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simulated perennial ryegrass breeding scheme. As com-
pared to the genomic selection scheme without controls, all 
proposed strategies could significantly decrease inbreeding 
while achieving comparable genetic gain. In particular, the 
scenario using G̃EBV

O
 in simultaneous selection and mate 

allocation reduced inbreeding to one-third of the original 
genomic selection scheme. The proposed strategies are 
readily applicable in any outbred plant breeding program.

Abbreviations
GA  Genetic algorithm
GEBV  Genomic estimated breeding value
GRM  Genomic relationship matrix
GS  Genomic selection
LD  Linkage disequilibrium
QTL  Quantitative trait loci
SNP  Single nucleotide polymorphism
TBV  True breeding value

Introduction

Genomic selection (GS) by Meuwissen et al. (2001) is an 
attractive strategy to improve genetic gain in breeding pro-
grams for various plant species (Hayes et al. 2013; Jannink 
et  al. 2010; Lin et  al. 2014). Investigations of the poten-
tial of genomic breeding schemes can be found in empiri-
cal studies [e.g. apple tree, (Muranty et  al. 2015), maize; 
(Krchov and Bernardo 2015), wheat; (Zhao et  al. 2015)], 
and simulation studies [e.g. perennial ryegrass (Lin et  al. 
2016), tomato; (Yamamoto et  al. 2016)]. Overall, these 
studies reported better genetic gain from GS when com-
pared with traditional breeding programs, through short-
ened breeding cycles and potentially improved accuracy of 
selection. Genomic estimated breeding value (GEBV) of 
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target traits can be evaluated for non-phenotyped selection 
candidates at early ages (i.e. seed/seedling stages) based 
on the genomic information only, such as single nucleotide 
polymorphisms (SNPs). Moreover, some evidence revealed 
that many agronomic traits in plant species are highly 
polygenic and determined by many loci with small effects 
(Hayes et  al. 2013). GS that makes use of genome-wide 
markers is currently the best method to capture all variation 
due to many quantitative trait loci (QTL), leading to higher 
accuracy for selection.

However, incorporating GS in breeding programs could 
potentially lead to greater rates of inbreeding than pheno-
typic selection, especially when the accuracy of GS is low 
to moderate. Although it has been shown that the inbreed-
ing rate per generation of GS is less than pedigree selection 
(Daetwyler et  al. 2007), GS could lead to higher inbreed-
ing rates per year when compared to phenotypic selec-
tion. Both simulation (Lin et al. 2016) and empirical stud-
ies (Rutkoski et al. 2015) demonstrated that GS increased 
inbreeding per year and per cycle. Furthermore, the scale 
of inbreeding from GS suggested that the fitness of plants 
in the long-term would likely be impaired due to inbreed-
ing depression, which has been reported in many plant spe-
cies (e.g. Ceballos et al. 2015; Ford et al. 2015; Gerke et al. 
2015; Menzel et al. 2015; Nakanishi et al. 2015). Inbreed-
ing depression is generally attributed to increased fixation 
of deleterious mutations. Additionally, a limited genetic 
variance due to inbreeding also can reduce genetic gain 
from GS in the long-term (Estaghvirou et al. 2015).

The accumulation of inbreeding from GS should, there-
fore, be controlled to avoid detrimental effects. Generally, 
these controls can be categorised into two types. The first 
type allocates matings between selected parents to limit the 
resulting offspring inbreeding, the so-called mate allocation 
schemes (e.g. Gerdes and Tracy 1993; Kinghorn 2011). 
The second type restricts the relationship of parents dur-
ing selection through mathematical models (e.g. Optimum 
Contribution Selection, Grundy et  al. 1998; Lindgren and 
Mullin 1997; Meuwissen 1997; Wray and Goddard 1994), 
aiming to maximise genetic gain while restricting inbreed-
ing to a sometimes predefined level. Mate allocation will 
reduce offspring inbreeding in the next generation but may 
be less effective in the long-term because the set of selected 
candidates remains unchanged, while optimum contribu-
tion achieves more effective control on inbreeding in the 
long-term. A third option is to combine mate allocation and 
selection measures.

The advent of genomic information provides a new 
avenue to control inbreeding of breeding programs. Con-
trolling inbreeding requires knowledge of the relationship 
of selection candidates or parents. Traditionally, such rela-
tionships were measured using the numerator relationship 
matrix A calculated from pedigree information (Henderson 

1975; Wright 1922). Elements in the A are the expected 
proportion of the genome identical-by-descent between 
individuals, which is a proxy of the realised proportion of 
the genome shared (Guo 1996). Using genome-wide mark-
ers, a genomic relationship matrix G (GRM) can be gen-
erated, with elements of the actual proportion of genomes 
that are shared between individuals, or at least estimates 
of this proportion (NejatiJavaremi et  al. 1997; VanRaden 
2008; Yang et al. 2010). Inbreeding controls using G have 
been proposed in several livestock species (e.g. Clark et al. 
2013; Pryce et al. 2012; Sonesson et al. 2012). Using G to 
control inbreeding is especially attractive for species where 
pedigrees are not available, and it has been shown that 
inbreeding controls using G are more effective than those 
using A (Sonesson et al. 2012).

To date, most published inbreeding control strategies 
have focused on livestock. For instance, optimum contri-
bution selection includes discrete sex contribution (male/
female) in statistical models with LaGrangian multipli-
ers (Grundy et al. 1998; Meuwissen 1997; Sonesson et al. 
2012); while others devise specific mating plans of two 
parents in dairy cattle (Pryce et al. 2012). However, these 
published methods are less applicable in plant breed-
ing programs without sex restriction and sometimes mul-
tiple plants allocated in one mating group in a poly-cross 
(crosses among all plants in a mating group). In addition, to 
our knowledge, sourcing exotic varieties is the most com-
mon measure to preserve diversity of plant breeding pool 
(e.g. Reif et al. 2005; Zamir 2001), and there is a general 
lack of studies using genomic information to mitigate 
inbreeding in plant breeding.

Our aim was to devise methods to control inbreeding 
in outbreeding plant species, whilst maintaining desir-
able genetic gain, using relatedness measured by genetic 
markers. All proposed strategies were tested in a perennial 
ryegrass (Lolium perenne L., an outbred species) breeding 
program via stochastic simulation. However, we expect the 
strategies to be general to other outbreeding species.

Methods

Our proposed inbreeding control strategies are heuris-
tic, and can be grouped into three broad strategies that 
are applied: during mate allocation, during selection, and 
measures performing simultaneous selection and mate 
allocation. Here, we first outline the various methods, and 
then test each in a stochastic ryegrass breeding program 
simulation.

In the following, the devised measures (e.g. GminF, 
S&A_G̃EBVO) and the names of scenarios in the case study 
(e.g. Pheno, GEBV) are in italics, and breeding value(s) are 
written as non-italics (e.g. GEBV, G̃EBVP, G̃EBVO).
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Inbreeding controls during mate allocation

We introduce a mate allocation metric, GminF, to limit the 
inbreeding level in mating groups. In a genomic relationship 
matrix (G) of parent candidates, each off-diagonal element of 
pairwise candidates can be a proxy for their respective off-
spring inbreeding. The GminF measure determines mate allo-
cation by minimising the offspring inbreeding coefficient for 
a mating group informed by G to allocate more than two par-
ents to one mating group, which is suitable for plant species 
without sex restrictions and where poly-crossing is practiced. 
In detail, a multi-parent mating group of m individuals is 
formed as follows: two individuals with the smallest off-diag-
onal element in G are chosen and, then, additional individuals 
with the smallest sum of relevant off-diagonal elements with 
the already chosen candidates are added one at a time, until 
the group size is equal to m.

Inbreeding controls during selection

Penalising GEBV by the coancestry of the matings (i.e. off-
spring inbreeding) has been shown as a straightforward way 
to limit inbreeding (Clark et al. 2013; Pryce et al. 2012; Son-
esson et  al. 2012). Here, we propose two types of adjusted 
GEBV for selection to control inbreeding: (1) G̃EBVP,

where the GEBV for each parent candidate is adjusted by its 
mean relationship to all other selection candidates; and (2) 
G̃EBVO, where the GEBV for each potential future offspring 
is adjusted by their relevant parent coancestry.

G̃EBVP are calculated as follows, given N selection candi-
dates in the parental generation:

where ṽ  and v are vectors of the adjusted parent GEBV 
(G̃EBVP) and GEBV for selection candidates, respectively, 
where ṽi and vi are the values for ith parent, g

�
 is the mean 

of the vector for the off-diagonal elements in the ith column 
of the genomic relationship matrix G = [g1,… , gN], repre-
senting the average genomic relationship of the ith parent 
with all other candidates, and � is a scalar that penalizes 
high genomic relationship.

For G̃EBVO, a fitness matrix W̃ is generated to store 
all adjusted offspring GEBV estimated from N parent 
candidates:

 where W̃ = [w̃ij]N×N
 is a matrix of G̃EBVO for all potential 

progeny, each element w̃ij contains a G̃EBVO for a potential 
progeny produced by a pair of parent candidates i and j, 
W = [wij]N×N

 is a matrix of estimated GEBV for all prog-
eny in a same manner as W̃, each element wij is a mean 
GEBV of parents i and j, G is the genomic relationship 
matrix of parent candidates (N × N), and � is a penalty 

(1)ṽ = v − � ∗ gi

(2)W̃ = W − � ∗ G

for offspring inbreeding. An offspring with relatively high 
G̃EBVO represents a good balance between genetic merit 
and inbreeding. A group of n out of N parent candidates 
can be evaluated by the sum of the relevant elements in W̃. 
In other words, a group containing n candidates with great-
est overall G̃EBVO score would be chosen as parents.

A genetic algorithm (GA) (Holland 1975) may be 
required when selecting a large n out of N candidates using 
W̃. Choosing the best group of large n out of N candidates 
is more complicated than choosing pairwise candidates, 
because a selection candidate could be an excellent match 
for one but not another in a potential mating group. Thus, 
we employed a GA to search for such optimised mating 
groups. A GA simulates the genetic evolution process to 
optimise an objective function, which in the case here is 
the maximised sum of G̃EBVO scores from W̃ for a subset 
of potential offspring. Additional detail on the specific GA 
measure used is provided in the case study.

Simultaneous selection and mate allocation

We propose a simultaneous selection and allocation meas-
ure that uses G̃EBVO (S&A_G̃EBVO). As mentioned above, 
G̃EBVO scores are calculated by taking potential GEBV 
and coancestry into account for all progeny. Thus, if only 
a small n number of candidates are required to be selected 
out of N, the measure of S&A_G̃EBVO can be applied, 
which in contrast to GminF seeks the largest sum of rel-
evant elements in W̃, rather than the smallest sum in G.

Case study of strategies in a ryegrass breeding program

All control measures were tested in a simulated multi-
cycle breeding program. Genotypes of initial cultivars, true 
breeding values (TBVs), and phenotypes for traits were 
simulated as the starting point for breeding programs (Sup-
plementary Methods). The breeding programs followed 
that of Lin et al. (2016). In brief, initial cultivars were gen-
erated with comparable genetic diversity to the commercial 
ryegrass cultivars. Four traits were simulated: breeder vis-
ual preference (h2 = 0.2), flowering time (h2 = 0.6), persis-
tency (h2 = 0.1) and yield (h2 = 0.3) measured in plots (h2 
in narrow sense), with a genetic correlation of 0.3 between 
persistency and yield, and 0 for all other trait pairs.

The following seven scenarios (brief descriptions of all 
scenarios provided in Table 1) were conducted for a com-
mercial and genomic breeding schemes with the different 
proposed inbreeding control strategies. The selection in the 
genomic scenarios was based on GEBV of two plot traits 
(persistency and yield) with/without coancestry adjust-
ments. Both the GEBV and coancestry data were standard-
ised to ensure that scale differences were minimised. All 
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scenarios were simulated using code developed in the C++ 
programming language and R3.1.2 (R Core Team 2013).

Pheno (the commercial breeding program)
A commercial breeding program with a 10-year breed-

ing cycle was simulated, where selection and mate alloca-
tion were conducted using phenotypic information (Fig. 1). 
First, initial cultivars were crossed to generate  F1 families 
and, then, bulked up to  F2 that entered in a spaced plant 
field trial. Individuals in spaced plant field trial were 
ranked by their breeder visual preference phenotypes, 
and top ranked plants were selected to be grown in clonal 
rows. Clonal rows were also selected based on breeder 
visual preference and grouped into four-parent synthetics 
(Syn0s) with plants that were closest in flowering time. 
Each Syn0 was poly-crossed within family to produce Syn1 
and planted in plot field trials. Phenotypes of two plot traits 
(persistency and yield) were simulated per plot for selection 
via a two-trait selection index with equal weight on both 
traits. The plots with the highest phenotypes were used as 
parental varieties in the next breeding cycle.

GEBV (the original GS program)
The GEBVscenario was similar to Pheno, except that 

selections and allocations were done using candidates’ 
GEBV rather than phenotypic records (Fig.  1). Instead 
of growing a spaced plant trial, 5000  F1 seedlings were 
directly genotyped, and 400 were selected based on a 
selection index of the two plot traits (persistency and 

yield) GEBV, where prediction models for the two traits 
were trained by a reference population recruited from 
plots. These 400 selected seedlings were grouped into 
100 four-parent Syn0s according to closest flowering 
time GEBV (i.e. 4 parents per Syn0). The remaining steps 
in this genomic scheme were similar to Pheno, except 
that Syn1s in plots were selected using plot trait GEBV 
(calculated as a mean GEBV for all plants per plot). Plot 
genotypes were approximated by the average of 20 indi-
vidual genotypes per plot (e.g. Ashraf et  al. 2014; Lin 
et al. 2016).

The effectiveness of our proposed inbreeding control 
strategies was tested in the genomic breeding program, 
where the breeding program was identical for all strategies, 
and only selection and mate allocation differed when deter-
mining four-parent Syn0s.

GEBV + GminF
This scenario chose candidates using non-adjusted 

GEBV, and only tested our proposed mate allocation meas-
ure GminF on the selected plants. Initially, 400 out of 5000 
individuals were directly selected by their plot trait GEBV, 
and the selected plants were evenly sorted into four sub-
groups by their flowering time GEBV. Four-parent Syn0s 
were then compiled in each subgroup using GminF meas-
ure. In detail, G was generated for each subgroup, and 
allocations of four-parent Syn0s were based on applying 
GminF on the subgroup G, outputting Syn0s one at a time 

Table 1  Summary of selection and mate allocation measures from  F1 candidates to Syn0 families in different scenarios

a Selection candidates in the Pheno scenario were  F2

Scenarios Brief descriptions

Phenoa (commercial program) Candidates selected using phenotypes for breeder visual preference, and 
mate allocation determined by closest flowering time phenotypes

GEBV  (original genomic program) Candidates selected for plot trait GEBV, and mate allocation via closest 
flowering time GEBV

GEBV + GminF (GEBV for selection the GminF measure for mate 
allocation)

Candidates selected for plot trait GEBV, and mate allocation from G 
matrix to minimise inbreeding

G̃EBVP + GminF (the G̃EBVP values for selection
the GminF measure for mate allocation)

Candidates selected using ranking of adjusted parents’ GEBV, and then 
mate allocation from G matrix to minimise inbreeding

G̃EBVO + GminF (the G̃EBVO values for selection
the GminF measure for mate allocation)

Fitness matrix W̃ generated with the adjusted offspring GEBV from 
pairwise  F1 seedlings. GA applied to train for a subset of 400 individu-
als with converged fitness. Members of this subset then formed Syn0s 
using G matrix to minimise inbreeding

S&A_G̃EBVO (GA) (G̃EBVO with simultaneous selection and mate 
allocation)

Fitness matrix W̃ was generated with the adjusted offspring GEBV from 
 F1 seedlings. GA was applied to train for a subset of 100 synthetics 
that have highest overall fitness after convergence. The best group of 
100 synthetics in GA-trained subset was assigned to Syn0s

S&A_G̃EBVO (nonGA) (G̃EBVO with simultaneous selection and 
mate allocation)

F1 seedlings were initially sorted into 4 even subgroups by flowering 
time GEBV, with a fitness matrix W̃generated per subgroup. Four-par-
ent synthetics were formed from W̃ to maximise fitness, one at a time, 
until 100 synthetics had been formed per subgroup. 400 synthetics 
across 4 subgroups were then ranked by their fitness, and the top 100 
were assigned to Syn0
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without candidate replacement, until all candidates in each 
subgroup were allocated.

G̃EBVP + GminF

This scenario combined the adjusted parent candidate 
GEBV (G̃EBVP), and the GminF mate allocation measure. 
G̃EBVP of  F1 seedlings were calculated via Eq.  1, with �
varied from 0.5 to 10. The 400 selection candidates with 
the highest G̃EBVP were evenly sorted into four subgroups 
by their flowering time GEBV. Individuals in each sub-
group were then allocated to four-parent Syn0s using the 
GminF measure.

G̃EBVO + GminF

This scenario tested the effectiveness of using adjusted 
offspring GEBV (G̃EBVO) for selection plus the GminF 
measure for mate allocation. Here, the fitness matrix W̃
(5000 * 5000) was generated using Eq. 2 (with a � of 0.5, 1 
or 2), containing G̃EBVO for all potential progeny from  F1 
population. 400 out of 5000  F1 candidates were required to 
be selected from W̃. Ideally, the combination of candidates 
with maximised relevant progeny fitness from W̃ would be 
selected. However, the possible number of combinations 
when selecting 400 out of 5000 original candidates would 

be very large (large n out of N). Thus, a GA was applied to 
search for a combination of 400 individuals, and the objec-
tive function was the overall G̃EBVO score summed from 
relevant elements of pairwise candidates per combination. 
The combination of 400 individuals whose offspring had 
the highest converged sum of fitness scores was selected 
and forwarded to form 100 four-parent Syn0s using the 
GminF measure as above.

Genetic algorithms are an effective strategy of searching 
among a large number of subset solutions for a desirable 
solution (Holland 1975; Melanie 1999). The goal of the 
present case study was to search for a subset of 400 out of 
5000 candidates that had higher fitness than other subsets. 
The parameters used in the GA, such as the numbers of 
sampled subsets, iterations, crossover and mutation, were 
tested at a variety of levels, and the ones described below 
were chosen because of solutions converged within a rea-
sonable computational time (e.g. 12 h). The GA was initi-
ated by sampling 5000 subsets of 400 individuals randomly 
drawn from the 5000  F1 candidates. The fitness of each 
sampled subset was calculated and, in the above case, was 
the overall G̃EBVO from all relevant elements in W̃. The 

Fig. 1  Breeding procedures of one typical cycle of commercial and genomic program (breeding stages in solidline boxes, and selection as well 
as grouping measurements in dashline boxes)
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20% best subsets with prior fitness were randomly crossed 
with one-point crossover (random point) and 0.001 muta-
tion rate to form a new collection of 5000 subsets in next 
iteration and mutations sampled candidates from a global 
range. The GA was run for 1000 iterations until the solu-
tion converged to a presumed global maximum.

S&A_G̃EBVO(GA)

S&A_G̃EBVO performed simultaneous selection and 
allocation using G̃EBVO. Here, W̃ was generated using 
Eq. 2 with a � of 0.5 for G̃EBVO estimated from all pair-
wise  F1 candidates. Generally, members of one four-parent 
synthetic can be directly identified using the S&A_G̃EBVO 
measure on W̃. However, the breeding program in the pre-
sent case study requires identification of 100 Syn0s and, 
therefore, GA approaches were implemented to find the 
optimal subset of 100 synthetics from the 5000  F1  candi-
dates. In contrast to the former scenario, the total G̃EBVO 
score across 100 synthetics became the objective function 
for GA in this scenario. Therefore, this tested the optimal 
set of 100 synthetics required to maximise fitness. The 
total G̃EBVO score across 100 synthetics was calculated 
as follows: 400 candidates in a subset were evenly sorted 
into 4 subgroups by their flowering time GEBV. The 
S&A_G̃EBVO measure was then repeated in each subgroup 
to output four-parent synthetics and their G̃EBVO scores 
without replacement until all candidates in a subgroup were 

allocated, resulting in 25 synthetics per subgroup. Finally, 
an overall G̃EBVO score from the 100 synthetics across the 
4 subgroups was obtained per subset. The subset with the 
highest fitness trained via GA was used to form the 100 
Syn0s.

S&A_G̃EBVO(non GA)

A simplified implementation of the S&A_G̃EBVO meas-
ure without GA was designed for the purpose of reduc-
ing computational demands. In this scenario, the breeding 
procedures were slightly altered to enable implementation. 
The 5000  F1 candidates were evenly sorted into four sub-
groups by their flowering time GEBV (1250 per subgroup). 
W̃ was then generated for the candidates within each sub-
group using Eq. 2 with a � of 0.5. The S&A_G̃EBVO meas-
ure was applied repeatedly on each subgroups’ W̃, output-
ting one four-parent synthetic with the highest G̃EBVO at 
a time without replacement, until 100 synthetics per sub-
group were formed. Eventually, 400 synthetics across the 4 
subgroups were collected and ranked by their G̃EBVO, and 
the top 100 were assigned for Syn0s.

Statistical analysis

All scenarios were conducted independently in 50 repli-
cates (Fig.  2). Four cycles of the conventional program 
were conducted prior to all scenarios, which simulated 
parental varieties comparable to an existing phenotypic 

Fig. 2  Logical flow of breeding 
program simulations
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breeding program with historical genotypes and pheno-
types. All scenarios in one replicate were initialised with 
the same set of parental varieties genotype data, and run 
in parallel across 4 cycles. In every genomic cycle, persis-
tency and yield phenotypes of the 100 Syn1s, and flower-
ing time phenotypes of the 400 individuals in Syn0s were 
assumed to be measured in field and recruited to the refer-
ence populations for subsequent cycles. Genetic gain and 
inbreeding levels were compared among scenarios.

Genetic gain was measured as the cumulative genetic 
standard deviations (ΔG) across cycles using the following 
model:

where TBVi was the mean true breeding value of the top 
10 Syn1s across 4 breeding cycles of segregated scenarios 
(i = 1, 2, 3 or 4, respectively, Fig.  2), and TBV and �TBV 
were the mean and standard deviation of TBV for the top 
10 Syn1s at the last commercial cycle before scenarios 
started, respectively (Fig.  2). In addition, the prediction 
accuracy in genomic schemes of different scenarios was 
evaluated as the Pearson correlation between GEBV and 
TBV of individuals or plots.

Inbreeding coefficients were monitored in every breed-
ing stage across breeding cycles. G were generated at each 
stage (50 parental varieties, 5000  F1 seedlings, 100 Syn0s 
and Syn1s), where allele frequencies used for generating 
G (VanRaden 2008) were from the base population before 
breeding programs started (Fig.  2). F was evaluated by 
mean diagonal elements of G minus 1.

Results

The genetic gain of all scenarios in cumulative ΔG of yield 
in the last breeding cycle is shown in Table 2. The origi-
nal genomic scenario (GEBV) achieved the highest gain 
(2.47), closely followed by the scenario GEBV + GminF 
(2.46) which consisted of the proposed mate alloca-
tion measure GminF. As compared to the selection using 
GEBV, selection informed by adjusted parent candidate 
GEBV (G̃EBVP) with small scale of penalties resulted 
in marginal changes at ΔG, for example 2.46 and 2.44 in 
the G̃EBVP + GminF scenario with λ = 0.5 and 1, respec-
tively. ΔG was decreased to 2.18 in the G̃EBVP + GminF 
scenario with λ = 2, which was comparable to the gain in 
the G̃EBVO + GminF scenario using adjusted potential 
offspring GEBV (G̃EBVO) with λ = 0.5 (2.14). Further 
decreases of ΔG were consistent with increases of λ in the 
rest of G̃EBVP + GminF and G̃EBVO + GminF scenarios 
(Fig.  3). Intermediate levels of ΔG were achieved in the 

ΔG =
TBVi − TBV

�TBV

two scenarios using the S&A_G̃EBVOmeasure with λ = 0.5 
(2.22 for GA and 2.29 for non GA). Most scenarios did not 
significantly impact ΔG (Fig. 4, y axis, s.e. varied from 0.1 
to 0.2). Detailed ΔG for persistency and yield across cycles 
were provided in Supplementary Table  S1. In addition, 

Table 2  Cumulative genetic gain in genetic standard deviations for 
yield in the last breeding cycle of different scenarios (s.e. from 0.1 to 
0.2)

a Scenarios explained in Table 1

Scenariosa Cumulative genetic 
standard deviations

Pheno 1.34
GEBV 2.47
GEBV + GminF 2.46

G̃EBVP(�= 0.5) + GminF 2.46

G̃EBVP(�= 1) + GminF 2.44

G̃EBVP(�= 2) + GminF 2.18

G̃EBVP(�= 3) + GminF 1.75

G̃EBVP(�= 5) + GminF 1.39

G̃EBVP(�= 10) + GminF 0.58

G̃EBVO(�= 0.5) + GminF 2.14

G̃EBVO(�= 1) + GminF 1.96

G̃EBVO(�= 2) + GminF 1.40

S&A_G̃EBVO(GA) (�= 0.5) 2.22

S&A_G̃EBVO (nonGA) (�= 0.5) 2.29

Fig. 3  Cumulative genetic gain for yield and inbreeding at 
Syn1 stage in the last cycle in terms of various penalty scalars 
(λ) in G̃EBVP + GminF and G̃EBVO + GminF scenarios (sce-
narios explained in Table  1). Continuous black line and continu-
ous grey line cumulative genetic gain for the G̃EBVP + GminF and 
G̃EBVO + GminF scenarios, respectively (y axis on the left). Dotted 
black lines and dotted grey lines inbreeding for the two scenarios (y 
axis on the right)
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prediction accuracy of GEBV varied from 0.12 to 0.21 for 
persistency, 0.19–0.31 for yield, and 0.65–0.70 for flower-
ing time across cycles in all scenarios (data not shown).

While ΔG was only marginally affected in most sce-
narios, inbreeding coefficients were significantly reduced 
by controls (Table  3; Fig.  4 x-axis). Generally, inbreed-
ing increased within each stage across cycles. The highest 
inbreeding was found in the original genomic scenario, 
which was more than double as compared to the com-
mercial Pheno scenario, i.e. 0.095 vs. 0.042 for Syn1s in 
cycle 4. Syn1 inbreeding in cycle 4 was reduced to 0.075 
in GEBV + GminF scenario when control was conducted 
merely in mate allocation. Replacing GEBV with G̃EBVP 
for selection further reduced inbreeding, i.e. Syn1s’ 
inbreeding in cycle 4 was 0.069, 0.062 and 0.041 in the 
G̃EBVP + GminF scenario with λ = 0.5, 1 and 2, respec-
tively. Scenarios using G̃EBVO generally had better con-
trols on inbreeding than other scenarios. For instance, 
scenario of G̃EBVO + GminF resulted in inbreeding of 
0.046 for Syn1s in the last simulation cycle, and the two 
S&A_G̃EBVO (GA and non GA) scenarios delivered the 
least inbreeding (0.034 and 0.035, respectively).

Increases of penalty scalar λ in adjusting GEBV were 
consistent with decreases of genetic gain and inbreeding 
across scenarios (Fig.  3). In the G̃EBVP + GminF sce-
nario, genetic gain was marginally changed when λ was 
0.5 and 1 (ΔG = 2.46 and 2.44, respectively), and reduced 
slightly when λ = 2 (2.18). Further increases in λ caused 

ΔG to decline significantly to 0.58 when λ = 10. In con-
trast, inbreeding in the G̃EBVP + GminF scenario was ini-
tially reduced substantially (from 0.069 to 0.041) when λ 
was from 0.5 to 2 in this scenario, but decreased at a slow 
rate when λ > 2. Moreover, the G̃EBVO + GminF sce-
nario with λ = 0.5 achieved comparable genetic gain and 
inbreeding to the G̃EBVP + GminF scenario with λ = 2, 
and the former scenario with λ = 2 delivered double gain 
with similar inbreeding when compared to the latter sce-
nario with λ = 10 (Fig. 3).

Discussion

The controls proposed in the study were effective at 
curtailing inbreeding, while not strongly affecting ΔG. 
Inbreeding controls are necessary to reduce the incidence 
of homozygous deleterious recessive alleles and inbreed-
ing depression for important traits. This seems especially 
pertinent when applying genomic selection in outbreed-
ing plant breeding programs. Traditional methods using 
pedigree to restrict inbreeding increase in complexity in 
plant species that select populations or when multiple 
parents are poly-crossed (i.e. ryegrass). Alternatively, 
the inbreeding controls proposed in this study require 
genomic information only (i.e. GEBV and G), which are 
readily implemented in any plant breeding programs with 
sampled genotypes.

In general, the measures devised in the present study 
constrained increases of inbreeding during selection by 
adjusting GEBV with coancestry. Similarly, the most pub-
lished measures are based on the same concept to reduce 
inbreeding in animal breeding, such as optimum contri-
bution selection (Meuwissen 1997; Sonesson et al. 2012), 
and specific two-parent mating plans (Pryce et al. 2012). 
However, as published currently, optimum contribution 
selection requires discrete sex contribution and a prede-
fined inbreeding rate as parameters for a rather complex 
equation. This imposes certain limits on potential mating 
schemes, number of matings and offspring per candidate, 
which makes it less practical for plant breeding. A com-
prehensive heuristic measure using a fitness matrix was 
applied in pairwise mate allocation in dairy cattle (Pryce 
et al. 2012). Our study extended its application for plant 
breeding programs that can allocate multiple parents in 
a mating group, where every plant can cross to multiple 
other plants without sex restriction. Optimal contribu-
tion approaches could be derived that account for these 
plant-specific needs. However, in our view, the heuristic 
methods to control inbreeding proposed here would still 
be simpler to implement in a practical breeding scheme.

Fig. 4  Genetic gain for yield (y-axis, s.e. were varied from 
0.1 to 0.2) and inbreeding coefficients at Syn1 stage (x-axis, 
s.e.<0.001) in the last cycle for genomic scenarios (scenarios 
explained in Table  1). Filled black square GEBV, open black 
square GEBV+Gmin F; Filled black triangle, open grey trian-
gle  and open black triangle G̃EBVP + GminF (λ = 0.5, 1 and 
2, respectively); Filled black circle G̃EBVO (λ = 0.5) + Gmin F; 
Filled black diamond S&A_G̃EBVO(GA) (�= 0.5); Filled black star 
S&A_G̃EBVO(nonGA) (�= 0.5); Cross symbol Pheno
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Comparisons of the devised measures in the present 
study

The power of inbreeding controls from different measures 

developed in the present study was tested in a simulated 
perennial ryegrass breeding program (Fig.  3). The con-
trols targeted the selection of  F1 candidates and the mate 
allocation of four-parent synthetics. In a practical ryegrass 

Table 3  Inbreeding coefficients 
at specific breeding stages of 
different scenarios across 4 
cycles (s.e. <0.001)

a Scenarios explained in Table 1

Stage Scenariosa Cycle 1 Cycle 2 Cycle 3 Cycle 4

Parental varieties Pheno 0.019 0.024 0.028 0.034
GEBV 0.019 0.031 0.048 0.067
GEBV + GminF 0.019 0.023 0.035 0.054

G̃EBVP(�= 0.5) + GminF 0.019 0.023 0.035 0.053

G̃EBVP(�= 1) + GminF 0.019 0.023 0.034 0.050

G̃EBVP(�= 2) + GminF 0.019 0.023 0.031 0.041

G̃EBVO(�= 0.5) + GminF 0.019 0.022 0.027 0.038

S&A_G̃EBVO (GA)(�= 0.5) 0.019 0.017 0.016 0.023

S&A_G̃EBVO (nonGA)(�= 0.5) 0.019 0.018 0.017 0.025

F1 individuals Pheno 0.019 0.023 0.028 0.033
GEBV 0.019 0.025 0.038 0.057
GEBV + GminF 0.019 0.025 0.040 0.061

G̃EBVP(�= 0.5) + GminF 0.019 0.025 0.039 0.059

G̃EBVP(�= 1) + GminF 0.019 0.024 0.038 0.056

G̃EBVP(�= 2) + GminF 0.019 0.023 0.031 0.038

G̃EBVO(�= 0.5) + GminF 0.019 0.024 0.033 0.045

S&A_G̃EBVO(GA)(� = 0.5) 0.019 0.024 0.034 0.043

S&A_G̃EBVO(nonGA)(�= 0.5) 0.019 0.024 0.034 0.045

Syn0 families Pheno 0.101 0.105 0.110 0.117
GEBV 0.023 0.035 0.056 0.080
GEBV + GminF 0.023 0.037 0.059 0.082

G̃EBVP(�= 0.5) + GminF 0.022 0.035 0.053 0.076

G̃EBVP(�= 1) + GminF 0.021 0.032 0.047 0.068

G̃EBVP(�= 2) + GminF 0.020 0.028 0.036 0.045

G̃EBVO(�= 0.5) + GminF 0.021 0.029 0.040 0.054

S&A_G̃EBVO(GA)(�= 0.5) 0.022 0.032 0.043 0.054

S&A_G̃EBVO (nonGA)(�= 0.5) 0.022 0.032 0.044 0.058

Syn1
plots

Pheno 0.026 0.031 0.036 0.042
GEBV 0.038 0.053 0.072 0.095
GEBV + GminF 0.021 0.036 0.054 0.075

G̃EBVP(�= 0.5) + GminF 0.020 0.034 0.050 0.069

G̃EBVP(�= 1) + GminF 0.019 0.032 0.044 0.062

G̃EBVP(�= 2) + GminF 0.018 0.026 0.033 0.041

G̃EBVO(�= 0.5) + GminF 0.017 0.024 0.033 0.046

S&A_G̃EBVO (GA)(�= 0.5) 0.012 0.017 0.025 0.034

S&A_G̃EBVO (nonGA)(�= 0.5) 0.013 0.019 0.026 0.035
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breeding program, genomic information is more likely to 
be sampled from pooled populations because plants are 
grown in swards or plots. While not attempted here, the 
extension of methods to use pooled population genotypes 
is possible, but will not be as precise as utilising individual 
plant genotypes. Furthermore, some scenarios required tun-
ing of parameters for GA approaches, such as recombina-
tion, mutation and judging convergence, while keeping 
computational load manageable. Although convergence 
was reasonably predictable and replicates were uniform, 
GA approaches do not necessarily guarantee that global 
maxima are reached. Due to the relatively high demands for 
programming and computing resources for GA operations, 
a non-GA breeding scheme was designed to facilitate the 
S&A_G̃EBVO measure, which achieved comparable gain to 
the GA scenario in our case study, whilst consuming less 
computer resources.

Allocation strategies that minimised parental coancestry 
using G were applied. The original genomic scheme led to 
substantial increases of inbreeding (Table  3), which was 
partly due to grouping elite parents with the closest flow-
ering time. Grouping parents by flowering time increases 
cross-pollination, and flowering time of perennial ryegrass 
can be categorised into 4 types: early, mid-season, late 
and very late in terms of such date variations (Lee et  al. 
2012). Strong restriction of inbreeding was achieved using 
the GminF measure. In addition, all scenarios resulted in 
only marginal changes of flowering time GEBV (data not 
shown). This was consistent with expectations since flow-
ering time in the case study was not a trait for selection, 
and was uncorrelated with other traits.

Our study showed that the use of a fitness matrix W̃ 
storing offspring G̃EBVO to control inbreeding was more 
effective than simply ranking G̃EBVP for selection candi-
dates. While the G̃EBVP + GminF scenario with appro-
priate lambda (up to 2) outperformed the GEBV + GminF 
scenario in delivering comparable gain and less inbreed-
ing, the scenarios using G̃EBVO resulted in even better 
performance (Fig.  4). Moreover, the two S&A_G̃EBVO 
scenarios were found to have best balance of genetic gain 
against inbreeding (Fig.  4). Measures that separate selec-
tion and mate allocation are inherently suboptimal, because 
selection is blind to how parents will be grouped. A selec-
tion decision without consideration for mate allocation 
may result in selecting individuals that are less desirable 
for group matings. In contrast, a measure of simultane-
ous selection and mate allocation avoids such issues, and 
achieved comparable gain with only 1/3 of the inbreeding 
as compared with the genomic program without controls. 
Similarly, the optimal contribution measure in animals 
could achieve comparable gain and halved inbreeding using 
either pedigree (Meuwissen 1997) or genomic information 
(Sonesson et al. 2012). To our knowledge, it was the first 

time that a strategy of merging selection and mate alloca-
tion proposed in a plant breeding scheme.

Search of the optimal penalty (λ) for adjusted GEBV

The use of G̃EBVP and G̃EBVO devised in the pre-
sent study requires identification of the optimal pen-
alty scalar in a particular breeding schemes. In our case 
study, we initially tested 6 λ values (0.5 to 10) using the 
G̃EBVP + GminF scenario to assist pinpointing the opti-
mal scalar. The outcomes (Fig. 3) revealed that a λ up to 2 
could maximise genetic gain while minimising inbreeding, 
and further increases of the penalty resulted in significant 
loss of gain but limited reduction in inbreeding. Penalties 
of 0.5, 1 and 2 were then tested for adjusting G̃EBVO in 
the G̃EBVO + GminF scenario, and only a λ of 0.5 could 
achieve comparable gain as compared to the genomic pro-
gram without controls (Fig.  4); therefore, λ = 0.5 was fur-
ther applied in the S&A_G̃EBVO scenarios. The penalty 
parameter (λ) will likely have to be adjusted for each plant 
species, especially if mating strategies are different to the 
one in our case study. The ideal lambda depends on the 
level of inbreeding risk that a breeding program is willing 
to incur. Genetic gain may be maximised by weakening 
lambda or, alternatively, genetic diversity could be retained 
with a strong lambda albeit at a cost to genetic gain.

Recommendations of inbreeding control in practical 
breeding

All strategies developed in our study are generally appli-
cable to practical outbred plant breeding programs. Our 
case study showed that a genomic plant breeding scheme 
without inbreeding controls could double inbreeding as 
compared with phenotypic selection (Table 3). Potential 
consequences of higher inbreeding could be decreased 
survival, growth and reproduction in plants. This is par-
ticularly critical in outbred diploid plant species due to 
their lack of ability to cope with continued close inbreed-
ing. In contrast, of course, inbred species may suffer less 
or no ill effects due to their adaptations to self-fertilisa-
tion (Charlesworth and Charlesworth 1987). Limiting 
inbreeding rate to between 0.5 and 1% per generation 
has been advised to avoid risks from inbreeding depres-
sion (Grundy et  al. 1998; Meuwissen and Woolliams 
1994; VanderWerf et  al. 2009). In our simulations, sce-
narios using G̃EBVP (λ = 2), and G̃EBVO (λ = 0.5) met 
the advised rate of inbreeding (Table  3). In particular, 
the S&A_G̃EBVO (non GA) scenario is attractive because 
it achieved less inbreeding than even phenotypic selec-
tion, while not reducing genetic gain when compared to 
non-controlled GS. In conclusion, we have proposed and 
tested a variety of measures to control inbreeding when 
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applying GS in outbred plants, which are relatively sim-
ple heuristic strategies that can be readily implemented 
to avoid inbreeding depression and safeguard long-term 
genetic gain.
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