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Egypt, and Syria) over 2–3 years in each country. Twenty-
five agronomic and physiological traits were measured 
on 188 wheat genotypes. After correcting for population 
structure and relatedness, a total of 245 MTAs distributed 
over 66 loci were associated with agronomic traits in indi-
vidual and mean performance across environments respec-
tively; some of which confirmed previously reported loci. 
Of these, 27 loci were significantly associated with days to 
heading, thousand kernel weight, grain yield, spike length, 
and leaf rolling for mean performance across environments. 
Despite strong QTL by environment interactions, eight of 
the loci on chromosomes 1A, 1D, 5A, 5D, 6B, 7A, and 7B 
had pleiotropic effects on days to heading and yield com-
ponents (TKW, SM−2, and SNS). The winter-type alleles at 
the homoeologous VRN1 loci significantly increased days 
to heading and grain yield in optimal environments, but 
decreased grain yield in heat prone environments. Top 20 
high-yielding genotypes, ranked by additive main effects 
and multiplicative interaction (AMMI), had low kinship 
relationship and possessed 4–5 favorable alleles for GY 
MTAs except two genotypes, Shadi-4 and Qafzah-11/
Bashiq-1–2. This indicated different yield stability 
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Abstract  We undertook large-scale genetic analysis to 
determine marker-trait associations (MTAs) underlying 
agronomic and physiological performance in spring wheat 
using genome-wide association studies (GWAS). Field tri-
als were conducted at seven sites in three countries (Sudan, 

Communicated by Andreas Graner.

Awais Rasheed and Emeka C. Okechukwu contributed equally to 
the manuscript.

Electronic supplementary material  The online version of this 
article (doi:10.1007/s00122-017-2927-z) contains supplementary 
material, which is available to authorized users.

 *	 Francis C. Ogbonnaya 
	 Francis.Ogbonanya@grdc.com.au

1	 International Center for Agricultural Research in the Dry 
Areas (ICARDA), P.O. Box 5466, Aleppo, Syria

2	 Grain Research and Development Corporation (GRDC), 
Barton, ACT 2600, Australia

3	 Institute of Crop Science, National Wheat Improvement 
Center, Chinese Academy of Agricultural Sciences (CAAS), 
12 Zhongguancun South Street, Beijing 100081, China

4	 International Maize and Wheat Improvement Center 
(CIMMYT), c/o CAAS, 12 Zhongguancun South Street, 
Beijing 100081, China

5	 Department of Crop Science, University of Nigeria, Nsukka, 
Nigeria

6	 School of Life Sciences, The University of Warwick, 
Coventry CV4 7AL, UK

7	 Department of Environment and Primary Industries, AgriBio, 
5 Ring Road, Bundoora, VIC 3083, Australia

8	 School of Applied Systems Biology, La Trobe University, 
Bundoora, VIC 3083, Australia

9	 Field Crops Department, Faculty of Agriculture, University 
of Aleppo, Aleppo, Syria

http://crossmark.crossref.org/dialog/?doi=10.1007/s00122-017-2927-z&domain=pdf
http://dx.doi.org/10.1007/s00122-017-2927-z


1820	 Theor Appl Genet (2017) 130:1819–1835

1 3

mechanisms due to potentially favorable rare alleles that 
are uncharacterized. Our results will enable wheat breed-
ers to effectively introgress several desirable alleles into 
locally adapted germplasm in developing wheat varieties 
with high yield stability and enhanced heat tolerance.

Introduction

Bread wheat (Triticum aestivum L.) is one of the world’s 
most important and widely consumed cereal crops. The 
world population is expected to reach about 9 billion by 
the end of the 21st century, and it has been predicted that 
the demand for cereals, especially wheat, will increase 
by approximately 50% by 2030 (Borlaug and Dowswell 
2003), much of these in developing countries. Wheat adapt-
ability and production stability in semi-arid, tropical, and 
subtropical climates is crucial to the attainment of the pro-
jected demands. Wheat crops in these regions experience 
above optimum temperature during reproductive stages of 
development, leading to a significant yield loss (Talukder 
et al. 2014). In a recent study, Ray et al. (2013) using his-
torical data from various parts of the world reported that 
climate variability accounts for roughly 32–39% in yield 
variability with production fluctuations of ~22 million tons 
annually for five major crops, including wheat. Similarly, 
Asseng et  al. (2015) reported that global wheat produc-
tion is estimated to fall by 6% for each °C of further tem-
perature increase, becoming more variable over space and 
time. This poses considerable challenge for wheat breed-
ers in developing varieties targeted at heat prone environ-
ments against the backdrop of fluxes in patterns of climate 
change.

Phenotypic characterization over multi-environment 
field trials is important to assess genotype responses 
across target environments and the extent of geno-
type  ×  environment interactions (GEI). Better under-
standing of the genetic control of key traits and their 
underlying genes/quantitative trait loci (QTL) will facili-
tate the estimation of gene or QTL × environment inter-
actions to further refine crop improvement (Trethowan 
2014). To date, many QTL associated with yield-related 
traits in bread wheat have been identified by bi-parental 
QTL mapping (Marza et  al. 2006; Kuchel et  al. 2007; 
Olivares-Villegas et  al. 2007; McIntyre et  al. 2010; 
Tang et al. 2011; Bennett et al. 2012; Lopes et al. 2013; 
Rebetzke et  al. 2013; Gao et  al. 2015). However, such 
QTL mapping studies only locate associated genomic 
regions with low resolution limiting their utility across 
diverse genetic background (Sukumaran et  al. 2015). 
Genome-wide association studies (GWAS) based on 
random, high-density genotyping can help to “backfill” 
regions of the chromosome, where unknown genes with 

major effects are located (Crossa et al. 2007). The ability 
to survey large gene pools that are more representative of 
the breeding pool within any given country or geographic 
area lends itself to the detection and mapping of multi-
ple traits in a single panel of genotypes (Neumann et al. 
2011; Mulki et  al. 2013; Jighly et  al. 2016). GWAS has 
been bolstered by the availability of high-density molec-
ular markers made possible by advances in the develop-
ment of low-cost high-throughput genotyping resources 
(Wang et  al. 2014; Zegeye et  al. 2014). The limitations 
of GWAS include its inability to detect rare alleles and 
the effects of unaccounted (Zhao et al. 2007) or overcor-
rected (Segura et  al. 2012) population structure. How-
ever, GWAS is still useful to detect robust QTL that have 
an effect across different genetic backgrounds and envi-
ronments (Jannink 2007).

GWAS has been successfully used to map QTL for traits 
in wheat such as grain yield (GY), foliar diseases, agro-
nomic traits, and end-use quality using different molecular 
marker systems (Crossa et  al. 2007). Recently, Rasheed 
et al. (2014) and Zegeye et al. (2014) conducted GWAS to 
identify genomic regions that underpin grain morphology 
and stripe rust resistance in synthetic hexaploid wheats, 
respectively. In the same vain, Bentley et  al. (2014) used 
GWAS to genetically dissect key agronomic traits in elite 
European wheat genotypes, and concluded that GWAS 
offer potential for application in both research and breed-
ing. Similar findings have been reported with CIMMYT 
wheat germplasm (Edae et al. 2014), ICARDA elite spring 
and winter wheat germplasm (Jighly et  al. 2015; Tadesse 
et  al. 2015), elite breeding lines from the breeding pro-
grams of Bioplante and INRA (Bordes et  al. 2014), and 
spring wheat population grown in temperate irrigated envi-
ronments (Sukumaran et al. 2015).

In this study, GWAS were performed using 188 wheat 
genotypes grown in 15 environments and genotyped with 
DArT markers to identify loci associated with key agro-
nomic and physiological traits and understand the genetic 
interactions between the traits.

Materials and methods

Germplasm

The plant materials for the study consisted of 188 wheat 
genotypes (Table S1). These genotypes were obtained 
from the International Centre for Agricultural Research in 
the Dry Areas (ICARDA), Syria, the International Maize 
and Wheat Improvement Centre (CIMMYT), Mexico and 
CSIRO Plant Industry, Australia and the Australian winter 
cereal collection Center (AWCC), Tamworth, Australia.
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Experimental sites

Field trials were conducted in 15 environments (7 loca-
tions, 3 years, and two growing seasons, Table 1) at histori-
cal hotspots of heat occurrences during grain filling in three 
sites each at Egypt (Al-Matana, Kom Ombo, and Sids) and 
Sudan (Hudeiba, Wadmedani, and Dongola), respectively, 
and one in Syria (Tel-hadya) from 2010 to 2013. Detailed 
environment characteristics with time of sowing and har-
vesting are provided in Table  1. Environment names are 
coded by unique prefix (E1–E15), followed by abbreviation 
of location name and year of evaluation, e.g., E1-HUD13 
refers to environment-1 at Hudeiba (Sudan) in 2013. The 
geographic coordinates and meteorological data, including 
minimum and maximum temperature, rainfall, and/or irri-
gation for each site during field trials, are given in Table 1 
and S2. In total, data for 25 different traits were recorded; 
however, not all the traits were recorded in all environ-
ments (Table 2). Trials were fertilized and maintained free 
from weeds, insects, and diseases.

Phenotyping

The experiments were laid out as an alpha lattice design 
with two replications. Each plot consisted of six-to-eight 
rows, 8  m long with a cut back to 6  m and 15  cm spac-
ing between rows. Data were collected on physiological, 
yield, and yield-related traits, though some traits were not 
measured in some of the studied environments, as shown 
in Table 2. Heading days (HD), which is duration between 
dates of sowing and appearance of heads, was recorded at 
the stage when more than 50% of plants in each plot were 
displaying heads (Zadoks stage 59, Zadoks et  al. 1974). 
Days to maturity (DM) data were recorded at the period 
between the date of sowing and the date when more than 
50% of the spikes in a plot showed a total loss of green 
color (physiological maturity) (Zadoks stage 89, Zadoks 
et  al. 1974). Grain filling duration (GFD) was calculated 
as the period between days to heading and physiological 
maturity. Plant height (PH) of each genotype was estimated 
with meter rule when all plots reached physiological matu-
rity by measuring the distance between the base of the stem 
and the top of the spike excluding the awn. The number of 
spikes m−2 (SM−2) was measured by counting the number 
of spikes in 1 m2 area for each plot using a quadrat of 1 m2. 
Five plants per plot were randomly sampled for the pedun-
cle length (PL) and spike lengths (SL). They were meas-
ured with meter rule. PL in cm was determined as average 
height of peduncle from the last node of the main stem to 
the initial tip of the spike at maturity. SL in cm was meas-
ured from the base of the first spikelets to the tip of termi-
nal spikelets excluding awns at maturity. Canopy tempera-
ture (CT) was read off at the same time for each genotype 

like a “snapshot” with a hand-held infrared thermometer 
at mid-day (11 am to 1 pm) under bright sunlight and less 
wind movement. The device was positioned above the can-
opy of the plant at angle of 45° and the canopy tempera-
ture was read off for each plot. For thousand-kernel weight 
(TKW), the grains from ten randomly selected plants in 
each replicate of every genotype were bulked separately. 
Thousand threshed kernels were counted randomly from 
each bulk and weighed on electric weighing balance. For 
the number of kernels per spike, ten plants were sampled 
from each plot. The spike of the main stem was threshed 
manually and the numbers of kernel per spike (KPS) were 
counted for each genotype. Biomass was calculated as fol-
lows: a 1  m2 plot of each genotype was harvested at the 
time of harvest followed by the estimation of individual 
biomass yield. This was later converted to tons per hectare. 
Harvest index (HI) was calculated as the ratio of grain yield 
to biological yield (BIO), while threshing index (TR) was 
the ratio of the threshed seeds to the panicles. Chlorophyll 
content was estimated with a portable chlorophyll meter 
(SPAD-502, Minolta) at anthesis, beginning of grain filling, 
and mid grain filling. Wax score (WAX) and leaves rolling 
(LR) were estimated by visual scoring of each plot.

DNA extraction and genotyping

Genomic DNA was extracted from 2-week-old seedlings 
using pooled leaf samples from five individual plants, fro-
zen in liquid nitrogen, and stored at −80 °C before DNA 
extraction. DNA extraction was carried out according to 
the procedure described in Ogbonnaya et  al. (2001). The 
188 genotypes were genotyped with high-density Diver-
sity Arrays Technology (DArT®) markers from a PstI/
BstNI representation (“wPt’’ markers) using 10  μl of a 
100  ng μl−1 DNA of each sample sent to Triticarte Pty. 
Ltd. Australia (http://www.triticarte.com.au) as a commer-
cial service provider for DArT markers.

Furthermore, the genotypes were also screened for 
functional genes: Ppd-D1 and three homoeologous Vrn-1 
genes. The sequences of the primers and the PCR proto-
col for Vrn-A1, Vrn-B1, and Vrn-D1 have been described 
earlier (Fu et al. 2005; Yan et al. 2004). The genotyping to 
identify the 2  kb deletion in promoter region of Ppd-D1 
was conducted using protocol and primers described by 
Beales et al. (2007).

Statistical analysis

Phenotypic

Restricted/residual maximum likelihood (REML) analyses 
were carried out on the results obtained in the alpha lattice 
experiments to generate the best linear unbiased estimates 

http://www.triticarte.com.au
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(BLUEs) for the multi-locational trials. These REML anal-
yses were performed with GenStat Release 10.3DE (http://
www.GenStat.co.uk). Phenotypic correlations of the stud-
ied traits were obtained with SPSS version 16.0. Estimation 
of variance components was performed using PROC GLM 
in the Statistical Analysis System (SAS Institute, 2000) 
for all traits, with genotypes as fixed effects, and environ-
ments, genotypes x environment interactions, and replica-
tion nested in environment effects as random. Broad sense 
heritability (h2) was calculated across environments from 
variance components obtained from REML analysis in 
GenStat Release 10.3DE (http://www.GenStat.co.uk) using 
formula h2 = σg

2/(σg
2 + σge

2/r +σε
2/re), where the genetic 

variance σg
2  =  (MSf–MSfe)/re, genotype  ×  environment 

interaction variance σge
2  =  (MSfe–MSe)/r, error variance 

σε
2 = MSe, MSf =  genotype mean square, MSfe =  geno-

type × environment interaction mean square, MSe = error 
mean square, and r and e were the numbers of replicates 
and environments, respectively.

DArT marker analysis

The PowerMarker V3.25 software was used to estimate the 
allele frequency of all the DArT markers (Liu and Muse 
2005). The markers with minor allele frequency (MAF) 
less than 5% were removed from the data set prior to the 
mixed linear model (MLM) association analyses to reduce 
false-positive outcomes (type 1 error).

Population structure, principal component analysis, 
and linkage disequilibrium

The population structure was estimated with the model-
based Bayesian clustering software STRUCTURE version 
2.33 (Pritchard et  al. 2000). Forty unlinked DArT mark-
ers covering the wheat genome (one marker from each 
chromosome arm) were chosen for the structure analy-
ses, except for chromosomes 4D and 6D, where only one 
marker was chosen to avoid physical linkage. The genetic 
distance between two chosen markers on the same chro-
mosome was at least 50 cM (Mulki et  al. 2013). To infer 
population structure among the wheat genotypes, three 
independent runs for each K value from 1 to 10 were per-
formed. Both the length of burn-in period and the number 
of iterations were set at 100,000. The STRUCTURE was 
run twice with two different sets of markers. The K value 
reached a plateau when the minimal number of groups 
that best described the population substructure has been 
attained (Pritchard et al. 2000). The average K values were 
plotted against their respective logarithm of the probability 
of likelihood [LnP (D)]. An ad-hoc quantity statistic (∆K) 
based on the rate of change in the log probability of data 
between successive K values (Evanno et al. 2005) was used Ta
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to predict the most appropriate number of subpopulations 
(Mulki et  al. 2013). Principal component analysis (PCA) 
was conducted based on all markers data using TASSEL 
5.0 The first three principal components were plotted 
against each other using ‘scatter plot’ function in Microsoft 
Excel 2011.

Genome-wide LD in the data set was estimated by 
pairwise comparisons among the genome anchored DArT 
markers using the TASSEL 5.0 software (Bradbury et  al. 
2007). LD was estimated as squared allele frequency cor-
relations (r2) between pairs of DArT markers accord-
ing to Weir (1996). To depict the extent of LD between 
pairs of loci, r2 values were plotted against inter-marker 
genetic distance (cM) for the whole-genome and indi-
vidual genomes. Locally weighed polynomial regression 
(LOESS) curves were then fitted into the scatter plot using 
function ‘smooth.spline’ of R (R Development Core Team, 
2011). Specifically, the 95th percentile in the distributions 
of r2 of the selected loci was estimated as the threshold r2 
(Breseghello and Sorrells 2006) on the assumption that LD 
was attributable to linkage. At its points of intersection with 
the LD decay curves, the threshold r2 was plotted as a hori-
zontal line in the LD scatterplot which provided estimates 
of the extent of LD. LD along chromosomes was assessed 
by a sliding window approach with 5 cM windows at 500 
positions along the chromosomes.

Association analysis

Phenotypic BLUEs of all traits were used for marker-trait 
association analysis. The traits with broad sense heritability 
<0.5 were not used for association analysis. The genome 
association and prediction integrated tool (GAPIT) soft-
ware, which uses computationally efficient and powerful 
methods such as EMMAX (Kang et al. 2010) and CMLM 
(Zhang et  al. 2010), was run with the model selection 
option (Lipka et al. 2012). The kinship matrix was calcu-
lated by identity-by-state estimates using TASSEL 5.0 ver-
sion and was used as covariate for population stratification. 
The equation fitted in GAPIT was

where y is the vector of observed phenotypic values of n 
seedlings; X is the vector of the SNPs, β is the vector of 
the allele effect to be estimated, P is the first 5 PCs while α 
represents how much each PC explains from the SNP vari-
ation to be estimated, u is the vector of the random effects 
for co-ancestry relations, and e is the vector of the residuals. 
To avoid spurious associations that could arise from popula-
tion structure, we included first five principal components 
(PCs) derived from the genotypic data matrix (n ×  m) as 
covariates (i.e., Q matrix). The optimal number of PCs was 
determined by forward model selection using the Bayesian 

y = Xβ + Pα + Iu+ e

information criterion (BIC) as implemented in GAPIT. The 
significance of associations between markers and pheno-
types was assessed using the false discovery rate (FDR) 
(Benjamini and Hochberg 1995) with a q value cutoff of 
0.05. The P values obtained were used as an input file for a 
script written with minor modifications in the R software (R 
Development Core team 2013) to generate Manhattan plots. 
The proportion of the genetic variance in percentage (PG %) 
explained by the individual trait-associated marker was cal-
culated as explained by (Würschum et al. 2015) by fitting all 
QTL simultaneously in a linear model to obtain R2

adj. The 
ratio PG = R2

adj/h
2, where h2 refers to the heritability of the 

trait, resulted in the proportion of genotypic variance (Utz 
et al. 2000). The PG% values obtained for individual mark-
ers associated with relevant traits were accordingly derived 
from the sums of squares of the QTL (SSQTL) in the linear 
model as described by Würschum et al. (2015).

Results

Variations in phenotypic traits

In total, data for 25 agronomic and physiological traits were 
collected during field trials (Table  2). Canopy temperature 
before grain filling (CTBGF) was evaluated in two environ-
ments, while grain yield (GY) was evaluated in all 15 envi-
ronments. The results from analysis of variance (ANOVA) 
for all traits indicated significant variations among geno-
types, environments, and genotype ×  environments interac-
tions, except for canopy temperature in middle of grain fill-
ing (CTMGF), for which genotype × environment interaction 
was not significant (Table S6). Phenotypic variability for 
the top four important agronomic traits, i.e., HD, PH, TKW, 
and GY across environments, is presented in the form of box 
plots (Fig.  1); the highest GY was recorded in E6-MAT12 
(9.18 t ha−1) with a range of 4.1–12.0 t ha−1, while the lowest 
GY was recorded in E13-TH12L (0.86 t ha−1) with a range of 
0.2–1.4 t ha−1. The two late seasons in Syria (E12-TH11HT 
and E13-TH12HT) had significantly lower grain yield com-
pared to the two normal seasons, and the percentage of yield 
loss ranged from 58 to 88%. All six environments in Egypt 
(E6–E11) out-yielded the environments in Sudan and Syria.

Broad sense heritability (h2) for all the traits ranged 
between 0.19 for canopy temperature before grain filling 
(CTBGF) and 0.97 for HD. Heritability for PH, TKW, and 
GY was 0.94, 0.70, and 0.72, respectively. AMMI analysis 
was conducted to rank genotypes based on GY across 15 
environments and 20 high-yielding genotypes were iden-
tified with average GY between 4.8 and 5.3  t  ha−1. The 
agronomic and physiological traits that negatively corre-
lated with GY were PH (r = −0.32), PL (r = −0.43), SL 
(r = −0.33), TR (r = −0.21), CTBGF (r = −0.28), CTMGF 
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(r = −0.33), and CTLGF (r = −0.13). Contrastingly, HD 
(r  =  0.25), KSP (r  =  0.25), KM−2 (r  =  0.46), SM−2 
(r = 0.3), and WAX (r = 0.18) were positively correlated 
with GY based on average data of all environments (Figure 

S1). In both heat-stressed environments (E12-TH11HT and 
E13-TH12HT), HD was negatively correlated with GY 
(r = −0.4), while TKW and PH were positively correlated 
with GY (r = 0.22 and r = 0.38, respectively).
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Fig. 1   Box plot for four important agronomic traits across all environments and data averaged for all environments (Average-AE). a Heading 
date, b plant height, c thousand kernel weight, and d grain yield
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Environmental variability at sites of field trials

The environmental and phenotypic variability prevailing 
at the experimental sites were plotted based on maximum 
temperature (Tmax), minimum temperature (Tmin), and aver-
age temperature (Taverage) (Fig. 2). The average temperature 
during the two late seasons in Syria was 8.5 °C higher com-
pared to the two normal growing seasons (Table S2). Simi-
larly, the average relative humidity was 11% lower in the 
late seasons compared to the normal seasons. Average tem-
perature at the other five experimental sites ranged between 
16.9  °C (Sids, Egypt) and 28.1  °C (Wadmedani, Sudan). 
The sites in Egypt, which is considered a high-yielding 
environment, had lower average temperature (19.05  °C) 
compared to the sites in Sudan and Syria.

Population structure and linkage disequilibrium

Results using the DArT markers with MAF > 5% indicated 
the ΔK (Evanno et al. 2005) peaked at K = 2, providing 
evidence for the existence of two genetically distinct sub-
groups in the GWAS panel (Figure S2a–d). The PCA 
also classified the population into two subpopulations, 
consistent with the inference utilizing the STRUCTURE 
software (Figure S2a). The first ten principal components 
(PCs) together explained about 38% of the total variability, 
while PC1 and PC2 together explained about 24.3% 
of total variation and partitioned the population into 
two distinct clusters. Six Australian cultivars and two 
CIMMYT genotypes were found to be admixture with the 

major clustering genotypes (n = 126) in cluster-1 (Figure 
S2a). On the other hand, the two check cultivars were 
grouped with cluster-2.

Markers in a significant LD were estimated to be 
maximum at 11 cM distance, while LD decay was observed 
beyond 11  cM (Figure S3). In total, 39.1% marker pairs 
were in a significant LD with 1882 marker pairs in perfect 
LD (r2 = 1). No marker pairs in perfect LD were observed 
>50  cM (Table S3) with the highest markers in perfect 
LD ≤10  cM. LD pattern for all classes was higher for 
D genome compared to A- and B genomes with mean r2 
(0.22) and mean of r2 > 0.2 (0.69).

Marker‑trait association for agronomic stability

In total, 1785 DArT markers with MAF threshold >0.05 
were used to identify MTAs. A significant positive corre-
lation was observed between heritability (h2) and number 
of MTAs identified for each trait (r = 0.72). In total, 245 
MTAs were identified that were distributed over 66 loci 
(Table S4). MTAs were identified on all wheat chromo-
somes except 4D. For environment-specific MTAs, 16 loci 
were consistently identified over two or more environments 
and were referred to as consistent MTAs (Table  3; Table 
S3). The distribution of MTAs along wheat chromosomes 
and their co-localization with other traits are summarized 
in Table  3. Maximum numbers of MTAs were identified 
for DM which were distributed over 16 loci, followed by 
GY on 13 different loci. The minimum numbers of MTAs 
identified were four each for GWPS and TR with observed 
phenotypic variation (R2) of 6–7.6% (Table S4). The pro-
portion of genotypic variance (PG%) explained by each 
marker ranged from 0.02% by marker wPt-732556 on chro-
mosome 1D for SNS to 27.62% for marker wPt-8172 on 
chromosome 1A for SW (Table 4). Maximum numbers of 
loci linked to traits were identified on A genome (112), fol-
lowed by B genome (97), and the D genome (36), while 
46 unmapped MTAs could not be assigned to any genome 
and were removed from further analysis. On the genetic 
map, the interval between 9 and 24  cM on chromosome 
6A appeared to be the most important in the current study 
and was associated with multiple agronomic traits, includ-
ing HD, DM, GY, and TKW. Of the 13 loci associated 
with GY, only three loci, wPt-6832 on chromosome 1B at 
40 cM, wPt-7883 on 2B at 34 cM, and wPt-664276 on 6B 
at 15 cM, were unique, while the others co-localized and/
or were pleiotropic with other important traits. These three 
loci which represent yield per se accounted for 5.7, 7.46, 
and 7.55% of the phenotypic variation, respectively.

Out of 245 MTAs, 48 MTAs identified on 27 loci were 
associated with traits averaged across environments (AE) 
and were distributed on all chromosomes except 3A, 3B, 
4D, 5B, and 6D (Table 4).

Fig. 2   PCA bi-plot for environmental variability prevailing  in the 
15 experimental sites, in terms of minimum, maximum, and average 
temperature and rainfall during wheat growing seasons, along with 
phenotypic variability for days to heading (HD), plant height (PH), 
thousand kernel weight (TKW), and grain yield (GY). Codes for the 
sites are explained in Table 2
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Table 4   Marker-trait associations identified based on data averaged across environments and heat-stressed environments

Markers in bold font were also significantly associated with traits in two high temperature (HT) environments. Only one marker with highest and 
lowest P value is mentioned in cases where more than one DArT markers were associated with trait at that locus. The details of other markers 
associated with traits at each loci are shown in Table S5

MAF minor allele frequency, Estimate Allelic effect estimates
a  See footnote of Table 1 for trait abbreviations
b  R2 is the phenotypic variation explained by the marker, and values in parentheses are the proportion of genetic variance in percentage (PG%) 
explained by the marker

Traita Marker MAF Chromosome Position P value R2 (PG%)b Estimate Pleiotropic effect

DH/DM wPt-741686 0.14 7A 158 3.04E−04 6.72 (2.40) −1.33

DH wPt-2822 0.09 6A 24 2.22E−04 7.48 (2.14) 3.4 KM−2

VRN-A1 0.46 5A 90 2.56E−06 12.3 (16.85) −2.6

VRN-B1 0.21 5B 100 3.24E−04 8.4 (1.93) −2.4

VRN-D1 0.48 5D 140 8.56E−04 8.69 (3.44) 0.93

GFD wPt-1818 0.09 1B 66 8.87E−04 4.5 (9.58) −0.83 TKW

GWPS wPt-6709 0.4 1A 3 8.60E−04 5.27 (12.27) 0.05

wPt-6502 0.35 4A 90 4.67E−04 5.82 (0.44) −0.05

GY wPt-6832 0.43 1B 40 9.93E−05 7.55 (5.59) −0.21

wPt-7883 0.21 2B 34 6.66E−04 5.72 (6.97) 0.23

wPt-664276 0.08 6B 15 1.09E−04 7.46 (16.60) 0.39

KM−2 wPt-6904 0.14 6A 16 2.84E−04 6.91 (10.39) 550.93 DH

KPS wPt-730427 0.32 2D 104 8.48E−04 5.5 (18.26) 2.09 TKW

wPt-731291 0.06 7A 11 6.49E−04 5.76 (11.49) −1.5 SM−2, SNS

LR wPt-4916 0.19 2B 6 7.70E−05 6.85 (17.50) −0.33

wPt-744022 0.2 2B 11 2.79E−04 5.74 (16.10) −0.3

PH wPt-1038 0.39 5A 111 8.42E−04 4.85 (8.51) 2.45

PL wPt-8340 0.07 2B 87 4.99E−04 4.86 (7.25) −1.95

SL wPt-2872 0.24 1A 69 5.48E−04 5.1 (6.20) 0.25 SM−2, SNS, TKW

SM−2 tPt-5298 0.07 1A, 4B 56.3, 61.8 5.09E−04 5.69 (5.67) 11.94 SL, SNS, TKW, SW

wPt-732556 0.15 1D 93 8.98E−04 5.18 (0.17) −7.94 SNS

wPt-5787 0.35 5A 37 4.22E−04 5.86 (3.71) −6.24

wPt-4295 0.09 5D 9 2.32E−04 6.41 (4.17) −11.69 SNS

wPt-5742 0.31 7A 13 7.27E−04 5.37 (0.27) −6.61 SNS, KPS

wPt-2883 0.13 7B 186 2.18E−04 6.47 (2.77) −10.28 SNS

wPt-4315 0.22 7D 171 3.72E−04 5.98 (11.13) 7.88 SNS

wPt-731810 0.23 7D, 3B 171.0, 70.8 8.32E−04 5.25 (0.96) 7.17 SNS

SNS tPt-5298 0.07 1A, 4B 56.3, 61.8 5.32E−04 5.68 (6.69) 7.09 SM−2

wPt-732556 0.15 1D 93 9.24E−04 5.18 (0.015) −4.72 SM−2

wPt-5787 0.35 5A 37 4.07E−04 5.93 (12.18) −3.73

wPt-4295 0.09 5D 9 2.46E−04 6.39 (2.38) −6.94 SM−2

wPt-5742 0.31 7A 13 8.60E−04 5.25 (1.23) −3.89 SM−2

wPt-2883 0.13 7B 186 2.40E−04 6.42 (0.07) −6.09 SM−2

wPt-4315 0.22 7D 171 4.11E−04 5.92 (6.94) 4.66 SM−2

wPt-731810 0.23 7D, 3B 171.0, 70.8 9.09E−04 5.2 (0.85) 4.24 SM−2

SW wPt-8172 0.24 1A 53 9.69E−04 5.11 (27.62) 0.08 SM−2, SNS

wPt-734051 0.35 3D 19 6.47E−04 5.47 (3.27) 0.1

TKW wPt-733777 0.08 1A 68 3.17E−04 8.62 (0.14) −3.21 SL

wPt-2315 0.26 1B 57 3.88E−05 9.67 (2.33) 2.71 GFD

wPt-0153 0.31 2D 104 6.48E−04 5.61 (1.86) −2.24 KPS

wPt-742925 0.26 5A 41 8.79E−04 5.72 (4.47) −2.05 SNS, SM−2

wPt-4229 0.42 6A 108 5.66E−04 6.16 (0.094) −1.67
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Two physiological traits, canopy temperature (CT) and 
relative chlorophyll contents (in terms of SPAD values), 
were evaluated before, mid and after grain filling periods. 
However, both traits were not used for association mapping 
due to their low heritability.

Allelic effects of functional genes on flowering time 
and grain yield

Only two cultivars were found to have photoperiod sensi-
tive allele (Ppd-D1b), while all other genotypes carried 
Ppd-D1a allele associated with photoperiod insensitiv-
ity. All three Vrn-1 loci (Vrn-A1, Vrn-B1, and Vrn-D1) 
formed eight haplotypes. The effect of Vrn-1 loci on 
HD and GY can be ranked as Vrn-A1  <  Vrn-B1  <  Vrn-
D1. The incidence of one or combination of winter-type 
alleles (vrn-A1, vrn-B1, and vrn-D1) increased HD and 
GY in optimal environments; however, these alleles sig-
nificantly decreased GY in heat-stressed environments 
(Fig. 3).

Allelic effects on four important agronomic traits

Allelic effects were simulated for HD, PH, TKW, and GY 
to identify the relationship between desirable or unfa-
vored alleles on phenotype averaged across environments 
(AE). For this purpose, only one marker associated with 
more than two environments and averaged data across all 
environments which accounted for the highest phenotypic 
variation on each locus was used (Fig.  4). The patterns 
of relationship were similar for four traits (GY, TKW, 
PH, and HD), where favored allele additively increased 

GY (R2 = 0.14) and TKW (R2 = 0.08), but decreased PH 
(R2 =  0.081) and HD (R2 =  0.02). Contrastingly, unde-
sirable allele additively decreased GY (R2 =  0.03) and 
TKW (R2  =  0.04), but increased PH (R2  =  0.21) and 
HD (R2  =  0.11). Maximum number of varieties (35) 
had five favorable alleles, while maximum numbers of 
favored alleles (6) were observed in 26 varieties for HD 
(Fig.  4a). For PH, maximum favorable alleles (3) were 
present in 80 varieties, while maximum numbers of unde-
sirable alleles (7) were found in four varieties (Fig. 4b). 
For TKW, maximum numbers of favored alleles (8) were 
observed in three varieties, while maximum numbers 
of unfavored alleles (8) were observed in 45 varieties 
(Fig. 4c). For GY, maximum numbers of favored alleles 
(5) were observed in 79 varieties, while maximum num-
bers of undesirable alleles (5) were observed in 10 varie-
ties (Fig. 4d).

Discussions

The relatively detailed phenotyping experiment con-
ducted here is important to understand the relationship 
among different traits, their stability across environments 
(Lopes et  al. 2012a, b), and their contribution towards 
accurate identification of stable genomic regions con-
trolling trait stability under different environments. This 
data set resulted in identification of large number of 
MTAs; however, the major focus of the discussion was on 
MTAs identified for traits averaged across environments 
(Table 4).

Fig. 3   Allelic effects of Vrn-1 
haplotypes on heading days 
(HD) and grain yield (GY). 
X-axis represents the combina-
tions of Vrn-A1, Vrn-B1, and 
Vrn-D1 alleles and values in 
parenthesis represent the fre-
quency of haplotypes. Left side 
Y-axis represents HD and two 
Y-axis on right side represents 
the GY in optimal and heat 
stress (HS) environments
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Phenotypic and environmental plasticity

The diversity panel used in this study represents the 
spring wheat germplasm grown under Mediterranean 
climates, but targeted for tropical and subtropical 
environments aimed at enhancing wheat adaptability and 
yield improvement in heat prone environments. Arguably, 
this represents desirable panel to identify QTL underlying 
agronomic and physiological traits showing stability over 
a wide range of environments.

All the environments were characterized as arid-to-
semi-arid tropics and sub-tropics, where six environments 
(E2-DON11, E3-DON12, E4-WAD11, E5-WAD12, E12-
TH11HT, and E13-TH12HT) experienced average maxi-
mum temperature >30 °C, including two late sown trials 
in Syria. Desirable optimum temperature required dur-
ing wheat reproductive phase is reported to be 12–22 °C 
and several reports confirmed that increase in tempera-
ture during reproductive phase significantly reduced 
GY (Saini and Aspinall 1982; Farooq et  al. 2011 and 
literatures cited therein). In the present study, late sown 
environments in Syria, E12-TH11HT, and E13-TH12HT 
resulted in 26–66% yield reduction compared to the 
other environments, which is a result of the higher num-
ber of days with maximum temperature >35  °C in late 
sown environments. Similar trends were observed for 

other important agronomic traits (Fig.  1). In this study, 
the GWAS panel was characterized for 25 agronomic 
and physiological traits, potentially relevant in breeding 
and selection in trait-based crossing aimed at develop-
ing improved and higher yielding advanced lines. This is 
considered essential in identifying potentially valuable 
traits which are stable and widely expressed, and, there-
fore, can be used in crosses, knowing that positive alleles 
for each trait can be introduced into new genetic back-
grounds. The traits that are used in breeding should be 
easy and inexpensive to measure, heritable, not result in 
penalties when conditions are favorable, nor be associ-
ated with negative pleiotropic effects on other important 
agronomic attributes.

The high GY levels of AMMI-based top-ranking 
genotypes were comparable to elite cultivars from 
Australia, ICARDA and CIMMYT used as checks. The 
heritability of four important agronomic traits (HD, PH, 
TKW, and GY) indicated a high level of robustness, 
where heritability for GY was relatively lower than 
other traits, but it was high enough to suggest an 
accurate experimental design. Relatively lower levels 
of heritability observed for physiological traits such as 
CT and SPAD during different growth phases indicated 
a relatively high error variance in measurements at 
different sites.
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Genome coverage, population structure, and linkage 
disequilibrium

In general, DArT markers have good genome cover-
age with exceptional under-representation and gaps on D 
genome and in particular chromosomes 4D and 5D. Similar 
results on density of DArT markers and their use in GWAS 
experiments have previously been reported (Mulki et  al. 
2013; Rasheed et  al. 2014). Subsequently, several high-
density SNP array have become available in wheat, includ-
ing Illumina infinium 9 K (Cavanagh et al. 2013) and 90 K 
(Wang et al. 2014) arrays. However, there are limited stud-
ies integrating both marker systems limiting the potential 
to accurately compare results from the deployment of both 
platforms.

Population structure inferred by STRUCTURE and PCA 
gave consistent results and indicated that two subpopula-
tions were appropriate in delineating the structure in the 
association panel. The delineation into two subpopulations 
based on significant (P < 0.001) population differentiation 
was 0.38, which not only reaffirmed the identification of 
two subpopulations, but also indicated limited admixture. 
The Australian check cultivars (Drysdale, Gladius, and 
Wyalkatchem) were in admixture with ICARDA germ-
plasm. The unstructured expression and low admixture of 
association panel were expected, because substantial num-
bers of genotypes do not share the same parents and indi-
cated higher diversity among association panel. This trend 
was observed previously when population structure was 
determined in germplasm belonging to wider geographies 
(Zhang et al. 2013) and multiple breeding programs (Zanke 
et al. 2014a, b).

The presence of LD is a pre-requisite for associa-
tion mapping with LD reportedly decaying more rapidly 
in cross-pollinated species than self-pollinated species 
(Brazauskas et al. 2011). A rapid LD decay indicates that 
more recombination exists within a short distance, and as 
a result, more markers are required to capture the high fre-
quency of recombination. Almost 28% more pairs were in 
a significant LD on D genome as compared to A- and B 
genomes, and similar pattern was observed for higher aver-
age LD on D genome. The higher LD in D genome has 
been linked to episodes of recent introgression and popu-
lation bottlenecks accompanying the origin of hexaploid 
wheat (Chao et al. 2010).

Marker‑trait associations for agronomic 
and physiological traits

The identification of several QTL associated with yield 
and yield stability across diverse environments on different 
wheat chromosomes as is the case in this study has 
previously been reported. Recently, Acuna-Galindo et  al. 

(2014) reported meta-QTLs (MQTL) from 30 different 
studies identified in drought and heat stress environments, 
hence was used as a reference to compare MTAs identified 
in this study. They identified group-1 chromosomes as 
having meta-QTLs for several important physiological 
and morphological traits, of which MQTL2 (chromosome 
1A, 53–69  cM) and MQTL5 (chromosome 1B, 40  cM) 
appear similar to that identified in this study for some yield 
components.

An important locus on chromosome 2B between 6 and 
11  cM interval had a pleiotropic effect on SL and LR. 
LR is an important physiological trait, known to reduce 
transpiration by cooling canopy temperature, providing 
avoidance mechanism for drought and heat stress (Ayeneh 
et  al. 2002). This region was previously identified as 
MQTL14 associated with many yield-related traits 
(Acuna et al. 2014). The yield-related MTAs identified on 
chromosome 2D between 96 and 104 cM in our study was 
previously identified as stable MTA for GY using 9 K SNP 
markers within the same region (Edae et al. 2014). We also 
identified three DArT markers (2D; 114  cM) in adjacent 
region associated with LR. Given the extent of LD within 
D genome, this region was also regarded as the same locus, 
and is reported to be a meta-QTL (MQTL22) harboring 
loci for yield and associated traits (Acuna et al. 2014).

A stable locus on 3D at 11–16 cM for SW identified in 
this study, also had a pleiotropic effect on LR in some envi-
ronments. This is likely to be a new QTL, since no informa-
tion has previously been reported in the literature for this 
genomic region. Likewise, the environment-specific locus 
for WAX on chromosome 3A at 96 cM. WAX is an impor-
tant physiological trait, which can be observed visually and 
known to decrease radiation load on leaf surface, therefore, 
reducing evapotranspiration rate (Dudnikov 2011). Two 
other loci on chromosome 3B between 61 and 67 cM and 
113 cM were associated with important yield-related traits, 
including TKW, GY, DM, and GWPS. These results are in 
agreement with the earlier report of Edae et al. (2014) and 
Acuna-Galindo et al. (2014) who also identified MTAs and 
meta-QTLs for TKW and heading time within the same 
genomic regions, respectively.

A stable locus was found on chromosome 5A at 111 cM 
which had a pleiotropic effect on PH. This MTA was also 
associated with GY in E13-TH12L, which was considered 
heat-stress environment; therefore, this heat specific MTA 
could be important to maintain GY under heat stress. This 
locus was also associated with TKW; this region has previ-
ously been implicated in conferring heat/drought tolerance. 
Lopes et al. (2015) and Sukumaran et al. (2015) previously 
identified stable yield MTAs on chromosome 5A in CIM-
MYT germplasm. However, it is difficult to align findings 
from both studies to the current study due to the use of dif-
ferent marker systems (SNP 9 and 90 K, respectively). Two 
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loci on chromosome 5B associated with GY and DM at 
38–41 cM are probably the meta-QTL (MQTL43 and 45) 
reported by Acuna-Galindo et al. (2014) which were asso-
ciated with several yield traits in heat prone environments 
consistent with previously yield-related MTA identified 
using DArT markers by Edae et al. (2014).

Chromosome 6A has previously been implicated to carry 
stable QTLs for yield-related traits in many studies; some 
of which were recently validated using near-isogenic lines 
(Simmonds et  al. 2014). Four stable loci on chromosomes 
6A and 6B that underpin HD, GY, and PH were identi-
fied in our study. Edae et  al. (2014) and Sukumaran et  al. 
(2015) reported similar results and suggested targeting these 
regions for QTL pyramiding and further validation. Acuna-
Galindo et  al. (2014) reported MQTL48-50 for TKW and 
photosynthesis in similar genomic regions, which have 
been consistently observed in several studies that evaluated 
germplasm for drought and heat tolerance (Yang et al. 2007; 
Acuna-Galindo et al. 2014). A single locus on chromosome 
6A mapped in the confidence interval of 9 and 16 cM was 
associated with HD, and had a pleiotropic effect on KPS, 
TKW, and KM−2 and probably an important locus for GY 
and related traits. Acuna-Galindo et  al. (2014) reported a 
meta-QTL in the loci adjacent to that in the preset study and 
most likely represent the same loci.

Two stable loci were identified on chromosome 7A, 
one on 7B and one on 7D. The 7A locus between 158 and 
160 cM had a pleiotropic effect on PH and HD. An impor-
tant locus on 7A between 11 and 13 cM associated with PL, 
SM−2, SNS, LR, and DM was also reported to be associ-
ated with stay green, an important trait contributing to GY 
in heat prone environments (Acuna-Galindo et  al. 2014). 
The other environment-specific loci on 7A were associated 
with GWPS, PL, and SL; these were also previously identi-
fied by Acuna-Galindo et al. (2014) as meta-QTL for TKW, 
stay green, and carbon isotope discrimination. The locus on 
chromosome 7D between 171 and 173 cM associated with 
KPS, SM−2 and SNS accords with the result of earlier find-
ings reported by Edae et  al. (2014) for yield components 
and canopy temperature.

Effect of Vrn‑1 loci on heading date and grain yield

Within the association panel, least average flowering time 
(77  days) was exhibited by 21 genotypes with dominant 
spring-type alleles across Vrn-1 loci, followed by 66 gen-
otypes (79 days) with only one winter-type vrn-D1 allele, 
and were, respectively, lowest in GY in optimal environ-
ments. Likewise, stacking the winter-type alleles at Vrn-1 
loci in varieties led to significant yield losses in heat stress 
environments, and could be attributed to the fact that win-
ter-type alleles delayed flowering. Hence, varieties with 
winter-type alleles are exposed to heat stress for longer 

period, with peak temperature coinciding with grain filling 
period compared to spring-type alleles  depending on the 
location/environment. These results indicated that breed-
ing strategies should be devised to replace the winter-type 
alleles, especially at Vrn-A1 and Vrn-D1 loci, to develop 
early-flowering cultivars. This mechanism has been illus-
trated under diverse environments stress (Zhang et  al. 
2014), and will likely result in shortening the flowering 
time, hence time to maturity for the development of culti-
vars tailored for stressed environments.

Allelic effects of four important agronomic traits 
and residual effect on grain yield

The ultimate breeding objective is the development of cul-
tivars with higher grains yield, a complexly inherited trait 
that is strongly influenced by time of flowering (HD) and 
PH in wheat (Lopes et al. 2015). QTL for yield per se are 
difficult to identify due to the confounding effects of HD, 
PH and the interwoven complexity of other traits/genes 
involved. Two strategies which can minimize their con-
founding effect include i) screening of the germplasm for 
major genes controlling HD (Vrn-1 and Ppd-1) and PH 
(Rht-1) and using this data as covariate in GWAS (Bentley 
et  al. 2014; Sukumaran et  al. 2015) or ii) filtering all the 
HD and PH QTLs co-localized with yield QTLs and assess-
ing the residual effect of yield-related QTL. This asso-
ciation panel was not screened for all major HD and PH 
genes; therefore, the later strategy was used to assess the 
residual effect of yield-related MTAs. It was observed that 
three loci for GY on chromosome 1B (40 cM), 2B (34 cM), 
and 6B (12  cM) exclusively represent grain yield per se, 
and their residual effects were independent of other traits. 
Similarly, minor additive effects of five favorable and eight 
unfavorable alleles for GY were simulated. Similar results 
were observed for HD, PH, and TKW. The top 20 high-
yielding genotypes, ranked by the AMMI, had very low 
kinship relationship and had 4–5 favorable alleles (Fig. 5) 
except for Shadi-4 and Qafzah-11/Bashiq-1–2, which do 
not have any of the detected favorable allele. This indicated 
the presence of rare favorable alleles in those varieties or 
their yield stability may be due to favorable alleles of other 
traits except yield per se. Recently, several studies were 
conducted on dissecting the genetic regions in European 
elite winter wheat for HD (Griffiths et al. 2009; Zanke et al. 
2014a), PH (Griffiths et al. 2012; Zanke et al. 2014b), and 
also in CIMMYT germplasm (Edae et al. 2014; Sukumaran 
et  al. 2015). These studies in combination with findings 
from our studies will be helpful in future studies to dissect 
the confounding effect of HD and PH QTL and facilitate 
the identification of QTL solely representing GY.

Makumburage and Stapleton (2011) demonstrated 
that favorable alleles in a single environment show little 
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improvement in multiple-stress environments. We also 
observed similar phenomenon in the current study, where 
environment-specific MTAs and MTAs for average envi-
ronments do not significantly overlap. Differences in loci 
controlling stability and environment-specificity suggest 
that there may be separate evolutionary trajectories for 
them. Some of the loci identified in this study have addi-
tive effects, which are useful for selective breeding. To 
understand the genetic control of stability, it would also 
be useful to examine epistatic interactions, especially 
those interactions that are important only when both 
alleles are present (loci with no marginal effect). This 
may be especially important if good additive alleles were 
already fixed.

In the nutshell, the following genomic regions appear 
of prime importance for MAS-based QTL pyramiding: (1) 
genomic regions on chromosome 1B, 2B, 3A, 3B, 6A, 7A, 
and 7B are co-localized with yield associated traits and (2) 
aforementioned three loci on chromosome 1B, 2B, and 6B 
solely identified as genomic regions conferring GY per se 
after dissecting the confounding effects of PH and HD. 
Conclusively, this study demonstrated that GWAS can effec-
tively detect stable and environment-specific QTL for mul-
tiple physio-agronomic traits. Based on results on the extent 
of LD across three sub-genomes, these loci may prove 
effective for pyramiding favorable alleles to develop germ-
plasm with improved yield for heat prone environments.
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