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general and specific combining ability for predicting the 
performance of hybrids in environments. The proposed 
model can also be applied to any other hybrid species with 
distinct parental pools. In this study, we evaluated the pre-
dictive ability of two HP prediction models using a cross-
validation approach applied in extensive maize hybrid data, 
comprising 2724 hybrids derived from 507 dent lines and 
24 flint lines, which were evaluated for three traits in 58 
environments over 12  years; analyses were performed for 
each year. On average, genomic models that include the 
interaction of general and specific combining ability with 
environments have greater predictive ability than genomic 
models without interaction with environments (ranging 
from 12 to 22%, depending on the trait). We concluded that 
including G × E in the prediction of untested maize hybrids 
increases the accuracy of genomic models.

Introduction

Single-cross hybrids developed through the use of doubled-
haploid technology have significantly increased the number 
of potential hybrids that can be tested in the field. Hybrid 
performance (HP) prediction is thus of fundamental impor-
tance for modern hybrid breeding programs. Van Eeuwijk 
et al. (2010) pointed out that while some researchers argue 
that the specific combining ability (SCA) of parental lines 
is the main factor that determines HP, other authors have 
concluded that the principal driving force of HP is addi-
tive gene action (Duvick et  al. 2004; Bernardo 1996a, b). 
However, when studying HP, it is important to consider 
two sources of variation: general combining ability (GCA) 
(additive effects among lines), and SCA (non-additive 
effects among hybrids); such as dominance or epistatic 
deviations.
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Applying linear mixed models for computing the best 
linear unbiased prediction (BLUP) of hybrids utilizing 
only field data was proposed and used by Bernardo (1994). 
Later, Bernardo (1996a, b, 1999), using the pedigree rela-
tionship matrix (obtained from the co-ancestry coefficient), 
showed promising results when predicting unobserved 
hybrids based on several observed hybrids. The BLUPs 
of unobserved hybrids can be computed using an additive 
relationship matrix derived from a pedigree or an additive 
genomic relationship matrix derived from markers; it has 
been shown that predictions based on markers have gener-
ally yielded higher accuracy than those based on pedigree 
(e.g., Rodríguez-Ramilo et al. 2015).

Based on the work originally developed by Bernardo 
(1994, 1996a, b, 1999) and on genomic prediction studies 
conducted in the last 15 years (Meuwissen et al. 2001), the 
BLUP type of prediction using the ridge regression BLUP 
(RR BLUP) or its equivalent model, the genomic relation-
ship matrix (GBLUP) (de los Campos et al. 2013), has been 
employed extensively in HP prediction (Xu et  al. 2014; 
Lehermeier et  al. 2014; Schrag et  al. 2010; Technow and 
Melchinger 2013; Technow et al. 2014; Piepho 2009; Zhao 
et al. 2013; Massman et al. 2013).

The genomic-enabled HP prediction models developed 
by Massman et al. (2013) consider the variance of the GCA 
of the parental lines, as well as the variance due to SCA of 
the crosses, and compare the HP prediction accuracy of the 
genomic RR BLUP with the prediction accuracy of BLUP. 
The authors found no improvement in the HP prediction 
accuracy of the genomic RR BLUP when compared with 
the standard BLUP; both were calculated across a large 
number of environments.

In plant breeding, multi-environment trials for assess-
ing genotype × environment interactions (G × E) play an 
important role in selecting phenotypes with high perfor-
mance and stability across environments. Environmen-
tal conditions modulate gene expression, which leads to 
G × E, such that the estimated genetic correlations of an 
individual line’s performance across environments summa-
rize the joint action of genes and environmental conditions 
(López-Cruz et  al. 2015). Recent studies have shown that 
multi-environment linear mixed models can account for 
the correlation between environments within the GBLUP 
framework and thus can predict performance of unobserved 
phenotypes using pedigree and molecular markers. Bur-
gueño et al. (2012) were the first to use marker and pedi-
gree GBLUP models to assess G × E under genomic predic-
tion; they clearly showed that modeling G × E using both 
pedigree and markers increase prediction accuracy. Heslot 
et  al. (2014) incorporated crop-modeling data for study-
ing genomic G × E, and Jarquín et  al. (2014) proposed a 
random effect GBLUP model where the main effects and 
interaction effects of markers and environmental covariates 

were introduced using highly dimensional random vari-
ance–covariance structures. Heslot et al. (2014) tested the 
proposed models using a large winter wheat data set and 
concluded that prediction accuracy increased, on average, 
by 11%. Jarquín et al. (2014) indicated that the prediction 
accuracy for grain yield in wheat using models that incor-
porate G × E was higher (17–34%) than the accuracy of 
models that did not include it. So, given the importance of 
G × E in plants and the empirical evidence of improved pre-
diction accuracy when modeling G × E, the question is how 
to include G × E in genomic prediction models for HP.

We hypothesize that incorporating G × E into GBLUP 
models could increase the accuracy of HP prediction. How-
ever, none of the previous studies on HP prediction has 
explicitly incorporated G × E into hybrid prediction mod-
els. The main objective of this study was to elaborate on 
the models of Massman et  al. (2013) and Technow et  al. 
(2014) by including G × E within the framework of the 
reaction norm model proposed by Jarquín et  al. (2014). 
The proposed models consider the interaction of SCA 
effects × environment and GCA × environment. To illustrate 
the proposed genomic G × E hybrid prediction model, we 
used an extensive data set including 2724 maize hybrids 
derived from 531 maize inbred lines, of which 507 are dent 
lines and 24 are flint lines (used as testers). The inbred lines 
were genotyped with Illumina 50K SNPs and evaluated for 
12 years (2004–2015) at 58 different locations.

Materials and methods

Experimental data

Phenotypes

This data set was provided by the maize breeding program 
at RAGT (http://www.ragtsemences.com/). It included 
2724 maize hybrids derived from 531 maize inbred lines, 
507 of which were end-of-selection dent lines and 24 flint 
lines were used as testers. The hybrids were evaluated over 
the course of 12 years (2004–2015) in a total of 58 differ-
ent locations. The following traits were analyzed in this 
study: adjusted percent starch content (SC%), percent dry 
matter content (DMC%) and silage yield (YLD) in kg/ha. 
The phenotypes were pre-adjusted for the field effects per 
trial, per year. Two field designs were used in the trials: 
(1) the standard augmented block design with check lines 
arranged in a randomized complete block design (Federer 
and Raghavarao 1975) (three controls were replicated three 
times each); and (2) a randomized complete block design 
with two replicates. Pre-adjusted phenotypes were com-
puted using a full fixed effects model including individu-
als (1 and 2) and blocks (2), residuals were assumed to be 

http://www.ragtsemences.com/
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independent and identically normally distributed with mean 
zero and homogeneous variance. Trials with coefficients of 
variation higher than 7% were discarded. Figure 1 gives a 
schematic representation of the tested hybrids obtained by 
crossing the dent and flint lines. Hybrids tested in the field 
are represented by black squares. Only about 22% of all 
possible hybrids were tested in the field.

Genotypes

The lines were genotyped using the 50K Illumina chip for 
maize (http://www.illumina.com), from which 49,013 
SNPs were obtained. Standard quality controls were 
applied to the data, removing all non-bi-allelic markers and 
non-mapped markers. Beagle v3.2 software (Browning and 
Browning 2009; https://faculty.washington.edu/browning/
beagle/b3.html) was used for imputing missing values in 
the genotypes. After editing, 22,690 markers were available 
to make the predictions. A genomic relationship matrix G 
that includes dent and flint lines was built as follows: let X 
be the matrix of markers for dent and flint lines, whose 
entries were set to 0 and 2 for recessive and dominant 
homozygous, respectively, and let W be the matrix of 

centered and standardized markers, that is, 
wij = (xij − 2pj)∕

√

4pj(1 − pj), where i indexes individuals 

and j the markers, and pj is the allele frequency of the ref-
erence allele in the population (see Technow et al. 2014); 
then G = WW�∕p (López-Cruz et al. 2015). Further infor-
mation about the population structure can be obtained by 
performing an eigenvalue decomposition of this matrix 
(Golob and Van Loan 1996), that is, G = ���

�, where � is 
the square matrix whose columns correspond to the eigen-
vectors of G, and � is the square diagonal matrix whose 
diagonal elements are the corresponding eigenvalues. Fig-
ure 2 depicts the first two eigenvectors of the genomic rela-
tionship matrix for dent and flint lines, which are clearly 
distinguished in the graph. The proportion of variance 
explained by the first two principal components was 20% 
and just 90 principal components were necessary to explain 
80% of the sum of the eigenvalues of the genomic relation-
ship matrix (data not shown).

Statistical models

Technow et  al. (2012) compared the prediction accuracy 
of GBLUP and BayesB models when predicting hybrid 
performance using simulated data based on marker geno-
types of Central European flint and dent inbred lines from 
a maize breeding program. Massman et al. (2013) proposed 
a model for predicting hybrid performance using genotypic 
(genomic) information from the parents. The genotypic 
information was used to build relationship matrices for 
both the parents and the hybrids. The proposed model is a 
linear mixed model that includes random effects due to the 
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Fig. 1  Schematic representation of test hybrids obtained by cross-
ing 507 dent lines with 24 flint lines. Hybrids tested in the field are 
represented by black squares; about 22% of all possible hybrids were 
tested
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Fig. 2  Plot of the first two eigenvectors of the genomic relationship 
matrix for dent and flint lines
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parents’ general combining ability, and the hybrids’ specific 
combining ability, whose variance–covariance matrices are 
built based on markers. Technow et  al. (2014) compared 
the prediction accuracy achieved by the GBLUP (Bernardo 
1996a; Massman et al. 2013) and BayesB prediction meth-
ods using data from 1254 single-cross maize hybrids that 
were generated by the University of Hohenheim breeding 
program and concluded that the prediction accuracies of 
both methods were about the same.

In this study, we extended the GBLUP-type models to 
take into account the effect of the environment and the 
effect of G × E. We consider two models: (1) GBLUP + 
Env model (M1); and (2) GBLUP  +  Env + G × E model 
(M2). The first model is the one discussed in Massman 
et al. (2013) and Technow et al. (2014). The second model 
builds on model 1 by including the effect of G × E inter-
action. The proposed models are described below. Both 
models assume a homogeneous error variance across 
environments.

GBLUP + Env model (M1)

The linear model for hybrid performance that includes 
the effect of the environments is given by Technow et  al. 
(2014):

 where y is the response vector (i.e., the adjusted hybrids’ 
phenotypic information), ZE is the design matrix for envi-
ronments (location within year), �E is the vector of envi-
ronmental effects, �E ∼ N(0, �2

E
I), gD is the vector of ran-

dom effects due to the GCA of dent lines, gF is the vector 
of random effects due to the GCA of markers for flint lines 
and h is the vector that includes SCA random effects and 
denotes the interaction effects between flint and dent paren-
tal lines for the hybrids. ZD, ZF, ZH are incidence matri-
ces that relate y to gD, gF, h, with gD ∼ N(0, �2

D
GD), 

gF ∼ N(0, �2
F
GF), h ∼ N(0, �2

H
H), where �2

D
, �2

F
 and �2

H
 are 

variance components associated with general and specific 
combining abilities, and GD, GF and H are relationship 
matrices for dent and flint lines and hybrids, respectively. 
Finally, � ∼ N(0, �2

�
I), where �2

�
 is the variance associated 

with the residuals.
The relationship matrices GD and GF were computed 

using the markers (VanRaden 2008). Let Xm, 
m ∈ {Dent, Flint} be the matrix of markers whose entries 
were set to 0 and 2 for recessive and dominant homozy-
gous, respectively. Let Wm be the matrix of centered and 
standardized markers, that is, 
wijm = (xijm − 2pjm)∕

√

4pjm(1 − pjm), where i indexes indi-

viduals and j the markers, and pjm is the allele frequency of 
the reference allele in the population of flint or dent lines 

(1)y = ZE�E + ZDgD + ZFgF + ZHh + �,

(see Technow et  al. 2014). Then Gm = WmW
�
m
∕p (Tech-

now et  al. 2014; López-Cruz et  al. 2015), where p is the 
number of markers. This gives an average diagonal Gm 
value of around one; therefore, �2

m
 is defined on the same 

scale as �2
�
.

The elements of matrix H can be obtained directly from 
matrices GD and GF (see Bernardo 2002, p. 231–232, and; 
Technow et al. 2014). The derivation can be performed eas-
ily based on the fact that the SCA of hybrids can be repre-
sented as a first-order interaction between paternal and 
maternal lines. Here we include the derivation of the result, 
because the technique used to establish this is also the tech-
nique used to introduce G × E interaction. Let hij represent 
the interaction effect of a hybrid obtained from a single 
cross between individual i in the dent population and indi-
vidual j in the flint population. Assuming that 
hij = gDi

× gFj , where gDi
 is the ith entry of gD and gFj is the 

jth entry of gF, then the expectation and the covariance 
function are as follows. 
E
[

hij
]

= E
[

gDi
× gFj

]

= E
[

gDi

]

× E
[

gFj

]

= 0. The covari-

ance between two hybrids, one obtained from a single cross 
between individual i in the dent population and individual j 
in the flint population, and the other obtained by crossing 
individual i′ in the dent population and j′ in the flint popu-
lation, is given by: 

where GDii′
 and GFjj′

 are entries from GD and GF, respec-

tively. In compact notation, matrix H for all possible 
crosses is obtained as the Kronecker product of GD and GF, 
that is, H = GD ⊗GF (e.g., Covarrubias-Pazaran 2016).

GBLUP + Env + GE model (M2)

Jarquín et al. (2014) suggested modeling the interaction 
between markers and environmental covariates using 
a Gaussian process with a specific type of covariance 
function that is induced by a reaction norm model. These 
authors showed that if the covariance function generated 
by the interaction terms is obtained using a first-order 
multiplicative model, then the covariance function is 
the Hadamard (cell-by-cell) product of two covariance 

Cov
(

hij, hi�j�
)

= �
[

hij × hi�j�
]

− �[hij] × E[hi�j� ]

= �
[

hij × hi�j�
]

− 0 × 0

= �[(gDi
× gFj) × (gDi�

× gFj� )]

= �[(gDi
× gDi�

) × (gFj × gFj� )]

= �[gDi
× gDi�

] × �[gFj × gFj� ]

= Cov
(

gDi
, gDi�

)

× Cov
(

gFj , gFj�

)

∝ GDii�
× GFjj’

,
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structures, one describing genetic information, and the 
other environmental effects. Using this approach, we 
extended model (1) to include GCA and SCA × environ-
ment interaction. The model is as follows:

 where uH ∼ N(0, �2
hE
VH), uD ∼ N(0, �2

DE
VD), 

uF ∼ N(0, �2
FE
VF), �2

hE
, �2

DE
 �2

FE
 are variance components 

associated with hybrid × environment, dent × environ-
ment, and flint × environment interactions, respectively, 
and VH, VD and VF are their associated variance–covari-
ance matrices. The elements of matrix VH can be obtained 
following the approach of Jarquín et  al. (2014). Assum-
ing that the interaction between hybrids and envi-
ronments Ehijk can be represented as hij × Ek, where 
Ek = �Ek

, for k = 1,… ,E (environments), then the 
expected value and the covariance function are as follows: 
�
[

hij × Ek

]

= �
[

hij
]

× �
[

Ek

]

= 0 × 0 = 0,

Note that Cov
[

Ek,Ek′
]

≠ 0 only if k = k�. So using 
these results, the variance–covariance matrix is given by 
VH = ZHHZ�

H
#ZEZ

�
E
, where # stands for the Hadamard 

product. Note that if observations are sorted by environment, 
then V is a block diagonal matrix whose structure is simi-
lar to the marker × environment model of López Cruz et al. 
(2015). However, it is not necessary to sort the observations 
by environment to fit the model. The variance–covariance 
matrices VD and VF can be similarly derived and are as fol-
lows: VD = ZDGDZ

�
D
#ZEZ

�
E
, VF = ZFGFZ

�
F
#ZEZ

�
E
 (see 

Jarquín et al. 2014, for more details).
On the covariance equation display above, note that 

Ehijk represents the interaction effect for a hybrid obtained 
from a single cross between individual i in the dent pop-
ulation and individual j in the flint population tested in 
environment k. Likewise, Ehi′j′k′ represents the interaction 
effect for a hybrid obtained from a single cross between 
individual i in the dent population and individual j′ in the 
flint population tested in environment k′.

Model assessment

Models 1 and 2 were first fitted using the full data in each 
year, and estimates of variance components were obtained 

(2)
y = ZE�E + ZDgD + ZFgF + ZHh + uH + uD + uF + �,

Cov
(

Ehijk,Ehi�j�k�
)

= �
[

Ehijk × Ehi�j�k�
]

− �
[

Ehijk
]

× �
[

Ehi�j�k�
]

= �
[

hij × Ek × hi�j� × Ek�
]

− 0 × 0

= �
[

(hij × hi�j�
)

× (Ek × Ek’)]

= �
[

hij × hi�j�
]

× �[EkEk’]

= Cov
(

hij, hi�j�
)

× Cov[Ek,Ek’]

∝ GDii� × GF jj� × Cov
[

Ek,Ek�
]

.

from this analysis. To test the prediction ability of the pro-
posed model, we mimicked a common problem breeder’s 
face when testing new hybrids using incomplete field tri-
als: how to predict the performance of newly developed 
hybrids. The hybrids were evaluated in some environments 
but not in others, and their performance had to be predicted 
in environments where they were not evaluated. To mimic 
this problem, we performed a cross-validation analysis 
using a scheme that is known as cross-validation 2 (CV2), 
which considers some lines being observed in some envi-
ronments, while missing in others; the problem consists 
of predicting the lines that were not observed. In CV2, the 
individual plot records are assigned to folds, so that indi-
vidual records of a hybrid are potentially assigned to differ-
ent folds (see Jarquín et al. 2014, Table 2). We performed a 
fivefold cross-validation for each year.

Note that we have a relatively small number of folds. We 
selected only fivefolds to be able to make the computations 
feasible, since with 12 years of data, two models and five-
folds, it is necessary to fit 12 × 2 × 5 = 120 models using the 
Markov Chain Monte Carlo technique, which is computa-
tionally expensive. The fivefold cross-validation has been 
used in many other studies. Under this validation scheme, 
80% of the records are used in the training set and 20% in 
the validation set; thus the ratio between the training and 
validation populations is ¼. Models 1 and 2 were fitted 
using the records in the training set and predictions in the 
testing set were obtained to estimate prediction accuracy. 
We computed Pearson’s correlation coefficient for observa-
tions in the testing set for each year and we computed an 
average correlation by weighting the individual correlation 
in each site according to the number of hybrids predicted. 
The R code (R Core Team 2016) used to generate partitions 
for this type of cross-validation is included in the Supple-
mentary materials.

Software

The models described above were fitted using the R pack-
age (R Core Team 2016) Bayesian generalized linear 
regression (BGLR) (de los Campos and Pérez-Rodríguez 
2016). The software can be downloaded free of charge from 
https://cran.r-project.org/web/packages/BGLR/index.html. 
For more details, see Pérez-Rodríguez and de los Campos 
(2014). The R codes used to fit the two models are included 
in the Supplementary materials. Inferences were based on 
30,000 iterations of the Gibbs sampler (Geman and Geman 
1984), 5000 of which were taken as burn-in. For the hyper-
parameters for the prior distributions, we used the default 
values provided by the BGLR package, which were set 
according to the rules given in the supplementary materials 
in Pérez-Rodríguez and de los Campos (2014).

https://cran.r-project.org/web/packages/BGLR/index.html
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Results

Estimated variance components

Estimated variance components of the parameters of the 
two fitted models (M1–M2) were described to determine 
how much of the total variance is explained by each compo-
nent. The variance components of the two models are: envi-
ronments (E), general combining ability of dent lines (D), 
general combining ability of flint lines (F), specific combin-
ing ability of hybrids (H), the interaction between hybrids 
and environment (H × E), interaction of dent lines × envi-
ronment (D × E), interaction of flint lines × environment 
(F  ×  E), and residual (Res). These components were 
obtained from the full data analysis performed when fitting 
models 1 and 2. The results for YLD are shown in Tables 1 
and 2; in the case of SC% and DMC% for models 1–2, the 
results are included in the Supplementary materials (Tables 
B.1–B.4). In general, the variance associated with the main 
effects of environments (locations) accounts for a large pro-
portion of the total variance; therefore, component E is usu-
ally not considered with the purpose of distinguishing the 
differences among the other components, which are small 

compared to the magnitude of E. When model M2 is fitted, 
the residual variances decrease consistently, compared with 
model M1. Depending on the trait, the average decrease in 
the residual variance is about 10–16%.

For trait YLD, results from all models and years indi-
cated that GCA of the flint component (F) accounted for 
much more variability than that explained by the GCA of 
the dent component (D). In general, the SCA explained the 
least variability of the three genetic components. In terms 
of the variance explained by the three interaction compo-
nents when fitting M2, F × E explained the most variabil-
ity, followed by components D × E and H × E. These pat-
terns are very consistent across years, although there were a 
few exceptions. The pattern of results of the variance com-
ponents for traits SC% and DMC% for all years and models 
is similar to the pattern for trait YLD (see Supplementary 
materials, Tables B.1–B.4 for traits SC% and DMC% for 
models 1–2).

Prediction accuracy of M1 vs M2

The average correlations between phenotypes and predic-
tive values obtained from random cross-validation CV2 

Table 1  Estimated variance 
components (E environment, 
D dent, F flint, H hybrid, Res 
residual), standard deviation (in 
parentheses) and percentage of 
within-environment variance 
accounted for by each random 
effect for YLD estimated by 
fitting model 1 for each year

Year E D F H Res

Model 1: GBLUP + E
 2004 349.5 (125.5) 61.2 (17.9) 163.5 (73.3) 42.3(11) 169.4 (8.3)

– 14.2 36.1 9.9 39.8
 2005 662.3 (228.8) 74.9 (22.4) 97.8 (43) 64.4 (16.2) 243.8 

(10.2)
– 15.5 19.8 13.4 51.2

 2006 449.2 (132.6) 77.4 (23.6) 84.7 (37.4) 55.3 (13.6) 241.1 (9.2)
– 16.8 18 12.1 53.1

 2007 437.7 (146.5) 89.2 (25.6) 126.1 (55.1) 69 (15.1) 222.1 (8.3)
– 17.6 24.2 13.8 44.4

 2008 619.2 (181.3) 67.8 (17.5) 109.7 (47.6) 49.8 (10.3) 229.5 (7.9)
– 14.9 23.3 11 50.8

 2009 517.9 (155) 56.4 (12.7) 162.3 (68.1) 44.6 (8.1) 199 (6.3)
– 12.4 33.9 9.8 43.9

 2010 464 (132.2) 68.2 (15) 79.4 (29.7) 52.7 (9.7) 211.8 (6.2)
– 16.5 18.9 12.8 51.7

 2011 618 (188.5) 62.3 (13.1) 133.1 (52.6) 44.7 (8) 185.1 (5.7)
– 14.8 30.4 10.7 44.2

 2012 588.2 (162.7) 36.3 (7.2) 90.7 (31.6) 46.5 (7.4) 191 (5)
– 10 24.4 12.8 52.8

 2013 488.9 (138.5) 51.4 (10) 77.1 (27.9) 41.8 (6.8) 250.5 (6.4)
– 12.2 18 10 59.8

 2014 404.5 (116.3) 67.8 (13.4) 81.9 (30.8) 47.4 (7.8) 235.5 (5.5)
– 15.7 18.6 11 54.7

 2015 663.4 (172.4) 50.1 (8.9) 82.5 (29.4) 42.2 (6.4) 219.5 (5)
– 12.7 20.5 10.8 56
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are reported for each model in Tables 3, 4 and 5 for traits 
YLD, SC% and DMC%, respectively. The results were 
obtained using Pearson’s correlation coefficient, and ranged 
from 0.42 to 0.50 for M1 and from 0.48 to 0.60 for M2, 
depending on the trait. These results clearly indicate that 
M2 had better prediction ability than M1. Tables 3, 4 and 
5 also report the changes in percent prediction accuracy of 
M2 over M1. For YLD, in regards to percent change for 
M2 vs M1, the average increase in prediction accuracy was 
16.73% (Table 3). In two years (2005 and 2008), the pre-
dictive ability superiority of M2 over M1 reached 20% and 
in 1 year (2008), it even increased to 50%. For trait SC%, 
the average percent change for M2 vs M1 was 12.30% 
(Table  4). Finally, for trait DMC%, the average percent 
increase in prediction accuracy of M2 vs M1 was 21.74% 
(Table 5). In summary, in most cases, the average percent 
change in the predictive ability of M2 over M1 is positive, 
which indicates that M2 has better predictive ability than 
M1.

These results (higher prediction accuracy of M2 over 
M1 for all three traits) are also depicted in Fig.  3, which 

Table 2  Estimated variance components (E environment, D 
dent, F flint, H hybrid, H × E = hybrid × env, D × E = dent × env; 
F × E = flint × env; Res = residual), standard deviation (in parentheses) 

and percentage of within-environment variance accounted for by each 
random effect for YLD estimated by fitting Model 2 for each year

Year E D F H H × E D × E F × E Res

Model 2: GBLUP + Env + G × E model (M2)
 2004 306.1 (113.5) 43.5 (14.3) 122.9 (59.2) 30.5 (8.7) 23 (5.7) 27.6 (6.9) 43.5 (12.3) 123.3 (7.1)

– 10.6 28.5 7.5 5.6 6.8 10.6 30.3
 2005 656.5 (230.4) 56.2 (19) 70.7 (33.5) 62.3 (17.5) 36.8 (9.3) 34.9 (8.9) 43.6 (12.1) 176.9 (8.8)

– 11.6 14.4 12.9 7.7 7.3 9.1 37
 2006 448.3 (137.6) 61.3 (20.9) 57 (26.2) 44 (12.9) 32.7 (8) 29.6 (7.8) 33.3 (8.3) 186.7 (8.3)

– 13.7 12.6 9.9 7.4 6.7 7.5 42.2
 2007 426.3 (143.8) 73.4 (23.2) 94.3 (45.9) 62.1 (15.4) 32.3 (7.8) 29 (6.6) 42.5 (10) 167.2 (7.2)

– 14.6 18.3 12.5 6.5 5.8 8.5 33.7
 2008 584 (170.8) 54.4 (15.5) 68.1 (30.1) 34.2 (8) 30.7 (6.5) 41 (8.3) 41.5 (8.2) 157.6 (6.4)

– 12.7 15.6 8 7.2 9.6 9.7 37.1
 2009 485.1 (152.4) 45.3 (11.1) 131 (56.5) 36.3 (7.9) 39.3 (7.7) 30.2 (6.3) 39.4 (9.1) 145.8 (5.8)

– 9.8 27.2 7.9 8.5 6.5 8.5 31.6
 2010 468.9 (140.4) 52.3 (12.6) 52.8 (21.3) 49.5 (9.9) 22.7 (4.7) 37.1 (6.3) 29.7 (5.8) 158.8 (5.6)

– 13 12.9 12.3 5.7 9.2 7.4 39.6
 2011 611.1 (192.9) 57.3 (13) 107.9 (45.4) 34.8 (7.3) 27.3 (4.8) 22.4 (4.2) 43.3 (7.9) 135.8 (4.9)

– 13.4 24.5 8.2 6.4 5.3 10.2 32
 2012 572.9 (160.7) 28.1 (6.1) 68.2 (26.6) 41.6 (7.3) 21.1 (3.8) 21.3 (3.7) 27.1 (5.2) 153.9 (4.5)

– 7.8 18.5 11.5 5.9 5.9 7.5 42.8
 2013 436.3 (129.1) 40.5 (8.9) 56.4 (22.3) 32.1 (6.1) 22.6 (4.1) 23.6 (4.5) 39.8 (7.8) 206.5 (6)

– 9.6 13.2 7.6 5.4 5.6 9.4 49.2
 2014 357 (103.7) 65.5 (13.1) 60.1 (23.9) 44.7 (8.2) 22.5 (4.7) 17.7 (3.4) 45.2 (7.7) 180.8 (5.1)

– 15 13.6 10.3 5.2 4.1 10.4 41.6
 2015 639 (172.4) 40.1 (8) 56.3 (21.5) 35.5 (6.1) 32.7 (5.1) 19.5 (3.5) 31.7 (5.7) 174.9 (4.8)

– 10.3 14.2 9.1 8.4 5 8.1 44.9

Table 3  Average Pearson’s correlations between observed and pre-
dicted values and percent change in prediction accuracy of models 1 
and 2 (M1–M2) in each year for trait YLD

a % change M1 vs M2= (r
M2

− r
M1

)∕r
M1

× 100

Year M1 M2 % Change, 
M1 vs  M2a

2004 0.5380 0.5681 5.59
2005 0.3876 0.4667 20.41
2006 0.3436 0.3806 10.77
2007 0.5183 0.5616 8.35
2008 0.3147 0.4756 51.13
2009 0.3999 0.4666 16.68
2010 0.4256 0.4736 11.28
2011 0.4766 0.5564 16.74
2012 0.4953 0.5339 7.79
2013 0.3692 0.4246 15.01
2014 0.4200 0.5089 21.17
2015 0.3830 0.4435 15.80
Average 0.4227 0.4883 16.73
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shows the distribution of the percent change for M2 vs 
M1 for traits SC%, DMC% and YLD. Results indicate 
the importance of incorporating G × E into modeling to 
increase hybrid prediction accuracy of the three traits ana-
lyzed in this study.

Discussion

Several studies have documented the benefits of using 
genomic multi-environment models for assessing the 

performance of genotypes across different environmen-
tal conditions (Burgueño et al. 2012; Dawson et al. 2013; 
Jarquín et  al. 2014). Analyses of multi-environment trials 
can include G × E interactions using genomic covariance 
functions (Burgueño et  al. 2012). The main objective of 
this study was to demonstrate that including the G × E term 
increases the predictive ability of a genomic-enabled pre-
diction model used to predict hybrid performance based 
on genotypic information from parents only. In this arti-
cle, we used the covariance functions proposed by Jarquín 
et al. (2014), who defined the covariance function based on 
the Hadamard product (cell-by-cell) of the matrix of geno-
types with the design matrix associated with the environ-
ments. Using this approach, the authors showed that a large 
percentage of the phenotypic variance is explained by the 
main effect of environments, which agrees with the results 
of the analysis where we obtained variance components for 
environments (Tables 1, 2 and Tables B.1–B.4 in Supple-
mentary materials).

The importance of the parents’ general combining abil-
ity, the specific combining ability of hybrids and the inter-
action between parental lines and the environment varies 
from trait to trait, but in general, these terms explain a siz-
able proportion of the total variance, and when included in 
the complete model, the prediction accuracy of the unob-
served hybrids did increase. Results of our study in maize 
show the importance of genomic prediction accuracy of 
HP based on both general and specific combining ability. 

Table 4  Average Pearson’s correlations between observed and pre-
dicted values and percent change in prediction accuracy of models 1 
and 2 (M1–M2) in each year for trait SC%

a % change M1 vs M2= (r
M2

− r
M1

)∕r
M1

× 100

Year M1 M2 % Change, 
M1 vs  M2a

2004 0.2091 0.2327 11.28
2005 0.3680 0.4634 25.93
2006 0.3638 0.3946 8.47
2007 0.3742 0.4181 11.75
2008 0.3407 0.4606 35.19
2009 0.4604 0.5293 14.97
2010 0.5717 0.6445 12.72
2011 0.4584 0.5060 10.39
2012 0.5798 0.6202 6.96
2013 0.4544 0.4912 8.10
2014 0.4981 0.5094 2.26
2015 0.5410 0.5387 -0.43
Average 0.4350 0.4840 12.30

Table 5  Average Pearson’s correlations between observed and pre-
dicted values and percent change in prediction accuracy of models 1 
and 2 (M1–M2) in each year for trait DMC%

a % change M1 vs M2= (r
M2

− r
M1

)∕r
M1

× 100

Year M1 M2 % Change, 
M1 vs  M2a

2004 0.4178 0.5580 33.56
2005 0.4450 0.5563 25.02
2006 0.4329 0.5340 23.37
2007 0.5668 0.6986 23.27
2008 0.4130 0.5552 34.43
2009 0.4000 0.5456 36.40
2010 0.5770 0.6572 13.90
2011 0.4969 0.5960 19.95
2012 0.6709 0.7404 10.35
2013 0.5247 0.6155 17.30
2014 0.5558 0.6164 10.92
2015 0.5692 0.6397 12.37
Average 0.5058 0.6094 21.74
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Fig. 3  Model comparison. Boxplot of percent change in predic-
tion accuracy calculated by taking model 1 (M1) as a base. Percent 
change, M1 vs M2 = (r

M2
− r

M1
)∕r

M1
× 100, where r

M1
, r

M2
 are the 

Pearson’s correlations for models 1 and 2 (M1–M2), respectively
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Results of this study are in agreement with other research-
ers that consider that HP is determined not only by additive 
effects due to male and female GCA but also by the intra 
gene dominance interaction producing the SCA effects (van 
Eeuwijk et al. 2010). Also, the effect of G × E is considered 
an important non-genetic factor affecting heterosis. This is 
the first study showing how the intra gene interaction due 
to dominance and its interaction with environments can be 
modeled to exploit these positive interaction genetic effects 
with environments (SCA × E). The model proposed in this 
study is essentially similar to the model of Massman et al. 
(2013) and Technow et  al. (2014) except that it includes 
modeling the interaction term (SCA × E or/and GCA × E). 
These interaction effects positively affect prediction accu-
racy. The residual error decreased consistently when fitting 
model (2), which indicates that the G × E interaction term 
accounts for a considerable portion of the variance between 
environments. This is consistent with the findings of Jar-
quín et  al. (2014), who reported that including the inter-
action term significantly reduced the error variance and 
increased the predictive ability of the model.

The genetic variance was small when compared to the 
variance of environments, although predictions based on 
markers worked very well. Bernardo (1994) notes that 
accurate estimates of genetic variances are not necessary 
for effectively predicting the performance of single crosses 
and that approximations of their values are sufficient. In 
this study, we assumed homogeneous error variance across 
environments, although this is not ideal, the comparison 
between models is fair because in both of them the same 
assumption holds. We evaluated the accuracy of prediction 
using the cross-validation scheme, which quantifies the pre-
diction accuracy of yield under conditions in the particu-
lar year-environment combinations included in the data set 
(Pérez-Rodríguez et  al. 2015). Crossa et  al. (2011) men-
tioned that a simple approach for evaluating predictive abil-
ity consists of dividing the data into a training sample and 
a validation sample, or testing set. Models are fitted using 
the training sample, and the fitted models are then used to 
predict outcomes in the validation sample. This approach 
is appropriate for large data sets as is the case in our study 
(e.g., Hastie et al. 2009). The random cross-validation just 
mimics the reality the researcher might face when predict-
ing HP without knowing the actual observed values.

The gains in prediction accuracy obtained when G × E 
was included in the model are also consistent with the 
results presented in other studies (Burgueño et  al. 2012; 
Jarquín et  al. 2014; López-Cruz et  al. 2015). The results 
confirmed the superior predictive ability of model 2. How-
ever, as mentioned in López-Cruz et  al. (2015), interac-
tion models are subject to the structure of the covariance 
matrix, i.e., the covariance between environments must be 

positive and constant. Thus, the interaction model is better 
suited to environments that are positively correlated.

In a study on the genomic prediction of HP for identify-
ing superior single crosses early in a maize hybrid breed-
ing program, Kadam et al. (2016) used an initial model that 
included the parents’ general combining ability and specific 
combining ability and their interactions with environments. 
Although the prediction of the single-cross performance 
was done using parental combining ability and covariance 
among single crosses for grain yield for different testing/
training single-cross schemes, the authors did not model 
the parents’ general combining ability × environment and/
or the specific combining ability × environment interaction 
terms, and therefore did not quantify their impact on the 
prediction accuracy of the HP. Results of our study clearly 
indicates the benefit of including and modeling the vari-
ous interactions terms using appropriate variance–covari-
ance structures given by the Hadamard product of the 
proposed model. The model used in this study allows bor-
rowing information from correlated environments such that 
hybrids (or parents) observed in some environments can be 
predicted in others where they were not observed.

In general, incorporating G × E models in the genomic 
prediction of HP, as presented in this study, can be applied 
to any crop and adapted to most of the GBLUP models that 
have been used in recent genomic studies for assessing the 
genomic prediction of HP in different environments. Fur-
ther research using non-linear kernel methods should be 
conducted to assess the possible increase in HP prediction 
accuracy due to a kernel method that is different from the 
linear kernel used in the GBLUP.
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