
Vol.:(0123456789)1 3

Theor Appl Genet (2018) 131:127–144 
https://doi.org/10.1007/s00122-017-2990-5

ORIGINAL ARTICLE

Unlocking new alleles for leaf rust resistance in the Vavilov wheat 
collection

Adnan Riaz1 · Naveenkumar Athiyannan1,2 · Sambasivam K. Periyannan1,2 · Olga Afanasenko3 · 
Olga P. Mitrofanova4 · Gregory J. Platz5 · Elizabeth A. B. Aitken6 · Rod J. Snowdon7 · Evans S. Lagudah2 · 
Lee T. Hickey1 · Kai P. Voss‑Fels1,7 

Received: 4 July 2017 / Accepted: 21 September 2017 / Published online: 4 October 2017 
© Springer-Verlag GmbH Germany 2017

total of 52 significant marker–trait associations represent-
ing 31 quantitative trait loci (QTL). Among them, 29 QTL 
were associated with adult plant resistance (APR). Of the 
31 QTL, 13 were considered potentially new loci, whereas 
4 co-located with previously catalogued Lr genes and 14 
aligned to regions reported in other GWAS and genomic 
prediction studies. One seedling LR resistance QTL located 
on chromosome 3A showed pronounced levels of linkage 
disequilibrium among markers (r2 = 0.7), suggested a high 
allelic fixation. Subsequent haplotype analysis for this region 
found seven haplotype variants, of which two were strongly 
associated with LR resistance at seedling stage. Similarly, 
analysis of an APR QTL on chromosome 7B revealed 22 
variants, of which 4 were associated with resistance at the 
adult plant stage. Furthermore, most of the tested lines in 
the diversity panel carried 10 or more combined resistance-
associated marker alleles, highlighting the potential of allele 
stacking for long-lasting resistance.

Abstract 
Key message  Thirteen potentially new leaf rust resist‑
ance loci were identified in a Vavilov wheat diversity 
panel. We demonstrated the potential of allele stacking 
to strengthen resistance against this important pathogen.
Abstract  Leaf rust (LR) caused by Puccinia triticina is 
an important disease of wheat (Triticum aestivum L.), and 
the deployment of genetically resistant cultivars is the most 
viable strategy to minimise yield losses. In this study, we 
evaluated a diversity panel of 295 bread wheat accessions 
from the N. I. Vavilov Institute of Plant Genetic Resources 
(St Petersburg, Russia) for LR resistance and performed 
genome-wide association studies (GWAS) using 10,748 
polymorphic DArT-seq markers. The diversity panel was 
evaluated at seedling and adult plant growth stages using 
three P. triticina pathotypes prevalent in Australia. GWAS 
was applied to 11 phenotypic data sets which identified a 
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Introduction

Wheat (Triticum aestivum L.) is a major source of calories 
and protein in the human diet (Shewry and Hey 2015). How-
ever, the current global production is insufficient to meet 
the demand of a rapidly growing world population (Grassini 
et al. 2013). At the same time, wheat yields are consistently 
threatened by increasing climatic variations (Asseng et al. 
2015) and rapidly evolving pests and pathogens (Chaves 
et al. 2013). Leaf rust (LR) caused by Puccinia triticina 
Eriks., is one of the most common and geographically wide-
spread wheat diseases worldwide. LR causes more annual 
yield losses globally compared to losses attributed to stem 
and stripe rust (Bolton et al. 2008; Huerta-Espino et al. 
2011). Among various disease management strategies, the 
cultivation of resistant wheat cultivars is the most effective 
and environment-friendly strategy (Kolmer et al. 2013).

Genetic resistance against LR is broadly categorised into 
seedling or all-stage resistance and adult plant resistance 
(APR). To date, 77 genes confering resistance to LR (Lr) 
have been successfully characterised, of which the majority 
confer seedling resistance (McIntosh et al. 2017). Typically, 
seedling resistance is controlled by a single gene with major 
effect that interacts with the pathogen in a ‘gene-for-gene’ 
relationship (Flor 1971). Usually, the seedling genes are 
pathogen race-specific and confer a hypersensitive response 
(HR)—a cell death phenomenon preventing the pathogen 
spread (Ellis et al. 2014; Mondal et al. 2016). This exerts 
intense selective pressure on the pathogen population, thus 
quickly rendering the deployed resistance gene ineffec-
tive (Burdon et al. 2014; Li et al. 2014; Niks et al. 2015). 
In contrast, APR is usually effective at the post-seedling 
growth stages, is either controlled by multiple genes each 
with minor effect or a single gene with major effect. Some 
APR genes provide partial resistance that is effective against 
all races of a given pathogen species (i.e. race-nonspecific) 
(Lagudah 2011; McCallum et al. 2012; Burdon et al. 2014). 
Mostly APR genes interact additively and enhance resistance 
to a level of immunity (Singh et al. 2014). Some APR genes 
confer pleiotropic resistance against multiple diseases, for 
instance Lr34, Lr46, and Lr67 provide partial resistance to 
LR, stripe rust, stem rust, and powdery mildew diseases of 
wheat (Lagudah 2011; Risk et al. 2012; Ellis et al. 2014).

To date, six Lr genes (including seedling and APR) have 
been cloned: Lr1 (Cloutier et al. 2007), Lr10 (Feuillet et al. 
2003), Lr21 (Huang et al. 2003), Lr22a (Thind et al. 2017), 
Lr34 (Krattinger et al. 2009), and Lr67 (Moore et al. 2015). 
This has enabled the development of gene-specific molecu-
lar markers for rapid gene identification via marker-assisted 
selection (MAS). Markers further assist in pyramiding of 
4–5 APR or seedling resistance genes or in combinations to 
generate durable rust resistant wheat cultivars (Ellis et al. 
2014; Singh et al. 2014). To maintain and/or broaden the 

genetic diversity of durable rust resistance, the identifica-
tion of novel genetic sources of resistance is required. One 
approach for the genetic enrichment of elite breeding pools 
is to exploit landraces by introducing genetic diversity from 
germplasm collections (Lopes et al. 2015; Sehgal et al. 
2015; Kumar et al. 2016). More than 850,000 wheat acces-
sions are stored in gene banks, representing a rich genetic 
resource to reinstate the variation of genetic bottlenecks 
(e.g. from domestication or selective breeding). Many of 
these accessions are already adapted to very specific target 
environments, possessing exclusive advantageous character-
istics, such as resistances towards specific biotic and abiotic 
stresses (Mitrofanova 2012; Huang and Han 2014; Lopes 
et al. 2015), including resistance to rust diseases (Cavanagh 
et al. 2013; Lopes et al. 2015; Rinaldo et al. 2016; Vikram 
et al. 2016).

For instance, the Lr genes Lr52 and Lr67 (Hiebert et al. 
2010; Bansal et al. 2013), and the stripe rust gene Yr47 
(Bansal et al. 2011) were identified in wheat landraces from 
the Watkins collection. Another historical yet relatively 
unexploited diverse wheat collection is the “N. I. Vavilov 
Institute of Plant Genetic Resources” (VIR) in St Peters-
burg, Russia, collected by the Russian botanist and geneticist 
N. I. Vavilov and his colleagues in the early 1900s. Recent 
studies have reported a large variety of novel alleles in the 
VIR wheat collection, revealing the promising basis for the 
genetic improvement of resistances to various biotic and 
abiotic stresses (Mitrofanova 2012; Sadovaya et al. 2015; 
Riaz et al. 2016a; Riaz et al. 2017). However, determin-
ing the genomic regions underpinning these resistances is 
challenging.

Traditionally, quantitative trait loci (QTL) mapping is 
used to identify underlying genetic variations that co-segre-
gate with a trait of interest using a bi-parental mapping pop-
ulation (Koornneef et al. 2004; Zhu et al. 2008). Although 
traditional QTL mapping is successful, it is fundamentally 
limited to the comparative low allelic diversity of the two 
crossing parents and low recombination events which impair 
the mapping resolution (Zhu et al. 2008). Alternatively, 
genome-wide association studies (GWAS) represent a pow-
erful tool to dissect the genetic architecture of complex traits 
in natural populations, such as germplasm collections (Zhu 
et al. 2008; Hall et al. 2010), by detecting genomic regions 
that are in linkage disequilibrium (LD) with genes affect-
ing the trait of interest. Due to a greater number of histori-
cal chromosomal recombinations accumulated over a large 
number of generations in natural populations, GWAS can 
position QTL at a much higher resolution (Yu and Buckler 
2006; Semagn et al. 2010).

Here, we present a large-scale association study for seed-
ling and APR to LR under controlled and field conditions 
in a highly diverse panel of 295 bread wheat lines from 
the VIR. Using high-density Diversity Arrays Technology 
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(DArT-seq) markers and multi-year phenotypic data sets, we 
were able to map previously undescribed QTL for resistance 
against three major P. triticina pathotypes that are prevalent 
in Australia. We anticipate that this study provides breed-
ers with a rich basis for the improvement of durable LR 
resistances in future wheat cultivars. Ongoing work based 
on these findings will help to functionally validate the sig-
nificance of candidate genes in the identified novel genomic 
regions.

Materials and methods

Plant materials and genotyping

A diversity panel of 295 homozygous single seed descent 
(SSD) bread wheat lines from VIR, representing species-
wide genetic diversity (Riaz et al. 2017), was selected 
for the assessment of LR response. DNA of each wheat 
line was extracted following the protocol recommended 
by Diversity Arrays Technology (DArT) (http://www.diver-
sityarray.com) and the whole panel was genotyped with 
the DArT genotyping-by-sequencing (GBS) platform using 
the DArT-seq wheat PstI complexity reduction method, 
as described by Li et al. (2015), which returned a total 
of 56,306 raw DArT-seq markers. The DArT-seq markers 
are presence–absence dominant markers extracted in silico 
from sequences obtained from genomic representations. 
The raw marker data was filtered to retain only markers 
with ≤ 10% missing values, a minor allele frequency ≥ 3% 
and lines with ≤ 20% missing values, resulting in a selec-
tion of 10,748 high-quality, polymorphic DArT-seq mark-
ers for the subsequent genetic analyses. All used DArT-seq 
markers were ordered according to their genetic positions 
in a high-resolution DArT-seq consensus map (version 
4.0), provided by Dr. Andrzej Kilian (Diversity Arrays 
Technology Pty Ltd, Canberra, Australia).

As described by Riaz et al. (2016a), the diversity panel 
was also screened for the polymerase chain reaction (PCR)-
based markers cssfr5 (Lagudah et al. 2009), csLV46 (Lagu-
dah, unpublished data) and SNP1-TM4 (Moore et al. 2015), 

which facilitated identification of the known LR APR genes 
Lr34, Lr46, and Lr67, respectively.

Evaluation of leaf rust resistance

For the resistance screening, we used the three P. trit-
icina pathotypes (pt), namely pt 104-1,2,3,(6),(7),11,13, 
pt  76-1,3,5,7,9,10,12,13  +  Lr37  and pt  104-
1,3,4,6,7,8,10,12 + Lr37 (Table 1), which are prevalent in 
the eastern and western wheat growing regions of Australia 
(Park 2016). A summary of the experiments performed in 
this study at the seedling and adult plant stage for scoring 
LR response across years and pathotypes is presented in 
Table 2. 

Integrated seedling and adult plant phenotyping

The 295 SSD lines in the diversity panel were evaluated 
using the integrated seedling and adult plant phenotyping 
method under controlled conditions, as described by Riaz 
et al. (2016a). For seedling infection, the P. triticina patho-
type pt 104-1,2,3,(6),(7),11,13 was used (Table 2). Briefly, 
the diversity panel was sown in a standard glasshouse with 
diurnal temperatures (i.e. 22/17 °C day/night) and 12 h pho-
toperiod. At the two-leaf stage, plants were inoculated using 
a P. triticina urediniospore suspension (Riaz et al. 2016a, b). 
Twelve days post-inoculation, seedlings were scored using 
the 0–4 Stakman scale (Stakman et al. 1962). Afterwards, 
plants were transferred to a temperature-controlled growth 
facility where the plants were subjected to “speed breeding” 
or “accelerated growth conditions” (AGC) by adopting a 
12-h cycling temperature (22/17 °C) and 24 h photoperiod, 
which helps the plants to attain the adult plant stage rap-
idly (Riaz et al. 2016b; Watson et al. 2017). After 2 weeks, 
plants were re-inoculated using the same P. triticina patho-
type 104–1,2,3,(6),(7),11,13 (Table 2). Twelve days post-
inoculation, LR response was recorded for the flag-2 leaf 
using the 0–4 Stakman scale (Stakman et al. 1962). This 
provides representative measures of the adult plant response 
to LR, which are similar to field-based measures (Riaz et al. 
2016b). The LR response in this experiment was converted 

Table 1   Virulence and avirulence profiles of P. triticina pathotypes used in this study

a The virulence/avirulence status of the leaf rust pathotype was reported by Park (2016)
b Pathotype is partially virulent on the gene

Leaf rust pathotypea Virulent on genes Avirulent on genes

104–1,2,3,(6),(7),11,13 Lr1, Lr3a, Lr14a, Lr16, Lr17ab, Lr20, Lr24, Lr27 + 31b Lr2a, Lr3ka, Lr13, Lr15, Lr17b, 
Lr23, Lr26, Lr28, Lr37

76–1,3,5,7,9,10,12,13 + Lr37 Lr3a, Lr3ka, Lr13, Lr14a, Lr16, Lr17a, Lr17b, Lr20, Lr24, Lr26, 
Lr27 + 31, Lr37

Lr1, Lr2a, Lr15, Lr23, Lr28

104–1,3,4,6,7,8,10,12 + Lr37 Lr1, Lr3a, Lr12, Lr13, Lr14a, Lr15, Lr17a, Lr17b, Lr20, 
Lr27 + 31, Lr28, Lr37

Lr2a, Lr3ka, Lr16, Lr23, Lr24, Lr26

http://www.diversityarray.com
http://www.diversityarray.com
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from the 0–4 to 0–9 scale to standardise data sets across 
all experiments (Ziems et al. 2014; Riaz et al. 2016b) and 
for subsequent GWAS analyses. Lines that depicted a LR 
response < 7 on the 0–9 scale were considered resistant.

Field trials

The SSD lines in the diversity panel were subjected to LR 
screening in the field over a 3-year period (2014, 2015, 
and 2016) at the Redlands Research Facility (27°31′40.8″S 
153°15′05.7″E), Queensland, Australia, as detailed by Riaz 
et al. (2016b). Six seeds of each SSD line were sown as 
un-replicated hill plots, whereas four standards with known 
disease responses (i.e. Thatcher, Avocet, Avocet + Lr34, 
and Avocet + Lr46) were replicated five times throughout 
the test material to detect spatial variation in the nursery. 
About 5 weeks after sowing, the LR epidemic was initiated 
by transplanting rust-infected wheat (Morocco) seedlings 
into the field among the spreader rows. When the disease 
was sufficiently established on susceptible standards [i.e. 
Thatcher was scored 20 moderately susceptible to suscep-
tible (MSS) in the field in 2014, 9 in the field in 2015, and 
8 in the field in 2016], all SSD lines were assessed for LR 
response.

In 2014, the diversity panel was assessed for disease 
response in the LR nursery inoculated with P. triticina 
pathotype 104–1,2,3,(6),(7),11,13 (Table 2). The disease 
response for each line was assessed on a whole plot basis 
using the modified Cobb scale (Peterson et al. 1948). The 
disease severity data and IT were used to calculate the coef-
ficient of infection (CI), as reported by Loegering (1959). 
Disease scoring was conducted at 70, 77, 86, and 96 days 

after sowing (DAS). Therefore, these multiple phenotypic 
data sets represent different time-points during the epidemic 
development in the nursery. The CI values of each disease 
score were then divided by 10 to convert to 0–9 scale. The 
converted scores were used to visualise the density distribu-
tion of LR response across phenotypic data sets.

In 2015, the LR nursery was inoculated with a mix-
ture of two P. triticina pathotypes, namely pt 104-
1,2,3,(6),(7),11,13 and pt 76-1,3,5,7,9,10,12,13 + Lr37 
(Table 2). Plants were assessed on a whole plot basis for 
disease response three times during the season (i.e. 78, 85, 
and 101 DAS) using the 1–9 scale where 1 = very resist-
ant and 9 = very susceptible, as reported by Bariana et al. 
(2007). In 2016, the LR nursery was inoculated with a 
mixture of three P. triticina pathotypes, namely pt 104-
1,2,3,(6),(7),11,13, pt 76-1,3,5,7,9,10,12,13 + Lr37 and 
pt 104-1,3,4,6,7,8,10,12 + Lr37 (Table 2). Therefore, the 
2016 nursery comprised the most virulent composition of 
P. triticina pathotypes compared to nurseries conducted in 
2014 and 2015. Plants were evaluated for disease response 
twice (i.e. 71 and 84 DAS) using the 1–9 scale, as detailed 
above.

In all the field trials, a threshold for ‘resistance’ to LR 
was determined as any line depicting a disease response ≤ 5 
based on the 1–9 scale, where resistance was deemed as 
“moderately resistant to moderately susceptible” (MRMS) 
or better. Each disease reading within a field environment 
was regarded as a unique phenotypic data set and subse-
quently used for GWAS. The field phenotypic data sets were 
referred as Field_2014_1, Field_2014_2, Field_2014_3, 
Field_2014_4, Field_2015_1, Field_2015_2, Field_2015_3, 
Field_2016_1, and Field_2016_2.

Table 2   Summary of experiments performed in this study at the seedling and adult stage for scoring leaf rust response across years and patho-
types used

a Accelerated growth conditions
b Multiple phenotypic data sets were recorded in each of the field environment

Growth stage Environment Year tested Phenotypic data sets Number of lines 
assessed (n)

Leaf rust pathotypes

Seedling Glasshouse 2014 Seedling 288 104–1,2,3,(6),(7),11,13
Adult AGCa 2014 AGC 288 104–1,2,3,(6),(7),11,13

Field 2014b Field_2014_1
Field_2014_2
Field_2014_3
Field_2014_4

284 104–1,2,3,(6),(7),11,13

2015b Field_2015_1
Field_2015_2
Field_2015_3

288 104–1,2,3,(6),(7),11,13;
76–1,3,5,7,9,10,12,13 + Lr37

2016b Field_2016_1
Field_2016_2

261 104–1,2,3,(6),(7),11,13;
76–1,3,5,7,9,10,12,13 + Lr37;
104–1,3,4,6,7,8,10,12 + Lr37



131Theor Appl Genet (2018) 131:127–144	

1 3

Population structure, genetic diversity, and linkage 
disequilibrium

The population structure and genetic diversity for the diver-
sity panel were previously described by Riaz et al. (2017). 
Briefly, population structure was estimated using the parti-
tioning around medoids clustering algorithm and ‘Jaccard 
distance’ in R (Team 2014). The optimal number of clusters 
(i.e. k = 2) was determined using the ‘fpc’ package (Hen-
nig 2014). Pairwise LD between markers were measured 
as r2 (Hao et al. 2007). LD decay, the relationship between 
LD and genetic map distance between marker pairs in cM, 
was estimated as a locally estimated scatterplot smooth-
ing (LOESS) curve and the LD cut-off threshold was set 
at r2 = 0.1. The LD decay for the A, B, and D genomes 
was estimated for the whole population and the previously 
described clusters.

Genome‑wide association analysis, allele stacking, 
and haplotype construction

Genome-wide marker-trait associations were calculated 
for data from a total of 11 phenotypic data sets (seedling, 
AGC and the field trials), using the R package GenABEL 
(Aulchenko et al. 2007). The applied mixed linear model was 
adjusted for population stratification by including identity-
by-state estimates (kinship matrix) for genotype pairs and a 
principal component adjustment that uses the first four prin-
cipal components as covariates. The significant cut-off value 
was arbitrarily set at − log10(P)  =  3.5. Overlapping signifi-
cant markers for different environments that were located at 
the same chromosomal position within a 5 cM window were 
considered the same QTL. Based on the predicted direc-
tion of the allele effect on the resistance score (e.g. negative 
effect ∧= resistance allele) (Table 3), we assigned resistance 
alleles for each significant marker.

To investigate an effect of accumulated alleles for LR 
resistance at the independent loci on the disease score, we 
assigned the lines to groups, based on the absolute number 
of resistance-associated alleles possessed and compared 
their relative disease indices that were calculated as

where the disease index LRi is the accumulated relative 
value of a line’s disease score in experiment k in relation 
to the population mean in this experiment k over all n field 
experiments. Lines with high indices (above 0) are relatively 
more susceptible to LR infection than lines with indices 
below 0.

LRi =

n
∑

k

individual Dis. score[k]

mean Dis. score[k]
,

Two QTL were selected for haplotype analysis and subse-
quent network analysis: (1) a seedling QTL on chromosome 
3A (qNV.Lr-3A.3) because it was deemed a new QTL with 
large effect, and (2) a QTL conferring APR (qNV.Lr-7B.2) 
on the long arm of chromosome 7B which was detected 
across many phenotypic data sets and reported by numer-
ous previous studies. Haplotypes for seedling resistance and 
APR were constructed on the basis of LD around the respec-
tive identified QTL on chromosomes 3A (qNV.Lr-3A.3) and 
7B (qNV.Lr-7B.2). All surrounding markers with pairwise r2 
values > 0.8 were included in the haplotype analysis, result-
ing in 7 and 22 haplotype variants, respectively. Haplotype 
networks, showing TCS genealogies between haplotype 
variants (Clement et al. 2000), were calculated using Pop-
ART (http://popart.otago.ac.nz.) (Leigh and Bryant 2015). 
The network nodes were coloured according to the average 
disease rating in the respective haplotype groups. A Tukey’s 
test was performed to test for significant phenotypic differ-
ences between the haplotype groups. The origin information 
for lines within each haplo-group was used to visualise the 
geographic distribution of these haplotypes in the diversity 
panel.

Alignment of QTL identified in this study 
with previously reported Lr genes and QTL

For comparison, QTL identified in this study and already 
catalogued Lr genes (McIntosh et al. 2017) were projected 
onto the common integrated map developed by Maccaferri 
et al. (2015) using MapChart software version 2.3 (Voorrips 
2002). A QTL was considered potentially new if the genetic 
distance was ≥ 5 cM of the reported Lr gene or QTL. Eight 
recent GWAS studies (Kertho et al. 2015; Jordan et al. 2015; 
Gao et al. 2016; Li et al. 2016; Aoun et al. 2016; Pasam et al. 
2017; Turner et al. 2017; Kankwatsa et al. 2017) and two 
genomic prediction studies (Daetwyler et al. 2014; Juliana 
et al. 2017) using high-throughput marker platforms were 
considered for QTL comparison.

In silico annotation of significant markers

The genomic regions identified in this study were subjected 
to homology search for syntenic regions in Brachypodium 
distachyon and rice (Oryza sativa L.) genome. The marker 
sequences were annotated against the protein sequences to 
determine putative molecular functions, which could lead to 
the possible identification of candidates for disease resist-
ance across species. The homology search was performed 
using EnsemblPlants; http://plants.ensembl.org/index.html 
(Kersey et al. 2016).

http://popart.otago.ac.nz
http://plants.ensembl.org/index.html
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Results

Disease response

Of the 288 lines in the diversity panel tested for LR 
response, 76.4% lines were seedling susceptible, and 23.6% 
lines were resistant (Fig. 1a, b). At the adult stage under 
AGC, 46.5% lines were resistant, and 53.5% showed a sus-
ceptible response (Fig. 1a; Supplementary material 1). In 
the 2014 field trial, 63.0, 75.4, and 63.0% of the tested 284 
lines were resistant at the first three disease assessments (70, 
77, and 86 DAS). However, at the fourth disease assessment 
(96 DAS) when the lines were at the flag leaf stage, and 
inoculum pressure in the nursery was highest, 71.2% lines 
displayed susceptibility, while only 28.8% lines displayed 
resistance (Fig. 1a). In 2015, 29.8% of the evaluated 288 

lines showed resistance and 70.2% demonstrated suscepti-
bility at the first disease assessment (78 DAS), while only 
9% of the lines showed a resistant disease response at the 
third reading (101 DAS) (Fig. 1a). In 2016, of the 261 tested 
lines, 56.7 and 27.6% were resistant for the disease assess-
ments performed at 71 and 85 DAS, respectively. The full 
description of disease responses observed for all lines in 
the diversity panel is provided in Supplementary material 1.

Marker properties, population structure, and linkage 
disequilibrium

After filtering, a total of 10,748 polymorphic mapped mark-
ers along with three PCR-based markers for known APR 
genes (Lr34, Lr46, and Lr67) were used for LD analysis and 
GWAS. Lower marker density and marker coverage were 
evident for the D genome compared to A and B genomes. 
Analysis of population structure in the diversity panel was 
previously described by Riaz et al. (2017), where distinct 
clustering was observed on the basis of cultivation status 
and geographical origin. The diversity panel was divided 
into two clusters (k = 2), containing 171 and 124 lines, 
respectively. Analysis of LD decay revealed strong differ-
ences between the three subgenomes. Overall, LD between 
marker pairs decayed quickly in the A and B genomes, 
especially in the latter, where the r2 LOESS curve never 
exceeded the threshold line. In contrast, LD in the D genome 
was very pronounced, and LOESS curves did not drop below 
the threshold line until 19 cM for cluster 1 and 21 cM for 
cluster 2 (Fig. 2).

Marker–trait associations

A total of 52 significant markers (p < 0.001) were associated 
with LR resistance (Table 3; Supplementary material 2). Six 
markers were detected at the seedling stage and 46 markers 
at the adult stage (Table 3; Supplementary material 2). Most 
of the significant markers (n = 32) were detected in 2015 
field environments. Manhattan plots depicting association 
between significant markers and LR response in different 
environments were displayed in Supplementary material 
3. By considering chromosome position and LD between 
adjacent markers, a total of 31 QTL regions were assigned. 
These QTL were located on chromosomes 1A, 1B, 2A, 2B, 
3A, 3B, 4A, 5A, 5B, 6A, 6B, 7A, 7B, and 7D (Table 3). Of 
the 31 QTL, 29 were associated with resistance at the adult 
stage and one QTL each was found to be associated with 
seedling (i.e. detected only at the seedling stage) and all-
stage resistance (i.e. detected both at the seedling and adult 
stage) (Table 3). The QTL qNV.Lr-2B.3 (all-stage resist-
ance) and qNV.Lr-7B.2 (adult plant stage) were detected in 
many of the environments. The gene-specific marker cssfr5 
for known APR gene Lr34 on chromosome 7D (Lagudah 

Fig. 1   a Violin plots illustrating the density distribution of leaf rust 
response for lines in the diversity panel based on 11 phenotypic data 
sets. The disease data for environments AGC and field (2014, 2015 
and 2016) were converted to the 0–9 scale (9  =  very susceptible) 
to allow comparison across all data sets. The red line displays the 
median, the top and bottom of the thick vertical bars represent first 
and third quartiles, respectively, and the green fill shows disease 
density estimates (n  =  248). b A sample of the seedling leaf rust 
responses observed for the diversity panel
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et al. 2009) was the only loci among the three PCR mark-
ers used that could be detected in GWAS with –log10 (p 
value) between 3.9 and 6.19 for the different field trials, and 
was designated QTL qNV.Lr-7D (Table 3).

Of the 31 QTL, 13 were identified as being new LR 
resistance loci (Table 3). Among the other 18 QTL, 4 were 
co-located with the catalogued Lr genes, namely Lr3 on 
chromosome 6B, Lr64 on 6A, Lr14 (a and b alleles), Lr68, 

LrBi16 and LrFun on 7B, and Lr34 on 7D (McIntosh et al. 
2017; Table 3 and Supplementary material 3). The remaining 
14 QTL identified in our study were in alignment with the 
candidate regions reported in other GWAS studies (Table 3, 
Supplementary material 4). An in silico annotation of the 
identified significant markers showed that most sequences 
were uncharacterised regarding their molecular function 
(Table 3). However, 12 markers corresponded to the puta-
tive proteins carrying domains involved in disease resistance 
mechanisms, such as leucine rich repeat (LRR), NB-ARC, 
P-loop_NTPase, zinc finger, CCHC-type, RNA-dependent 
DNA polymerase, protein kinase-like domain, cyclin-like 
F-box, galectin, carbohydrate recognition domain, glycosyl 
transferase family 29, glycosyl transferase family 31, Ran 
GTPase, small GTP-binding protein, ABC transporter and 
domain of unknown function-DUF1618 (Table 3).

Haplotype analysis and allele stacking

A new QTL (qNV.Lr-3A.3) on the long arm of chromo-
some 3A (116.7–117.0  cM) represented by two highly 
significant markers for seedling LR resistance [− log10(p 
value) = 6.26/4.1] which were in high LD (r2 = 0.7), was 
selected for subsequent haplotype analysis (Table 3, Fig. 3a). 
This large effect QTL was considered a new genomic region 
conferring seedling resistance because it did not align with 
any previously reported Lr genes or QTL (Fig. 3b). Screen-
ing of allelic variation in our diversity panel resulted in seven 
different haplotype variants (qNV.Lr-3A.3—hap1–hap7), 
where hap1 was the most frequent variant in our diversity 
panel (frequency = 92.5%) (Fig. 3b). Hap2 was present in 
4.7% of the lines while all other variants only occurred in 
1% of the lines each. Inter-group comparisons of the disease 
responses for the first three haplotype groups showed that 
hap1 was associated with a significantly higher susceptibil-
ity to LR (8 on a 0–9 scale) than hap2 and hap3, where the 
median disease response ranged between 3.6 and 5.5, respec-
tively (Fig. 3c). The lines carrying hap1 are geographically 
widespread and originate from 28 countries, including Rus-
sia (n = 48), India (n = 37), and Pakistan (n = 30). The 
lines carrying hap2 were from Armenia (n = 3), Azerbaijan 
(n = 3), Russia (n = 2), Pakistan (n = 1), Ethiopia (n = 1), 
and five were of unknown origin while hap3 was from 
Ukraine (n = 1) and two were of unknown origin (Fig. 3d). 
Interestingly, of the 14 lines carrying the resistant haplotype 
(hap2), only one line was deemed to also carry the known 
APR genes Lr34 and Lr46 (Supplementary material 5).

We also constructed a haplotype on the basis of the 
identified APR QTL qNV.Lr-7B.2 on the long arm of chro-
mosome 7B (126.0–130.6 cM) represented by 11 highly 
significant markers associated with LR resistance at the 
adult stage. Interestingly, several previously reported Lr 
genes and QTL have been reported in the region, including 

Fig. 2   Linkage disequilibrium (LD) decay as a function of genetic 
distance (cM) in A, B and D genomes for the diversity panel. LD was 
estimated for the whole population (black dotted line), and cluster 
1 (red line) and cluster 2 (blue dotted line) as defined by Riaz et al. 
(2017). The LD decay was the point where the locally estimated scat-
terplot smoothing (LOESS) curves intersect the LD, whereas the 
threshold for LD decay was at r2 = 0.1 (black line)
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Lr14 (a and b alleles) (Dyck and Samborski 1970; Ter-
racciano et al. 2013), Lr68 (Herrera-Foessel et al. 2012), 
LrBi16 (Zhang et al. 2011), and LrFun (Xing et al. 2014) 
(Fig. 4a). Around the identified QTL, the five DArT-seq 
markers (i.e. 1207290, 1117456, 1214960, 1134022, and 
2304335) in very high LD (r2 > 0.75) were used for the 

haplotype analysis (Table 3; Fig. 4a). In total, 22 haplotype 
variants were identified in our panel, of which hap1 and 
hap2 were the most frequent (78.3 and 7.8%, respectively). 
To construct the TCS haplotype network, only the vari-
ants which occurred at least twice in the panel (i.e. hap1-
hap9) were used (Fig. 4b). Tukey’s test and a comparison 

Fig. 3   Haplotype analysis of QTL qNV.Lr-3A.3 on chromosome 3A 
associated with resistance to leaf rust at the seedling stage. a Chro-
mosomal position of QTL qNV.Lr-3A.3 (116.7–117.0  cM based on 
the DArT-seq consensus map version 4.0 provided by Dr. Andrzej 
Kilian) and linkage disequilibrium for associated markers. b Haplo-
type network displaying seven haplotype variants, where the size of 

the node is proportional to the number of lines carrying that hap-
lotype variant while colour indicates the mean disease response 
for those lines (0–9 scale, where 9 = very susceptible). c Box plots 
displaying the disease response for the lines carrying the three most 
common haplotypes. d The geographic distribution of the three most 
common haplotypes in the diversity panel
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of median values for seven haplotypes showed that geno-
types in hap1 were significantly more susceptible to LR (8 
on a 1–9 scale) in all screenings of 2015 (Fig. 4c). Four 
haplotypes (hap2-hap5) displayed less susceptibility across 
three phenotypic data sets in 2015, where the median value 

of each haplotype across phenotypic data sets was variable 
i.e. hap2 (5–8 on a 1–9 scale), hap3 (4–7 on a 1–9 scale), 
hap4 (3–8 on a 1–9 scale) and hap5 (4–5.5 on a 1–9 scale) 
(Fig. 4c). The lines carrying hap2 originated from Russia 
(n = 4), India (n = 2), Armenia (n = 1), and 16 were of 

Fig. 4   Haplotype analysis of QTL qNV.Lr-7B on chromosome 
7B associated with resistance to leaf rust at the adult plant stage. a 
Chromosomal position of the QTL qNV.Lr-7B.3 (128.6–130.6  cM 
based on the DArT-seq consensus map version 4.0 provided by Dr. 
Andrzej Kilian) and comparison with catalogued Lr genes. The link-
age disequilibrium block highlighted for the five associated markers. 
b Haplotype network displaying the nine most common haplotype 

variants, where the size of the node is proportional to the number of 
lines carrying that haplotype variant while colours indicate mean dis-
ease response for those lines (1–9 scale, where 9 = very susceptible). 
c Box plots displaying the disease response by lines carrying seven 
most common haplotypes in three phenotypic data sets in 2015. d 
The geographic distribution of the five most common haplotypes in 
the diversity panel
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unknown origin. The lines carrying hap3 were from Russia 
(n = 2), unknown origin (n = 2) and one each from Iraq, 
Spain, and India. The hap4 originated from China (n = 2), 
and one each from Russia, India, and Ukraine. The hap5 
was present in a line from Pakistan (n = 1) (Fig. 4d).

To test the effect of an accumulation of alleles for LR 
resistance at the independent loci, we assigned the lines 
from the diversity panel to groups, based on the abso-
lute number of resistance-associated alleles possessed. 
This resulted in 13 different groups, ranging from two 
lines that carried ≤ 5 resistance-associated alleles, up to 
three lines that carried 29 or more (Fig. 5; Supplemen-
tary material 6). A comparison of their indices which 
represent the average LR response of a line in relation to 
the overall population evaluated in field trials from 2014 
to 2016 revealed a very clear linear trend. While lines 
that combined relatively few of the identified resistance-
associated alleles showed a comparatively high disease 
index, resistance  to LR continuously increased with 
additional resistance-associated alleles. In total, 51 lines 
were detected that carry 19 or more resistance-associated 
alleles and showed index levels largely below zero (Fig. 5; 
Supplementary material 6).

Discussion

Novel sources of LR resistance

Deployment of resistant cultivars is the most economi-
cal and effective method to control rust diseases in the 

field (Ellis et al. 2014). However, deployed resistance 
genes can easily be overcome due to the rapid evolution of 
the pathogen and limited genetic diversity for resistance 
factors in modern wheat germplasm. Crop domestication 
and later selective breeding in modern breeding programs 
have led to a dramatic loss of genetic diversity in many 
important crop species, such as rice (Oryza sativa var. 
japonica) (Huang et al. 2012), maize (Zea mays subsp. 
mays L.) (Wright et al. 2005) and hexaploid bread wheat 
(Reif et al. 2005). The exploitation of genetic resources 
from the primary gene pool of wheat is considered a 
promising approach to identify new and durable resist-
ance factors that can be utilised for the improvement 
of modern high-yielding varieties (Mujeeb-Kazi et al. 
2013). The primary gene pool includes wild and early 
domesticated relatives of wheat, landraces, old cultivars 
and breeding lines. The use of landraces compared to 
wild relatives is advantageous as they carry homologous 
chromosomes that can easily recombine with hexaploid 
wheat (Wulff and Moscou 2014). As advances in geno-
typing technologies provide high-throughput genome 
information at an unprecedented resolution and low 
costs, vast germplasm collections stored in many gene 
banks worldwide represent a rich and now accessible 
genetic treasure chest for modern wheat improvement 
(Voss-Fels and Snowdon 2016). We have identified 
potentially new genomic regions that are highly associ-
ated with LR resistance at seedling and adult stage in the 
Vavilov wheat diversity panel. Analysis of LD for the 
three genomes revealed that LD decayed rapidly in the A 
and B genomes in both population clusters, reflecting the 

Fig. 5   The effect of resistance-
associated favourable alleles at 
quantitative trait loci for resist-
ance to leaf rust response in the 
diversity panel. The field rela-
tive disease index is calculated 
using phenotypic data sets from 
field trials only. The frequency 
of lines carrying favourable 
alleles is also presented
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high level of allelic diversity in the diversity panel. In our 
study, the highest LD was estimated for the D genome, 
which was also reported in numerous previous studies 
(Nielsen et al. 2014; Wang et al. 2014a; Zegeye et al. 
2014; Voss-Fels et al. 2015). Across experiments, the 
lines identified as resistant include landraces, cultivars 
and breeding lines originating from different countries 
of the world (i.e. Russia, Kazakhstan, India, Pakistan, 
Ukraine, and China), thus providing diverse sources to 
achieve durable resistance in various eco-geographic con-
texts (Gurung et al. 2014; Maccaferri et al. 2015). These 
resources harbour promising novel resistances against 
a rapidly evolving pathogen. For instance, in Australia, 
a recent exotic introduction of P. triticina pathotype 
104–1,3,4,6,7,8,10,12 + Lr37 carried virulence on five 
Lr genes (Lr12, Lr13, Lr20, Lr27 + 31, and Lr37) which 
were widely deployed in cultivars (Cuddy et al. 2016; 
Park 2016). Thus, the identification of resistant lines in 
this study not only provides new sources of resistance, 
but likely different alleles for already known genes, which 
can help to enhance genetic diversity in modern wheat 
breeding programs.

Alignment of putative QTL to previously reported Lr 
genes and QTL

A large number of QTL were detected in our study (n = 31). 
Almost half (n = 13) of the identified QTL were considered 
novel, while the remainder (n = 18) aligned with previously 
reported QTL and/or catalogued Lr genes (discussed in Sup-
plementary material 7). Interestingly, a locus corresponding 
to the seedling resistance gene Lr3 on chromosome 6B was 
detected in our study, despite the use of P. triticina patho-
types that were virulent for Lr3. This suggests the prob-
able presence of alternate alleles of the already ‘extinct’ 
resistance loci or a tightly linked gene with distinct resist-
ance functions. The lack of availability of tightly linked or 
gene-specific markers for the known Lr genes hinders the 
ability to precisely position these genes on the respective 
chromosome. Further, allelism testing can also be performed 
to determine the association between the detected loci and 
previously reported genes and/or the QTL. A large number 
of QTL (n = 30) were identified in GWAS using more than 
one adult phenotype dataset. Of these, only six QTL were 
detected across different adult phenotypic data sets. This 
might be due to the fact the genomic regions underpinning 
APR often interact with the plant growth stage, inoculum 
pressure and the temperature conditions, thus affecting the 
resistance phenotype. An interesting region identified across 
both seedling, AGC and field data sets was QTL qNV.Lr-
2B.3 on chromosome 2B, which contained seven associated 
markers. Within this genomic region, we identified several 
candidate genes (i.e. NB-ARC, P-loop_NTPase, zinc finger, 

CCHC-type, and RNA-dependent DNA polymerase) that are 
known to encode proteins involved in pathogen recognition 
and subsequent activation of innate immune responses that 
lead to programmed cell death. It is well known that R genes 
tend to occur in clusters in plant genomes and give rise to 
many haplotypes via recombination (Friedman and Baker 
2007; van Ooijen et al. 2008). Such ‘hotspots’ for resist-
ance QTL could involve various combinations of classical R 
genes and other race-nonspecific genes (Burdon et al. 2014). 
A good example is the QTL region qNV.Lr-7B.2 which con-
tains seedling resistance gene Lr14b (Dyck and Sambroski 
1970) and APR gene Lr68 (Herrera-Foessel et al. 2012). It 
should be noted that QTL detected at the adult plant stage 
could also harbour genes regulating physiological char-
acteristics, rather than classical R genes. For instance, in 
sorghum (Sorghum bicolor (L.) Moench), several QTL for 
resistance to rust (Puccinia purpurea) were found to co-
locate with QTL for maturity and plant height (Wang et al. 
2014b). These genetic factors could offer durable resistance 
to rust diseases.

Haplotype analysis

In GWAS, single marker scans are performed to understand 
the underlying genetic architecture of disease resistance in 
natural populations. In addition, a more powerful approach 
is to perform a haplotype analysis based on closely linked 
markers which are more likely to be inherited together as a 
block (Hayes et al. 2007). Haplotype analyses which typi-
cally depict marker-trait associations at a higher resolution 
due to an increased information content compared to bi-
allelic molecular markers, such as SNPs or DArT mark-
ers, have been successfully applied in identifying genomic 
regions involved in effective Fusarium head blight resistance 
on wheat chromosome arm 3BS (Hao et al. 2012). In the pre-
sent study, we performed haplotype analyses for two QTL, 
the seedling QTL qNV.Lr-3A.3 and the APR QTL qNV.Lr-
7B.2. Therefore, we followed previous studies and jointly 
defined markers in strong LD with the two identified QTL 
as a haplotype block (Hao et al. 2012; Diaz et al. 2011). 
Analysis of LD around the seedling QTL (qNV.Lr-3A.3) 
displayed a high level of LD between two associated mark-
ers, suggesting a high level of allelic fixation. One of the 
lines carrying the resistant haplotype (hap2) of QTL qNV.
Lr-3A.3 was also found positive to carry known APR genes 
Lr34 and Lr46, thus providing a combination of R and APR 
genes/QTL. Such gene/QTL combinations are promising 
to achieve longer lasting resistance in elite cultivars. Simi-
larly, of the markers located in the APR QTL qNV.Lr-7B.2 
on chromosome 7B, five markers with very high LD were 
considered a haplotype block. The results revealed a broad 
allelic variation for this chromosomal fragment and showed 
that four haplotype groups (hap2-hap5) were associated with 
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a reduction in susceptibility across three phenotypic data 
sets in 2015. This might be explained by the fact that this 
chromosomal region is known to carry Lr genes such as 
Lr14 (a and b alleles), Lr68, LrBi16 and LrFun (McIntosh 
et al. 2017).

Pyramiding of resistance‑associated alleles for durable 
rust resistance

It has been well described that durable rust resistance in wheat 
can be achieved by pyramiding multiple QTL (Ellis et al. 2014; 
Mundt 2014). In our study, a comparatively high number of 
loci with variable LR resistance in the field were detected with 
a high fraction of lines that carried more than 20 resistance-
associated alleles. Identification of lines with a large number 
of favourable alleles has been reported by previous studies 
(Kollers et al. 2014; Naruoka et al. 2015; Muleta et al. 2017). 
The landraces are the traditional varieties which were selected 
by the farmers in the field preferably for agronomic traits, but 
at the same time they were also indirectly selected for disease 
resistance (Zeven 2002). Since the rust pathogen has co-evolved 
with wheat landraces for thousands of years in the same envi-
ronment, diverse resistance alleles and their combinations 
exist in the host population keeping epidemic development in 
check (Thrall and Burdon 2000; Ordonez and Kolmer 2007). 
Since the landraces in the seed bank were removed from their 
environmental context, it is hypothesised that they might hold 
new allelic variations against the modern P. triticina patho-
types. Detection of a large number of resistance alleles showed 
that these resistance-associated alleles have accumulated in 
landraces over time and occurred at variable frequencies (i.e. 
high, low, and rare) in the population. In particular, rare alleles 
are known to provide resistance to diseases and environmental 
stresses (Vikram et al. 2016). Therefore, the utilization of lan-
draces for trait introgression may greatly increase the genetic 
diversity and frequency of rare alleles into modern wheat breed-
ing programs. In our study, we were able to show that there 
is a close relationship between the level of LR resistance and 
number of resistance alleles from independent loci, highlight-
ing the high potential of allele stacking for rust improvement 
in future cultivars. Combining seedling resistance and APR 
alleles is most effective and promising to provide sustainable 
resistance levels and also reduce the fitness cost associated with 
APR (Nelson 1978; Ellis et al. 2014; Consortium 2016). For 
example, durable resistance using combinations of resistances 
(seedling and APR) against stripe rust was achieved in Western 
Europe, while combining multiple minor genes provided dura-
ble resistance to stem rust and powdery mildew at the Inter-
national Maize and Wheat Improvement Center (CIMMYT), 
Mexico (Singh et al. 2011; Basnet et al. 2014; Ellis et al. 2014; 
Singh et al. 2014; Brown 2015).

The detection of a large number of favourable alleles is 
promising. However, simultaneous consideration of all alleles 

in a breeding program is often challenging. To overcome this 
challenge, a small subset of alleles can be targeted by design-
ing specific crosses in a breeding program, thus supporting 
recombination of favourable alleles at many loci. Further-
more, implementing trait introgression via MAS allows selec-
tion for various traits in early generations and can easily elimi-
nate undesirable allele combinations. Recent advancements in 
genomic approaches such as marker-assisted backcrossing, 
whole-genome scans, genomic prediction and genomic selec-
tion enable rapid combination of multiple alleles in a single 
variety (Liu et al. 2014). Together with the latest advance-
ments in plant phenotyping approaches and rapid generation 
advance systems, such as “Speed Breeding” (Watson et al. 
2017), the development of rust resistant wheat cultivars can 
be accelerated (Hickey et al. 2012; Riaz et al. 2016b). Segre-
gating populations can be screened and individuals selected 
by “phenotyping-on-the-go” during line development. The 
identified resistance can be rapidly introgressed using the 
rapid generation advance system in breeding programs. This 
could help fast-track the introgression of new LR resistance 
from the Vavilov wheat diversity panel into elite genetic back-
grounds for future cultivars. The strategy is not limited to LR, 
as phenotyping methods adapted to speed breeding have been 
designed for other important traits in wheat, including stripe 
rust (Hickey et al. 2012), stem rust (Riaz and Hickey 2017), 
yellow spot (Dinglasan et al. 2016), seed dormancy (Hickey 
et al. 2009), and root architecture (Richard et al. 2015).
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