 
publication (Sukumaran et al. 2015a). In short, genetic data 
of 38K SNPs was processed for monomorphic markers, 
missing values (< 5%), and minor allele frequency (> 10%) 
that resulted in 28K SNPs for GWAS. Several markers 
related to the genes for vernalization, photoperiod, plant 
height, and 1B/1R translocation were scored in the WAMI 
panel (Sukumaran et al. 2017). The genes with known posi-
tion in the panel were: Vrn-A1 (5A) (Yan et al. 2003), Ppd-
B1 (2B), and Rht-B1 (4B) (Ellis et al. 2002), earliness per 
se (Eps-D1) (Zikhali et al. 2014; Sukumaran et al. 2016), 
and TaGW2-6A (Simmonds et al. 2016) identified through 
blind association analysis, where marker score was used as 
a phenotype.

Analysis of variance (ANOVA) was conducted in SAS 
using the PROC MIXED commands. Genotypes, environ-
ments, and genotype-by-environment interaction (G × E) 
were considered as random factors in the model in estimat-
ing the Best Linear Unbiased predictions (BLUPs) for each 
environment and in combined analysis using META-R (Var-
gas et al. 2013). Principal component analysis of the data 
was performed using the R package “FactoMineR” (Lê et 
al. 2008) and correlations between the environments were 
estimated using the R package “corrplot” (Wei and Simko 
2017). For the individual environment analyses, the follow-
ing model was used:

Table 1  Descriptive statistics 
of the traits collected on the 
WAMI panel in ten different 
environments in the years 2010 
and 2011

In Mexico, D, H, HD, and I, represent drought, heat, heat and drought, and irrigated yield potential envi-
ronments respectively
SD standard deviation, H2 broad sense repeatability

Environment Grain yield (t ha−1) Grain number/m−2 Thousand grain weight 
(g)

Mean SD H2 Mean SD H2 Mean SD H2

BGLD J11 3.47 0.51 0.66 11,298.49 1803.82 0.69 31.14 4.08 0.85
Ind I11 5.71 0.98 0.39 17,554.39 3232.80 0.40 32.84 3.60 0.81
Mex D10 3.71 0.40 0.72 989.21 123.97 0.77 37.86 4.63 0.93
Mex H10 4.01 0.46 0.75 1323.99 195.26 0.85 30.65 3.49 0.91
Mex HD10 3.40 0.47 0.68 1175.96 186.36 0.79 29.36 4.21 0.93
Mex I10 6.48 0.78 0.75 1502.79 239.97 0.84 43.58 4.68 0.96
Nepal B10 2.70 0.59 0.48 854.75 205.53 0.55 32.06 4.33 0.83
Nepal B11 2.51 0.52 0.55 767.88 161.69 0.48 33.06 4.32 0.77
Pak I10 3.18 0.90 0.37 1076.39 311.27 0.36 29.83 3.09 0.72
Sudan W10 2.90 0.43 0.34 847.18 162.85 0.53 34.78 3.73 0.75
Mean 3.81 6556.45 33.45

http://hdl.handle.net/11529/10714
http://hdl.handle.net/11529/10714
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 where Y is the trait of interest, μ is the mean effect, Ri is 
the effect of the ith replicate, Bj(Ri) is the effect of the jth 
incomplete block within the ith replicate, Gk is the effect of 
the kth genotype, Cov is the effect of the covariate, and εijk 
is the error associated with the ith replication, jth incomplete 
block, and kth genotype, which is assumed to be normally 
and independently distributed, with mean zero and variance 
σ2. Broad sense repeatability (H2) was estimated as

where �2
g
 and �2

e
 are genotype and environment variance and 

r is the number of replications.
For a combined analysis across all environments, the fol-

lowing model used for the estimation of BLUPs;

 where the new terms  Li and  Li × Gl are the effects of the ith 
environment and the G × E, respectively. For the combined 
analysis the H2 was estimated as,

where �2
ge

 is the genotype by environment interaction vari-

ance and l is the number of environments.

Genome‑wide association analysis

GWAS were performed on the BLUPs for each trait from 
the combined analyses of ten environments. We followed 
the unified mixed model approach (Yu et al. 2006; Zhang 
et al. 2010) as well as the generalized linear models incor-
porated in the TASSEL 5.0 software (Bradbury et al. 2007) 
to test for marker trait associations (MTAs). To account for 
population structure, principal components  (PC1–5) from 
the principal component analysis of the genotypic data, 
Q matrix  (Q1–5) derived from the STRU CTU RE software 
(Pritchard and Rosenberg 1999; Falush et al. 2003, 2007), 
and non-metric multi-dimensional scaling  (nMDS1–5) (Zhu 
and Yu 2009) were used. In addition, kinship matrix (K) 
calculated using SPARGeDi (Hardy and Vekemans 2002) 
and coefficient of parentage matrix (COP) was used as ran-
dom factor in the mixed model. We fitted several different 
models—including generalized linear models—accounted 
only fixed effects—and mixed linear models—accounted 
population structure and family relatedness—(i.e. simple 
model,  Q1–5, K, COP,  Q1–5 + K,  Q1–5 + COP,  PC1–5 + K, 
 PC1–5 + COP,  nMDS1–5 + K, and  nMDS1–5 + COP) using 

Yijk = � + Ri + Bj

(

Ri

)

+ Gk + Cov + �ijk,

H2 =
�
2
g

�2
g
+ �2

e
∕r

,

Yijk = � + Li + Rj

(

Li
)

+ Bk

(

LiRj

)

+ Gl + Li × Gl + Cov + �ijk,

H2 =
�
2
g

�2
g
+ �2

ge
∕l + �2

e
∕rl

,

the analysis options (Yu et al. 2006) in TASSEL. Best model 
to estimate the marker effects and marker traits associations 
were decided based on the quantile–quantile plots of p val-
ues from each model fitting; the model that is close to the 
1:1 ratio as the best model (Yu et al. 2006). The threshold 
to call marker-trait associations significant was based on the 
p value where a drastic deviation of the expected p values 
from the observed p values was observed (Sukumaran et al. 
2015a). To define a genomic region as QTL, linkage dis-
equilibrium (LD) was estimated for the region with several 
significant MTAs.

Candidate‑gene association mapping

We also performed candidate gene based association anal-
ysis with all the known genes in this panel. Random 600 
SNPs at least 5 cM apart and distributed in the genome were 
used as background markers. The candidate genes along 
with these markers were analyzed to identify significant 
association with the phenotypes. Similar to GWAS, sev-
eral models—linear and mixed—were fitted and the best 
model—determined by the Q–Q plots—was used to identify 
the MTAs. In addition, the effect of haplotype TaGW2-6A, 
which was identified to be associated with TGW from earlier 
studies, was tested on the BLUPs of TGW from combined 
analysis of the environments. We also tested the effect of this 
haplotype on TGW in ten individual environments using t 
test and results were reported.

Marker effects and best combinations of significant 
markers for grain yield

We used step-wise forward and backward regression to iden-
tify the best marker combinations for each trait (Schulthess 
et al. 2017). Multiple regression was performed with the Q 
matrix and significant markers for each trait to estimate the 
likelihood-ratio-based R2 (LRR2) (Sun et al. 2010) for each 
marker. LRR2 estimation avoids the effect of intercept 
that potentially have confounding effect on the variation 
explained by each marker. In addition, all significant mark-
ers for GY, TGW, and GN were fitted together in the step-
wise regression models and multiple regression models to 
identify the optimum combination of makers and to estimate 
the marker effects for GY. These analyses were performed 
using the custom-made scripts in R software.

Results

Agronomic variation and repeatability estimates

Among the 31 environments phenotyped for grain yield, ten 
environments with moderate to high H2 values were used 
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for the analyses. The average yield of the WAMI panel from 
all environments was 3.81 t/ha with a range of 2.51 t/ha in 
Nepal B11 to 6.48 t/ha in Mex I10. The highest heritability 
estimate for GY was observed in Mex H10 and Mex I10 
(0.75) with a mean H2 of 0.67 among all environments. The 
average TGW was 33.45 g and varied from 29.36 g in Mex 
HD10 to 43.58 g in Mex I10. The highest H2 estimate for 
TGW (0.96) was observed in Mex I10 and the lowest was 
in Pak I10 (0.72). GN was estimated from GY and TGW 
and it varied from 767.88 grains per  m−2 in Nepal B11 to 
17,554 grains per  m−2 in Ind I11. The H2 estimate for GN 
ranged from 0.48 (Nepal B11) to 0.85 (Mex h10) (Table 1). 
The H2 values across environments for GY, TGW, and GN 
were 0.68, 0.95, and 0.42, respectively. The mean values 
across environments were 3.81 t/ha, 33.4 g, 3739.1, for GY, 
TGW, and GN (Table 2).

Correlations between the traits and environments

Among environments, the highest correlation coefficients 
(r) was observed for TGW, followed by GN, and GY. The 
highest correlation for GY was observed between Mex H10 
and Mex HD10 (r = 0.65). The Mexican environments had 
moderate to high r with most other environments. The lowest 
correlations among environments were observed with Sudan 
W10 and Pak I10 for GY. In Sudan W10, GY showed nega-
tive correlations with BGLD J11 and Mex HD10. The corre-
lations for GN between the environments followed a pattern 

similar to GY with highest correlation between Mex I10 and 
Mex D10 (r = 0.68). Seven environments (BGLD J11, Nepal 
B11, Sudan W10, Mea H10, Mex HD10, Mex D10, and Mex 
I10) showed correlations (r > 0.30). TGW, the highest herit-
ability trait showed the highest r (0.86) between Mex HD10 
and Mex H10. Most environments were highly correlated for 
TGW and the lowest r value being 0.36 between Pak I10 and 
BGLD J11 (Fig. 1). The r value between GY and TGW was 
(r = 0.21), between GY and GN was (r = 0.56), and between 
GN and TGW was (r = − 0.50). In general, GN was posi-
tively correlated with GY than TGW in all environments.

GWAS results

GWAS was conducted in TASSEL using GLM and MLM 
models (Fig. 2). For most of the traits,  PC3 + K matrix was 
the best model and showed less deviation of the expected 
values from the observed values in the Q–Q plots.

Grain yield

GWAS of the combined environment BLUPs detected 27 
MTAs in six chromosomes—2A, 3B, 4A, 4B, 5A, and 
7A—associated with GY that explained 4–7% of the vari-
ation of the trait with p values < 0.001 (Supplementary 
Table 1). The MTAs could be localized into ten genomic 
regions based on LD; 2A (106  cM), 3B (86  cM), 3B 
(91 cM), 3B (95 cM), 3B (115 cM), 4A (151 cM), 4B 

Table 2  ANOVA for the 
combined analysis of 
environments for each trait 
where the WAMI population 
was grown in 2010 and 2011 
(see Table 1)

LSD least square difference, CV coefficient of variation, σG
2 genetic variance; σ2

G × Env genotype-by-environ-
ment variance, σEnv

2 environment variance, σe
2 residual error, H2 broad sense repeatability

Statistics Mean LSD CV σG
2 σ2

G×Env σ2
Env σe

2 H2

GY (t ha−1) 3.81 0.41 15.7 0.07 0.14 1.66 0.36 0.68
TGW (g) 33.4 2.14 6.4 10.58 3.47 18.46 4.62 0.95
GN  (m−2) 3739.1 624 31 86,530 520,509 33,988,922 1,326,945 0.42

Fig. 1  Phenotypic correlations of the traits a grain yield, b thousand grain weight, and c grain number between the locations. Blue shades indi-
cate significance at α < 0.001. Refer to table one for abbreviations (color figure online)
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(66–68 cM), 6A (77–85 cM), and 7A (35 cM) (Table 3). 
We further explored the 3B and 6A regions and found that, 
the markers in chromosome 3B at 86, 91, 95, and 119 cM 
are in high LD, with r2 = 1, indicating a large QTL for GY 
in chromosome 3B from 86 to 119 cM (Supplementary 
Fig. 1). LD estimates in the chromosome 6A region from 
77 to 85 cM indicated the presence of an LD block in 
77–81 cM region, but on individual environment analysis 
markers at 85 cM were also associated (Supplementary 
Fig. 2). A blind association analysis of the TaGW2-6A hap-
lotype indicted the possible location of the TaGW2 gene in 
chromosome 6A (77–78 cM).

Thousand grain weight

We identified 34 MTAs for TGW from combined analysis 
of environment BLUPs in chromosomes; 1B, 2A, 2B, 3B, 
3D, 5A, 6A, 6B, and 7D (Supplementary Table 2). Based 
on LD analysis, these MTAs corresponded to 15 QTLs—1B 
(141–148, and 164 cM), 2A (143 cM), 2B (20–26 cM), 2B 
(96–99 cM and 145 cM, 3B (51 cM), 3D (48 cM), 5A (26, 
60, and 98 cM), 6A (77–85 cM), 6B (113 cM), and 7D (55 
and 78 cM), located in nine chromosomes (Table 3). The 
Vrn-A1 gene in chromosome 5A (90 cM) had significant 
effect on flowering time in an earlier study (Sukumaran et al. 
2015a), but the present locus associated with TGW is in 
chromosome 5A at 98 cM. LD analysis indicated these loci 
are not in high LD, which suggests that these are separate 
loci (Supplementary Fig. 3).

Grain number

For GN, we identified 31 significant MTAs in twelve chro-
mosomes; 1A, 1D, 2B, 3A, 3B, 4B, 5A, 5B, 5D, 6A, 6D, 
and 7A (Supplementary Table 3). LD analysis of the signifi-
cant MTAs narrowed the significant loci into 13 QTLs on 
chromosomes 1A (130 cM), 1D (51 cM) 2B (96–99 cM), 
3A (15 cM), 3B (99 cM), 4B (81 cM), 5A (98 cM), 5B 
(3–4 cM), 5D (203 cM), 6A (141 cM), 6D (77 cM), and 7A 
(120 and 135 cM) (Table 4).

Common markers and trade‑off for grain weight 
and grain number

A comparison of the GWAS results for all traits identified 
four common regions associated with multiple traits. A com-
mon locus for GY and TGW was located in chromosome 6A 
(77–85 cM). A common QTL for GY and GN was detected 
in chromosome 3B (99 cM). Common loci for GN and TGW 
were in chromosome 5A (98 cM) and 2B (96 cM) (Fig. 3).

We also estimated the effect of these loci on GY, TGW, 
and GN. The locus in 6A (85 cM) had positive effect on GY, 
TGW, and GN with an allele substitution effect of 4.7, 1.7, 
and 2%, respectively. The locus on chromosome 3B (99 cM) 
had an allelic substitute effect of 3.0, − 4.5, and 3.1% for 
GY, TGW, and GN, respectively. The locus on chromo-
some 2B (96 cM) had a positive allelic substitution effect 
on GY (0.2%) and TGW (7.16%), but negative effect on GN 
(− 2.2%). The locus in chromosome 5A (98 cM) had positive 

Fig. 2  GWAS results as Man-
hattan plot for a grain yield, b 
grain weight and c grain number 
on the combined BLUPs of 
WAMI data collected in 2010 
and 2011 in 10 environments. 
Blue lines indicate the GWAS 
threshold of 0.001 (color figure 
online)
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Table 3  Most significant 
genomic regions associated 
with grain yield and thousand 
grain weight based on combined 
GWAS of environments

Only one peak SNPs from each region are shown here. For full list, see Supplementary Tables 1 and 2
Chr chromosome, pos position, LRR2 likelihood-ratio-based R2

Trait Marker SNP id Chr. Pos (cM) p value LRR2 Additive effect

GY Tdurum_contig56511_144 IWB72516 2A 106 4.23E−04 0.045 − 0.16
RAC875_c1997_2590 IWB54923 3B 86 7.29E−04 0.042 0.10
RAC875_c5427_447 IWB59020 3B 91 7.80E−06 0.074 0.12
BobWhite_c35398_181 IWB2774 3B 95 8.74E−06 0.073 − 0.13
wsnp_CAP12_c2297_1121142 IWA939 3B 119 6.12E−04 0.044 − 0.06
BS00010887_51 IWB6308 4A 151 6.37E−04 0.043 − 0.05
wsnp_Ex_c25373_34639805 IWA2963 4B 66 1.34E−04 0.054 − 0.18
Ra_c27465_569 IWB51659 4B 68 6.78E−04 0.042 − 0.18
Ra_c7426_234 IWB52628 6A 77–85 5.21E−04 0.044 0.14
BS00052403_51 IWB8615 7A 35 9.25E−04 0.042 − 0.03

TGW wsnp_Ex_c4436_7981188 IWA3893 1B 141 2.60E−04 0.049 1.54
BS00063686_51 IWB9110 1B 148 5.29E−04 0.044 − 0.74
RFL_Contig785_1700 IWB65271 1B 164 7.35E−04 0.044 0.87
IACX987 IWB36400 2A 143 9.41E−05 0.056 3.21
Kukri_c96623_195 IWB48447 2B 20 1.87E−04 0.050 − 1.95
Kukri_c22513_1780 IWB42660 2B 26 4.25E−04 0.045 3.35
BobWhite_c30995_403 IWB2414 2B 96–99 4.18E−04 0.044 3.81
GENE-1320_141 IWB32380 2B 145 6.15E−04 0.042 3.63
Kukri_c12817_59 IWB40900 3B 51 4.68E−04 0.046 2.60
Excalibur_c22503_590 IWB23810 3D 148 3.12E−04 0.046 3.92
BS00062996_51 IWB8975 5A 26 8.28E−04 0.040 1.65
wsnp_Ku_c35386_44598937 IWA6949 5A 60 1.11E−04 0.056 1.57
BobWhite_c14689_172 IWB686 5A 98 1.52E−04 0.054 1.61
TA004097-0977 IWB65783 6A 77–85 5.63E−04 0.043 − 1.91
Ra_c39588_830 IWB52005 6B 113 3.32E−04 0.046 1.62
D_GBB4FNX02GS9OS_101 IWB18267 7D 55 3.09E−04 0.046 2.70
D_contig03850_135 IWB15280 7D 78 1.33E−04 0.052 2.90

Table 4  Most significant 
genomic regions associated 
with grain number  (m−2) 
based on combined GWAS of 
environments

Only one-peak SNPs from each region are shown here. For full list, see Supplementary Table 3
Chr chromosome, pos position, LRR2 likelihood-ratio-based R2

SNP name SNP id Chr. Pos (cM) p value LRR2 Additive effect

Ra_c11613_81 IWB50952 1A 130 2.47E−04 0.051 101.00
D_contig08749_250 IWB15488 1D 51 2.83E−04 0.048 − 96.60
Kukri_rep_c107245_634 IWB49242 2B 96–99 7.58E−04 0.041 93.88
RFL_Contig1488_671 IWB63656 3A 15 9.25E−04 0.040 − 175.83
BS00063624_51 IWB9095 3B 99 8.12E−04 0.041 − 66.40
wsnp_Ku_c12503_20174234 IWA6461 4B 81 4.87E−04 0.048 77.10
BobWhite_c14689_172 IWB686 5A 98 5.80E−04 0.044 − 89.03
Excalibur_c32189_998 IWB25183 5B 3 3.88E−04 0.045 − 233.00
BS00060650_51 IWB8814 5B 4 3.90E−04 0.045 − 233.00
RAC875_c14078_561 IWB53861 5D 203 7.04E−04 0.042 − 119.00
RAC875_c12821_466 IWB53601 6A 141 7.16E−04 0.041 − 98.00
Excalibur_c26899_1860 IWB24502 6D 77 6.40E−04 0.042 90.19
RFL_Contig2200_1024 IWB63867 7A 120 3.36E−05 0.063 135.23
Tdurum_contig22364_380 IWB68969 7A 135 8.81E−04 0.040 − 161.00
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effect on GY (0.18%) and GN (1.54%), but negative effect 
on TGW (− 2.85%) (Fig. 4).

Marker combinations and effects

We also identified the optimum marker combination that 
explained highest variation for GY, TGW, and GN using 
step-wise regression (Supplementary Tables 4, 5, and 6) 
and multiple regression analyses. Five marker combina-
tions—IWA2963 (4B), IWB2774 (3B), IWB52628 (6A), 
IWB51659 (4B), and IWB72516 (2A)—explained 27% of 
the variation for GY based on multiple regression analy-
sis, where as the population structure (Q3) explained 7% 
(Table 5). The marker IWA2963 (4B) explained 12% of the 
variation in GY based on LRR2 and the other three mark-
ers explained 15% of the variance. The combination of 10 
markers—IWB65271 (1B), IWB18267 (7D), IWB40900 
(3B), IWA6949 (5A), IWB65783 (6A), IWB23810 (3D), 
IWB686 (5A), IWB32380 (2B), IWB2414 (2B), and 
IWB42660 (2B)—explained 31% of the variation for TGW, 
where as Q3 explained 28%. Multiple regression analy-
sis identified the combination of 11 markers—IWB24502 

Fig. 3  Venn diagram illustrating the common genomic regions for 
grain yield, grain weight, and grain number for the combined data 
from 10 environments. Subscript numbers indicate the centi morgan 
(cM) position of marker-trait associations in a chromosome based on 
the 90 K consensus map. The arrows indicates positive (↑) or nega-
tive (↓) additive effects of minor alleles

Fig. 4  Effect of four loci in 
chromosomes 6A (77–85 cM), 
3B (99 cM), 2B (96 cM), and 
5A (98 cM) associated with 
multiple traits a grain yield, 
b grain weight, and c grain 
number based on the means of 
all environments. The alleles 
were represented by 0 and 2 for 
each SNP
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(6D), IWB6365 (3A), IWB53601 (6A), IWB50952 (1A), 
IWB63867 (7A), IWB53861 (5D), IWB15488 (1D), 
IWB686 (5A), IWB68969 (7A), IWB9095 (3B), and 
IWB49242 (2B)—that explained 37% of the variation for 
GN. The population structure (Q3) explained 3% of the 
variation for GN.

We also fitted all significant MTAs for GY, TGW, and 
GN in step-wise regression to identify the most effective 
marker combination for GY (Supplementary Table  6). 
Multiple regression analysis identified a combination of 12 
markers—IWB2774 (3B), IWB52628 (6A), IWB50952 (1A), 
IWA6949 (5A), IWB53601 (6A), IWB65783 (6A), IWB63656 
(3A), IWB51659 (4B), IWB15488 (1D), IWB18267 (7D), 
IWB49242 (2B), and IWB686 (5A)—that explained 35% of 
the variation for GY, Q3 explaining 9% (Table 6).

Analysis of marker by environment interaction using 
step-wise regression of the 12 significant markers on the 
BLUPs for grain yield in each environment indicated 
variation in the marker effects. The markers directly 
associated with GY—IWB2774 (3.35%) and IWB52628 
(3.02%)—explained highest variation for GY on average 
than markers indirectly associated for GY, i.e. markers 
identified for TGW and GN (Table 7). The highest LRR2 
values for a marker was in MexI10 environment, IWB2774 
explaining 12.01% variation for GY. Total variation 
explained by the twelve markers were highest in MexI10 
(24.08%) followed by MexHD10 (21.24%).

Table 5  Multiple regression analysis of the significant markers; variance explained by each model (R2) and likelihood-ratio based R2 (LRR2) for 
each additional marker for grain yield (GY), grain weight (TKW), and grain number (GN)

Population structure matrix (Q2 and Q3) were used to estimate the marker effect without the effect of intercept

Model R2 LRR2

GY Q3 0.07
Q3 + IWA2963 0.19 0.12
Q3 + IWA2963 + IWB2774 0.27 0.08
Q3 + IWA2963 + IWB2774 + IWB52628 0.31 0.04
Q3 + IWA2963 + IWB2774 + IWB52628 + IWB51659 0.33 0.02
Q3 + IWA2963 + IWB2774 + IWB52628 + IWB51659 + IWB72516 0.34 0.01

TGW Q3 0.28
Q3 + IWB65271 0.31 0.03
Q3 + IWB65271 + IWB18267 0.39 0.08
Q3 + IWB65271 + IWB18267 + IWB40900 0.47 0.08
Q3 + IWB65271 + IWB18267 + IWB40900 + IWA6949 0.49 0.02
Q3 + IWB65271 + IWB18267 + IWB40900 + IWA6949 + IWB65783 0.54 0.05
Q3 + IWB65271 + IWB18267 + IWB40900 + IWA6949 + IWB65783 + IWB23810 0.56 0.02
Q3 + IWB65271 + IWB18267 + IWB40900 + IWA6949 + IWB65783 + IWB23810 + IWB686 0.56 0.00
Q3 + IWB65271 + IWB18267 + IWB40900 + IWA6949 + IWB65783 + IWB23810 + IWB686 + IWB32380 0.58 0.02
Q3 + IWB65271 + IWB18267 + IWB40900 + IWA6949 + IWB65783 + IWB23810 + IWB686 + IWB32380 + IWB2414 0.58 0.01
Q3 + IWB65271 + IWB18267 + IWB40900 + IWA6949 + IWB65783 + IWB23810 + IWB686 + IWB32380 + IWB2414 

+ IWB42660
0.59 0.01

GN Q2 0.03
Q2 + IWB24502 0.09 0.07
Q2 + IWB24502 + IWB6365 0.16 0.07
Q2 + IWB24502 + IWB6365 + IWB53601 0.21 0.05
Q2 + IWB24502 + IWB6365 + IWB53601 + IWB50952 0.26 0.05
Q2 + IWB24502 + IWB6365 + IWB53601 + IWB50952 + IWB63867 0.30 0.04
Q2 + IWB24502 + IWB6365 + IWB53601 + IWB50952 + IWB63867 + IWB53861 0.32 0.02
Q2 + IWB24502 + IWB6365 + IWB53601 + IWB50952 + IWB63867 + IWB53861 + IWB15488 0.34 0.02
Q2 + IWB24502 + IWB6365 + IWB53601 + IWB50952 + IWB63867 + IWB53861 + IWB15488 + IWB686 0.36 0.02
Q2 + IWB24502 + IWB6365 + IWB53601 + IWB50952 + IWB63867 + IWB53861 + IWB15488 + IWB686 + IWB68969 0.37 0.01
Q2 + IWB24502 + IWB6365 + IWB53601 + IWB50952 + IWB63867 + IWB53861 + IWB15488 + IWB686 + IWB68969 

+ IWB9095
0.39 0.02

Q2 + IWB24502 + IWB6365 + IWB53601 + IWB50952 + IWB63867 + IWB53861 + IWB15488 + IWB686 + IWB68969 
+ IWB9095 + IWB49242

0.40 0.01
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Association of known genes with the traits

We did candidate gene-based association mapping of several 
known genes. Results indicated that Rht-B1 and Vrn-D1a 
were associated with grain yield with a p value of < 0.001. 
Other genes were not significantly associated with any of 
the traits when a p value threshold of 0.001 was used. A 
blind association mapping—using marker score as trait—
for the TaGW2-6A polymorphism in the WAMI population 
identified the location of the gene in chromosome 6A at 

77–78 cM. However, in the combined analysis of BLUPs for 
TGW, the locus we identified was at 77 cM but individual 
analysis the locus was at 85 cM. A t-test of the TaGW2-
6A haplotypes—Hap-6A-A and Hap-6A-G—with the phe-
notypic data of all individual environments indicated that 
the SNP is significantly associated with TGW in only two 
environments (Supplementary Table 9). The p value from t 
test was significant in Mex H10 (p = 0.002) and Nepal B10 
(p = 0.02) at significant level of α = 0.05. In addition, the 
TaGW2-6A Hap 6A-G haplotype was superior in Mexico 

Table 6  Multiple regression analysis of the makers associated with grain yield considering all traits: model R2 and likelihood ratio based R2 
(LRR2) for each additional marker in the model

Marker based model for grain yield R2 LRR2

Q3 0.09
Q3 + IWB2774 0.18 0.089
Q3 + IWB2774 + IWB52628 0.23 0.052
Q3 + IWB2774 + IWB52628 + IWB50952 0.25 0.019
Q3 + IWB2774 + IWB52628 + IWB50952 + IWA6949 0.26 0.006
Q3 + IWB2774 + IWB52628 + IWB50952 + IWA6949 + IWB53601 0.32 0.061
Q3 + IWB2774 + IWB52628 + IWB50952 + IWA6949 + IWB53601 + IWB65783 0.34 0.026
Q3 + IWB2774 + IWB52628 + IWB50952 + IWA6949 + IWB53601 + IWB65783 + IWB63656 0.36 0.020
Q3 + IWB2774 + IWB52628 + IWB50952 + IWA6949 + IWB53601 + IWB65783 + IWB63656 + IWB51659 0.40 0.042
Q3 + IWB2774 + IWB52628 + IWB50952 + IWA6949 + IWB53601 + IWB65783 + IWB63656 + IWB51659 + IWB15488 0.42 0.012
Q3 + IWB2774 + IWB52628 + IWB50952 + IWA6949 + IWB53601 + IWB65783 + IWB63656 + IWB51659 + IWB15488 + IW

B18267
0.43 0.011

Q3 + IWB2774 + IWB52628 + IWB50952 + IWA6949 + IWB53601 + IWB65783 + IWB63656 + IWB51659 + IWB15488 + IW
B18267 + IWB49242

0.43 0.000

Q3 + IWB2774 + IWB52628 + IWB50952 + IWA6949 + IWB53601 + IWB65783 + IWB63656 + IWB51659 + IWB15488 + IW
B18267 + IWB49242 + IWB686

0.44 0.014

Table 7  Marker by environment 
interaction of the twelve 
markers as percentage of 
variation explained for grain 
yield and variation explained by 
population structure (Q3) matrix 
for grain yield in respective 
environments

See Table 1 for abbreviations. The environments are (1) BLD J11 (2) Ind I11 (3) Mex D10 (4) Mex H10 
(5) Mex HD10 (6) Mex I10 (7) Nepal B10 (8) Nepal 11 (9) Pak I10 and (10) Sudan W10
Marker LRR2 Total variation explained for grain yield when all markers were used in the model

Markers Environments

1 2 3 4 5 6 7 8 9 10

Q3 0.04 0.04 8.84 1.08 3.09 8.77 1.53 3.82 8.31 4.25
IWB2774 0.10 2.62 5.22 3.42 3.56 12.01 1.18 0.03 1.41 3.98
IWB51659 5.26 0.60 1.60 5.01 3.00 2.67 0.61 0.80 0.37 0.00
IWB52628 1.56 3.70 6.31 4.91 2.73 4.59 0.83 2.04 0.03 3.48
IWB18267 2.30 1.75 0.83 2.84 2.54 0.00 0.12 0.91 1.27 0.00
IWA6949 0.46 0.95 0.10 0.12 0.08 0.08 0.08 0.54 0.10 0.04
IWB65783 0.27 1.04 1.79 0.04 0.08 1.38 0.01 0.71 0.59 0.94
IWB50952 2.22 3.37 0.60 0.87 0.08 0.00 1.81 0.04 0.14 0.18
IWB15488 3.62 0.01 0.21 0.40 0.21 1.02 0.41 0.63 0.01 0.01
IWB49242 0.17 0.17 0.19 0.11 0.96 0.09 0.04 1.80 0.33 1.53
IWB63656 0.55 2.85 1.90 0.16 3.45 0.95 0.62 0.63 0.40 2.53
IWB686 0.23 2.51 0.07 2.81 2.89 1.28 0.00 0.12 0.02 2.33
IWB53601 1.25 0.14 1.37 0.19 1.66 0.01 0.03 0.09 0.19 1.61
Marker  R2 17.99 19.71 20.19 20.88 21.24 24.08 5.74 8.34 4.86 16.63
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D10 but TaGW2-6A Hap-6A-A haplotype was superior in 
Nepal B10. In all other environments, the marker effect was 
not significant as denoted by standard error in bar plot (Sup-
plementary Fig. 4).

Discussion

In the present study, we identified several MTAs for GY, 
TGW, and GN using large-scale multi-environment data in 
spring wheat. We observed that the combined analysis of 
environments had high heritability estimates and increased 
the power to detect causative loci. Large-scale multi-envi-
ronment studies are associated with high G × E, which 
prompted us to reduce the environments from 31 to 10 based 
on heritability estimates of the traits. In our previous study, 
we successfully followed the same approach for flowering 
time where we used 19 environments with high heritability 
estimates and identified earliness per se (eps-D1) locus in 
CIMMYT spring wheat germplasm (Sukumaran et al. 2016). 
Phenotypic correlations between the environments for each 
trait were high, indicating the importance of research con-
ducted at Mexican environments that is applicable several 
countries (Braun et al. 1996). TGW showed the highest 
correlation between the environments similar to our earlier 
study (Sukumaran et al. 2017).

The locus in chromosome 6A (77–85 cM) was associated 
with GY and TGW. We have detected the same locus impor-
tant for GY, GN, and GW in temperate irrigated conditions 
in Cd. Obregon, Mexico in an earlier study (Sukumaran et al. 
2015a). A QTL in chromosome 6A associated with TGW, 
GY, and green canopy duration was identified earlier in win-
ter wheat and might be similar in spring wheat (Simmonds 
et al. 2014). Candidate gene based association mapping of 
the TaGW2-6A haplotype did not show significant associa-
tion between the gene and TGW on BLUPs from combined 
analysis of environments. We observed the significant effect 
of this marker on TGW in two out of ten environments, and 
it was opposite in those environments. In Mex HD 10, the 
TaGW2-6A Hap-6A-G was superior whereas in Nepal the 
TaGW2-6A Hap-6A-A was superior. Taken together, it indi-
cates that the effect of the gene is dependent on the environ-
ment and probably there could be another gene controlling 
the expression TaGW2-6A. Our study indicated that this gene 
does not show consistent and significant association with 
grain weight across different environments; however, it is 
close to the causative loci for TGW variation.

In addition to the 6A locus for GY and TGW, a common 
MTA for TGW and GN was detected in 5A at 98 cM. This 
locus was also associated with GN and TGW in temperate 
irrigated environments (Sukumaran et al. 2015a). A GWAS 
study using the 90 K SNP array in spring wheat also identi-
fied a similar genomic region associated with GY (Ain et al. 

2015). Recently, a stable QTL on chromosome 5A associ-
ated with 6.9% increase in grain weight was identified which 
lead to 4% longer grains and 1.5% wider grains (Brinton 
et al. 2017b). The QTL contributes to increased pericarp 
cell length, thus contributing to grain weight We believe this 
might be the same locus in spring wheat and winter wheat 
but need to be further explored.

A chromosome 3B genomic region associated with grain 
yield was also reported in multiple studies (Bonneau et al. 
2013; Lopes et al. 2013; Edae et al. 2014; Sukumaran et al. 
2015a). The locus identified in chromosomes 3B (86–99 cM) 
was associated with multiple traits (GY, maturity, and chlo-
rophyll content at vegetative state) in the temperate irrigated 
environments (Sukumaran et al. 2015a). An earlier study had 
identified MTAs on chromosome 3B at 70 cM for adapta-
tion to density in the same WAMI panel (Sukumaran et al. 
2015b). A QTL with large effect for GY was also identified 
in chromosome 3B using a different genetic map (Bonneau 
et al. 2013, 2017).

We will propose these four candidate regions in chro-
mosomes 2B (96 cM), 3B (99 cM), 5A (98 cM), and 6A 
(77–85 cM) for further gene discovery and validation that 
is associated with the trade-off for grain weight and grain 
number. In general, it is possible to increase GY by increases 
in GN, but increases in GN is associated with decreased 
TGW. From our study, we found loci that are associated with 
a positive association between GY, TGW and GN.

Stepwise regression and multiple regression analysis 
identified the optimum combination significant markers for 
the traits. The additive effect of markers decreases as more 
number of markers are added to the model. We used popu-
lation structure in the multiple regression model to avoid 
the overestimation of the marker effects from regression 
analysis. Likelihood ratio based  R2 was estimated for each 
marker based on the marker substitution effect from multi-
ple regression analysis (Sun et al. 2010). The best marker 
combinations for traits explained 27, 31, and 33% for GY, 
TGW, and GN, respectively. However, our analysis to find 
the optimum combination of markers found a marker based 
model that could explain 32% of GY, indicating a combina-
tion of makers for GY, TGW, and GN is important to select 
for GY in a breeding program, instead of marker for GY 
alone (27%). This indicated that the markers that are not 
directly related to the trait also has an effect on the trait and 
much of the variation is not explained when grain yield is 
dissected directly (Reynolds and Langridge 2016).

We also compared markers associated with GY, TGW, 
and GN with earlier studies. The MTA on chromosome 4B 
(66–68 cM) were close to the Rht-B1 locus in chromosome 
4B (56 cM) identified by blind association analysis of Rht-
B1 score. Candidate gene-based association analysis con-
firmed the association of Rht-B1 with grain yield (Supple-
mentary Table 8). The MTA in chromosomes 2A (106 cM), 
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4A (151 cM), and 7A (35 cM) are novel loci associated with 
GY. Further analysis of the TGW MTAs showed the locus 
on chromosome 1B at 141–168 cM is close to the 1B/1R 
translocation from blind association analysis (Lopes et al. 
2015). The locus in chromosome 7D (78 cM) was close to 
Vrn-D3 locus (91 cM) but we expect them to be different 
based on LD. The MTAs on 2A (143 cM), 2B (20, 26, and 
145 cM), 3B (51 cM), 3D (148 cM), 5A (26 and 60 cM), and 
6B (113 cM) for TGW are novel. Apart from the common 
loci for GN and other traits, the MTAs detected in chromo-
somes 1A (130 cM), 1D (51 cM), 3A (15 cM), 4B (81 cM), 
5B (3–4 cM), 5D (203 cM), 6A (141 cM), 6D (77 cM), and 
7A (135 cM) are novel in this population.

GWAS is a powerful technique to identify the genomic 
regions associated with traits of interest, but often with con-
founding effects of population structure in genetic analy-
ses which was negotiated by the use of models accounting 
for population structure and familial relatedness (Zhu et al. 
2008;Yu et al. 2006; Zhang et al. 2010). We compared the 
genomic regions detected in the study with previous stud-
ies on the same panel and with already known genes/QTLs 
detected. We identified four loci to be associated with GY 
and its components in chromosomes 2B, 3B, 5A, and 6A. 
Among them, the loci in chromosome 6A and 2B showed 
positive allelic substitution effect for GY and TGW. In many 
cases, GY is not strongly associated with TGW. Any positive 
association between GY, TGW, and GN is a perfect scenario 
for increasing overall GY by increasing GN and TGW.

Conclusions

Genome-wide association analysis identified several key 
genomic regions associated with grain yield and yield 
components. Among them, four of them showed a trade-
off between thousand grain yield, grain weight, and grain 
number. A comparison of variation explained by markers 
associated with trait per se and its components indicated that 
higher variation is explained by the combination of markers 
for trait per se and its components. The genomic regions 
identified in the present study can be used for MAS and need 
to be further studied to fine map or clone genes.
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