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developed in the context of classic animal breeding and GS, 
was explored for MAS. We observed that prediction accu-
racies of MAS were overestimated by 127% using cross-
validation sampling genotype and environments in contrast 
to independent validation. In contrast, prediction accura-
cies of GS determined in independent samples are similar 
to those estimated with cross-validation sampling genotype 
and environments. This can be explained by small popula-
tion differentiation between the training and validation sets 
in our study. For European wheat breeding, which is so far 
characterized by a slow temporal dynamic in allele fre-
quencies, this assumption seems to be realistic. Thus, GS 
models used to improve European wheat populations are 
expected to possess a long-lasting validity. Since quantita-
tive trait loci information can be exploited more precisely 
if the predicted genotype is more related to the training 
population, the reliability criterion is also a valuable tool to 
judge the level of prediction accuracy of individual geno-
types in MAS.

Abbreviations
BLUE(s)	� Best linear unbiased estimator(s)
FHB	� Fusarium head blight
GBLUP	� Genomic best linear unbiased prediction
GS	� Genome-wide selection
MAS	� Marker-assisted selection
PCoA	� Principal coordinate analysis
PEV	� Prediction error variance
QTL	� Quantitative trait loci
REML	� Restricted maximum likelihood
RKHSR	� Reproducing kernel Hilbert space regression
RR-BLUP	� Ridge regression best linear unbiased 
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SNP	� Single nucleotide polymorphism
TPE	� Target population of environments

Abstract 
Key message  Compared with independent validation, 
cross-validation simultaneously sampling genotypes 
and environments provided similar estimates of accu‑
racy for genomic selection, but inflated estimates for 
marker-assisted selection.
Abstract  Estimates of prediction accuracy of marker-
assisted (MAS) and genomic selection (GS) require vali-
dations. The main goal of our study was to compare the 
prediction accuracies of MAS and GS validated in an 
independent sample with results obtained from fivefold 
cross-validation using genomic and phenotypic data for 
Fusarium head blight resistance in wheat. In addition, the 
applicability of the reliability criterion, a concept originally 
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Introduction

Wheat is an important staple crop providing one-fifth of 
the total calories of the world’s population (Reynolds et al. 
2011). Wheat grain yield and quality is severely impacted 
by Fusarium head blight (FHB) (Buerstmayr et  al. 2009). 
FHB infection in wheat production cannot be completely 
controlled by fungicide application, crop rotation, and soil 
tillage alone (Paul et al. 2010) entailing the need to breed 
and grow wheat varieties which are resistant against FHB 
(Miedaner et al. 2011).

Genomic-assisted breeding can potentially accelerate 
selection gain for FHB resistance (Miedaner et  al. 2009, 
2011; Mirdita et  al. 2015a, b). Two powerful genomic-
assisted breeding tools are marker-assisted (Lande and 
Thompson 1990) and genomic selection (Meuwissen et al. 
2001). In marker-assisted selection (MAS), the performance 
of individuals is estimated using a few functional markers. 
In contrast, in genome-wide selection (GS) the trait perfor-
mance is predicted using many markers without performing 
marker-specific significance tests (Zhao et al. 2015a).

The efficiency of MAS and GS depend on many factors 
such as the genetic architecture of the target trait as well 
as the genetic composition of the population used to esti-
mate the marker effects (Heffner et  al. 2009; Zhao et  al. 
2015b). Therefore, prediction accuracies of MAS and GS 
have to be estimated in order to optimally use genomics in 
breeding programs. The estimates of prediction accuracies 
should rely on relevant germplasm and have to be validated 
either via cross-validation (Hjorth 1994) or by validation 
with independent samples (e.g., Melchinger et  al. 1998). 
Here “samples” means both genotypes and environments 
where the genotypes are tested, while “independent” means 
that samples are independently sampled from a certain 
population. This is relevant for breeding as the lines enter-
ing a breeding program are typically derived from a pool 
of elite parental genotypes, and the target of breeding is to 
select genotypes that performed well in a target population 
of environments (TPE, Atlin et al. 2000).

The main difference between cross-validation and vali-
dation with independent samples is that the latter involves 
prediction for untested genotypes in untested environ-
ments. Recently, this problem has been studied using cross-
validation sampling genotypes and environments (Jarquin 
et al. 2014; Malosetti et al. 2016; Saint Pierre et al. 2016). 
However, these studies focused on predicting the perfor-
mances of genotypes within environments. This is relevant 
when the genotypes strongly interact with environments, 
in which case it is unrealistic to set the target of breed-
ing across all environments. In contrast, if the genotype-
by-environment interaction is moderate, it makes more 
sense to treat the environments as a sample from a TPE 

and predict the genotypes across environments. Our study 
focused on the latter case.

Most previous studies on the potential and limits of 
MAS and GS of FHB resistance in wheat rely on cross-val-
idation (Arruda et al. 2015; Jiang et al. 2015; Mirdita et al. 
2015a, b; Rutkoski et al. 2012). Validation using independ-
ent samples is to our knowledge lacking. This is not critical 
for biparental populations, because prediction accuracies 
are comparable for cross-validation and validation with 
independent samples (Utz et  al. 2000). Nevertheless, pre-
diction accuracies for cross-validation and validation with 
independent samples may differ when considering panels 
of genetically diverse lines, like for example in association 
mapping. For diversity panels, relatedness between train-
ing and validation population impacts the prediction accu-
racy of both, MAS and GS (Gowda et  al. 2014; Habier 
et  al. 2007). Therefore, applying fivefold cross-validation 
is not necessarily reflecting the validation scenario relevant 
for applied plant breeding and stratified sampling may be 
required.

Alternatively, prediction accuracies can be estimated at 
the level of single genotypes rather than for entire popula-
tions. The prediction accuracy for individual genotypes is 
denoted as reliability and has been proposed and applied for 
genomic selection in the context of animal breeding (Hayes 
et  al. 2009; Henderson 1973; VanRaden et  al. 2009). The 
reliability criterion is not routinely applied for GS in plant 
breeding, despite its huge potential as recently highlighted 
by a pioneering study using a large wheat population (He 
et al. 2016). Moreover, the potential of using the reliability 
criterion for assessing the prediction accuracies of individ-
ual genotypes in MAS has not yet been investigated.

Our study is based on genomic and phenotypic data for 
FHB resistance of two independent samples of European 
wheat varieties released at distinct time periods. The objec-
tives of our study were to (1) evaluate the potential and 
limits of MAS and GS for FHB resistance using an inde-
pendent validation sample; (2) contrast the prediction accu-
racies of validation in an independent sample with results 
obtained from fivefold cross-validation, and (3) assess the 
potential of the reliability criterion to estimate the predic-
tion accuracies of MAS and GS at an individual level.

Materials and methods

Plant materials

In this study we considered data sets from two experi-
ments. The first data set (experiment I) consisted of 372 
European wheat varieties which were released in the time 
period ranging from 1975 to 2009 (Supplementary Table 
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S1). The varieties were evaluated for FHB resistance using 
multi-location field trials in Germany in 2009 and 2010 
(Jiang et al. 2015; Kollers et al. 2013). In total there were 
four environments (location–year combinations). The sec-
ond data set (experiment II) comprised 151 European wheat 
varieties (Supplementary Table S1) tested in three different 
environments in Germany in 2013 and 2014. Excluding the 
18 common genotypes with experiment I, all varieties of 
experiment II were released between 2007 and 2010. In this 
study, we treated the genotypes and environments in experi-
ments I and II as independent samples from the population 
of European elite wheat varieties and the TPE of Central 
Europe.

In both experiments, varieties were evaluated in field 
trials with two or three replications in a randomized com-
plete block design. In each environment, lines were arti-
ficially spray-inoculated as described in detail by Kollers 
et  al. (2013). FHB resistance was expressed as FHB 
score = FHB incidence × FHB severity/100%, where FHB 
incidence represents the percentage of infected spikes in a 
test plot and FHB severity refers to the mean percentage 
of infected area on infected spikes. Thus FHB score has 
a possible range from 0% (most resistant) to 100% (most 
susceptible).

Phenotypic data analyses

For both data sets, we performed one-step phenotypic anal-
yses using linear mixed models (Smith et  al. 2005). The 
following model was used for experiment I:

where yijk denotes the phenotypic record of the ith genotype 
in the kth replication of the jth environment, μ is the com-
mon intercept term, Gi is the effect of the ith genotype, Ej is 
the effect of the jth environment, (G × E)ij is the interaction 
effect between the ith genotype and the jth environment, 
r(j)k is the effect of the kth replication in the jth environment 
and eijk is the residual term which is independent and iden-
tically distributed (i.i.d) and normally distributed.

For experiment II we used a slightly different model in 
order to separate the 133 genotypes only in experiment II 
and the 18 genotypes appearing in both experiments:

where yijk ,µ,Ej, r(j)k and e are the same as before, χi takes 
the value 1 if the ith genotype is only in experiment II and 
0 if it is also in experiment I. The effect of the ith genotype 
is denoted by Vi (or Ti) if the genotype is in experiment II 
(or experiment I). The corresponding interaction effect with 
the jth environment is denoted by (V × E)ij

(

or (T × E)ij
)

.

yijk = µ+ Gi + Ej + (G× E)ij + r(j)k + eijk ,

yijk = µ+ Ej + χi(Vi + (V × E)ij)+ (1− χi)(Ti + (T × E)ij)

+ r(j)k + eijk ,

In both models, we first assumed all effects except 
the intercept as random to estimate the variance compo-
nents. The broad-sense heritability on an entry-mean basis 

was calculated as h2 = σ 2
G/(σ

2
G +

σ 2
G×E

t
+

σ 2
e

tr
), where 

σ 2
G, σ

2
G×E and σ 2

e  denote the variance components of geno-
types, genotype-by-environment interactions and the residu-
als, t is the number of environments and r is the number of 
replications. Note that for the second model, σ 2

G and σ 2
G×E 

were replaced by σ 2
V and σ 2

V ×E, as we were interested in 
the heritability for the genotypes  only in experiment II. 
To get the best linear unbiased estimates (BLUEs) of each 
genotype, we assumed fixed intercept and genotypic effects, 
whereas all other effects in the model remained random.

Note that we assumed homoscedasticity of residu-
als and a compound symmetry model for the genotype-
by-environment interaction effects. The model was used 
for estimating heritability and obtaining the BLUEs of 
genotypes across environments. In the estimation of herit-
ability, we only need the information on the magnitude of 
genotype-by-environment interaction through the size of 
the estimated variance components and it is not necessary 
to further explore the patterns of interaction. The BLUEs 
were obtained by necessarily assuming fixed genotypic 
effects and keeping other effects random. In each experi-
ment, we treated the tested environments as a sample from 
a TPE, thus it is reasonable to assume a common environ-
mental variance. Since the genotypic effect was assumed 
to be fixed, this naturally leads to a compound symmetry 
model for GxE effects. On the other hand, it was reported 
that the difference between models assuming homoscedas-
tic and heteroscedastic residuals was small and the model 
assuming homoscedastic residuals could provide accept-
able results (Möhring and Piepho 2009).

Genotypic data and analyses

Varieties in both data sets were genotyped with a 90k Infin-
ium single nucleotide polymorphism (SNP) array (Wang 
et al. 2014). Quality control for the SNP markers was per-
formed to exclude those with missing rates above 5%, rates 
of heterozygotes above 5%, and minor allele frequencies 
below 5%. In total 17,839 markers remained in our study.

To investigate the genetic relatedness among the 
genotypes within and across the two data sets, we esti-
mated the Rogers’ distance (Rogers 1972) for each pair 
of genotypes based on their marker profiles. More pre-
cisely, the Rogers’ distance between individuals i and j is 
dij =

1
2m

∑m
k=1 |xik − xjk|, where m is the number of mark-

ers, xik and xjk are the profiles of the kth marker (being 0, 
1 or 2) for individuals i and j, respectively. Distributions 
of pairwise Rogers’ distances for all genotypes within and 
across the two data sets were compared. We also performed 
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principal coordinate analysis (PCoA) based on the matrix 
of Rogers’ distances.

Association mapping and MAS

A two-step association mapping approach was applied 
in this study (Jiang et al. 2015). First, the BLUE for each 
genotype in each environment was estimated in a linear 
mixed model assuming fixed genotype and random replica-
tion effects. Then a standard linear mixed model (Yu et al. 
2006) was implemented for a genome-wide association 
mapping scan:

where yil is the BLUE for the ith genotype in the lth envi-
ronment, μ is a common intercept term, gi is the effect of 
the ith genotype, El is the effect of the lth environment, 
a is the effect of the marker being tested, m is the vector 
of marker record and eil is the residual term. In the model 
we assume random genotypic and environmental effects. 
The effect of the marker being tested was assumed to be 
fixed. The population structure was considered by assign-
ing a kinship matrix as the variance–covariance matrix for 
the random genotypic effects. The entries in the kinship 
matrix were 1 minus the Rogers’ distances. The environ-
mental effects and the residuals were assumed to be inde-
pendently normally distributed. Parameters were estimated 
by a restricted maximum likelihood (REML) approach. 
Significance of marker effect was tested based on the Wald 
statistic.

Note that we combined the BLUEs obtained in each 
environment as the response variable. It is expected that 
this model can increase power of association mapping, 
compared with the model directly using BLUEs across 
environments (Stich et al. 2008).

We applied three different significance thresholds 
(P < 0.005, 0.001, and 0.0001) to study their influence on 
the accuracy of MAS. For each threshold, significant mark-
ers were determined and then fitted together in a multiple 
linear regression model to obtain the estimation of their 
effects. Instead of directly recording the number of sig-
nificant markers, we estimated the effective number of 
marker–trait associations to account for possible linkage 
disequilibrium (Jiang et al. 2015). For this purpose, we first 
performed principal component analysis with all significant 
markers, and then extracted the minimal number of princi-
pal components needed to portray 90% of the total varia-
tion. This number approximated the number of independent 
genetic factors underlying FHB resistance. Note that the 
threshold of percentage can be chosen arbitrarily, while we 
chose 90% in order to get results comparable with our pre-
vious study (Jiang et al. 2015).

yil = µ+ ma+ gi + El + eil,

Genomic predictions

We used three different models for GS: ridge regression 
best linear unbiased prediction (RR-BLUP; Meuwissen 
et al. 2001; Whittaker et al. 2000), reproducing kernel Hil-
bert space regression (RKHSR; Gianola and van Kaam 
2008), and Bayes-Cπ (Habier et al. 2011). Among the three 
models, RR-BLUP and Bayes-Cπ exploited the additive 
effects of the markers across the genome, while RKHSR 
implicitly modeled additive-by-additive epistatic effects 
among the markers (Jiang and Reif 2015). We briefly 
described the three models as follows.

Let n be the number of genotypes, p be the number of 
markers and l be the number of environments. Let X = (xij) 
be the n × p matrix of markers with xij being the number of 
a chosen allele at the jth locus for the ith genotype. Let y be 
the n-dimensional vector of phenotypic records, which are 
BLUE of genotypic values obtained in the phenotypic data 
analyses. Let 1n be the n-dimensional vector of 1s. In the 
following models, μ always denotes the common intercept 
term and e denotes the residual term.

The RR-BLUP model has the form y = 1n µ+ Xα + e , 
where α is the vector of additive effects of markers. In 
the model we assume that α ∼ N

(

0, Iσ 2
α

)

, e ∼ N(0, Iσ 2
e ), 

where I is the identity matrix, σ 2
α = σ 2

G/p and σ 2
e = σ 2

R/l. 
Note that σ 2

G and σ 2
R are the estimated genotypic and resid-

ual variances in the phenotypic data analyses. The estima-
tion of α is given by the mixed model equations (Hender-
son 1975).

The Bayes-Cπ model has the same basic setting 
y = 1n µ+ Xα + e as RR-BLUP but with different 
assumptions. Let αj be the jth entry of α ( j = 1, . . . , p ). 
Then αj is assumed to be zero with probability π and 
αj ∼ N

(

0, σ 2
α

)

 with probability (1 − π), where π is a ran-
dom variable whose prior distribution is uniform on the 
interval [0,1]. The variance component σ 2

α has a scaled 
inverse Chi-squared prior distribution with degree of free-
dom vα and scale S2α. The prior distribution of the residual is 
e ∼ N

(

0, Iσ 2
e

)

 and σ 2
e  also has a scaled inverse Chi-squared 

prior distribution with degree of freedom ve and scale S2e. 
Parameters vα and ve were both set to be 4. S2e and S2α are 
derived following Habier et  al. (2011). A Gibbs sampler 
algorithm was implemented to infer the parameters in the 
model which was run for 10,000 iterations with a burn-in 
of the first 1000 iterations.

The RKHSR model is of the form y = 1n µ+ Kα + e, 
where y, 1n µ and e are the same as in the RR-BLUP model, 
α ∼ N(0,K−1σ 2

α ) is a vector of random effects and K is 
the n × n symmetric positive-definite matrix whose entries 

are defined by Kij = exp

[

(xi−xj)
′
(xi−xj)

h

]

, where xi and xj 

are (m ×  1) vectors of marker indices for the ith and jth 
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genotype, respectively, and h is a smoothing parameter. To 
determine h and estimate σ 2

α, we first chose a grid of values 
for h. For each value of h we estimated σ 2

α using a REML 
approach and then calculated the fitted values of the model. 
Finally, we chose the value h optimizing the generalized 
cross-validation (GCV) statistic of the model.

Validation scenarios

For both MAS and GS, we applied three different valida-
tion scenarios: cross-validation sampling genotypes (CV-
G), cross-validation sampling genotypes and environments 
(CV-GE) and independent validation (IV).

In the CV-G scenario, only the data from experiment I 
was involved in the analyses. In each run of cross-valida-
tion, 80% of the 372 genotypes were randomly assigned 
as the training set (297 genotypes) and the remaining 20% 
formed the validation set (75 genotypes). The BLUEs of 
genotypes across all environments were used as observed 
phenotypic records in both MAS and GS, except in asso-
ciation mapping where the BLUEs in single environments 
were considered. In MAS, we performed association map-
ping in the training set and recorded the significant mark-
ers. We estimated the effects of the significant markers, 
which were then used to predict the performance of the 
genotypes in the validation set. In GS, we estimated the 
effects of all markers using the training set (RR-BLUP 
and Bayes-Cπ) or exploited the relationship between the 
genotypes in the training set and the validation set through 
the marker-derived kernel matrix of RKHSR and then pre-
dicted the performance of the genotypes in the validation 
set. The whole procedure was repeated 100 times.

In the CV-GE scenario, we mimicked the situation that 
the genotypes in the training and the validation set were 
tested in different years focusing again on the experiment 
I. In each run, 80% of the 372 genotypes and two environ-
ments with the same year (2009 or 2010) were randomly 
sampled as the training set. The remaining 20% of the 
genotypes and the other two environments formed the vali-
dation set. MAS and GS models were implemented in the 
same way as in CV-G, except that the BLUEs across the 
corresponding two environments for the genotypes in the 
training and validation sets were used instead of the BLUEs 
across all four environments. In the CV-GE scenario, only 
the RR-BLUP model was implemented for GS. The reason 
is the following: in our previous study (Jiang et al. 2015), 
we did not detect any large effect QTL in experiment I. 
Hence RR-BLUP is more appropriate to access prediction 
accuracy than Bayes-Cπ. Moreover, we observed only mar-
ginal difference between the accuracies of RR-BLUP and 
RKHSR. Hence we decided to use only RR-BLUP in the 
CV-GE scenario in order to reduce the computational load.

In scenario IV, both data sets were involved. In MAS, 
we performed association mapping using the full data set 
from experiment I as the training set (372 genotypes) and 
used the identified significant markers to predict for experi-
ment II as the test set (133 genotypes). In GS, the effects 
of all markers were estimated using the training set (RR-
BLUP and Bayes-Cπ) or the marker-derived kernel matrix 
was estimated (RKHSR) and then we predicted the perfor-
mance of the genotypes in the test set.

For both MAS and GS, the prediction ability was defined 
as the Pearson product-moment correlation between pre-
dicted and observed genotypic values in the test set (IV) or 
validation set (CV-G and CV-GE). The prediction accuracy 
was defined as the prediction ability divided by the square 
root of the corresponding heritability. In the CV-G and 
CV-GE scenarios, the mean prediction ability or accuracy 
was taken across 100 cross-validation runs.

Reliability and prediction accuracy

We considered the genomic best linear unbiased predic-
tion (GBLUP; VanRaden 2008) model: y = µ+ Zg+ e, 
where y, μ and e are as before, g is the vector of genotypic 
values, Z is the corresponding design matrix. We assumed 
that g ∼ N(0,Gσ 2

g ), where G is the genomic relationship 
matrix (VanRaden 2008), and e ∼ N(0, Iσ 2

e ). The reliability 
of the estimated genotypic value of the ith genotype was 
defined as the correlation between the true and estimated 
values: ri = cor(gi, ĝi). This metric can be calculated as 

ri =

√

1−
var(gi ,ĝi)

σ 2
g

, where var(gi − ĝi) is the squared 

standard error or the prediction error variance (PEV) of ĝi  
(Henderson 1975). Note that the reliability is a statisti-
cal parameter measuring the prediction accuracy of each 
individual.

We applied the GBLUP model in scenario IV. So in the 
model y is the BLUEs across environments for the 372 
genotypes in the training set, g is the vector of genotypic 
values for all 505 varieties in the training and the test set. In 
this way, we obtained the reliabilities of the 133 genotypes 
in the test set. Note that we only need the phenotypic data 
of the training set and the genotypic data of both sets to 
estimate the reliabilities of genotypes in the test set. So the 
difference of the year interaction effects between the two 
data sets would not be reflected in the estimation. To inves-
tigate the predictability of genotypes with different reli-
abilities, we divided the test set into four subsets according 
to the reliabilities of the genotypes and then compared the 
prediction accuracies of MAS and GS across subsets.

In this study, all statistical models were implemented 
using R (R Core Team 2015) and Asreml-R (Gilmour et al. 
2009).
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Results

Intensive field evaluations coupled with artificial 
inoculation resulted in high‑quality phenotypic data

Two panels of European wheat varieties have been assessed 
for FHB resistance in multi-environmental field trials 
using artificial inoculations. We observed a broad range 
of BLUEs resulting in estimates of heritability of 0.91 in 
experiment I and of 0.74 in experiment II (Table  1). In 
total, 18 varieties were tested in both experiments. These 
overlapping genotypes facilitated a combined analysis 
across both data sets, which revealed that genotype-by-year 
interaction effects contributed only 7% of the total pheno-
typic variance. This is also reflected when inspecting the 
pattern of pairwise correlation coefficients of BLUEs at 
single environments using 18 common genotypes across 
the two experiments with no clustering of environments 
according to their years (Fig.  1a). Considering that the 

number of common genotypes was small, we also esti-
mated the correlation of BLUEs at single environments for 
each experiment separately (Fig.  1b, c). For each pair of 
environments tested in the same experiment, the correlation 
estimated using all genotypes slightly decreased, compared 
with the value estimated using the 18 common genotypes. 
However, the mean difference was only 0.11. In summary, 
the intensive field evaluation resulted in high-quality phe-
notypic data representing an excellent source for studying 
the potential of MAS and GS for FHB resistance. 

Genetic diversity within the two data sets is comparable 
to genetic diversity between them

Experiment I comprised 372 European wheat varieties 
released between 1975 and 2009. In contrast, experiment 
II included varieties released after 2007. Despite this dif-
ference in the year of release, we observed that the Rogers’ 
distances within the two sets of genotypes did not differ 

Table 1   Summary statistics 
for the 372 wheat varieties in 
experiment I and 133 varieties 
in experiment II evaluated for 
Fusarium head blight resistance 
(FHB)

Varieties in experiment I were evaluated in four environments while those in experiment II were indepen-
dently tested in three different environments

Data for the experiment I were taken from Jiang et al. (2015)

The possible range of FHB score is from 0 (the most resistant) to 100 (the most susceptible)

** Significantly different from zero at the level of 0.01

Source Value (experiment I) Value (experiment II)

Mean and range 11.29 (0–59.5) 6.90 (0–54.6)

σ 2
G

42.44** 16.07**

σ 2
G×E

9.82** 15.40**

σ 2
ε

21.73 3.90

Heritability 0.91 0.74
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Fig. 1   Heat map of the correlation coefficients among single-envi-
ronment BLUEs. a The correlations were calculated based on 18 
common genotypes evaluated across all seven environments involved 
in the two experiments. b The correlations were calculated based 
on 372 genotypes evaluated across four environments in experiment 

I. c The correlations were calculated based on 133 genotypes evalu-
ated across three environments in experiment II. An environment is a 
combination of location and year. The abbreviations of the locations 
are as follows: AHL Ahlum, BOD Halle-Bodenwerde, CEC Cecilien-
koog, HEY Heyen, HUZ Hunzen
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from the Rogers’ distances between lines of the two sets 
(Fig. 2). This comparable diversity within and between the 
two sets is further supported by the PCoA of all 505 wheat 
varieties, which revealed absence of a major genetic differ-
entiation between the two populations (Fig. 3).

Prediction accuracies of MAS

We observed in all validation scenarios that the prediction 
accuracies increased when relaxing the significance thresh-
old from P  <  0.0001 to P  <  0.005 (Table  2). In scenario 
IV, the −log10(P) values for all markers were shown in 

Supplementary Fig. S1. Prediction accuracies of MAS vali-
dated in independent samples were for all applied signifi-
cance thresholds substantially lower than those estimated 
through cross-validation accounting for genotype sampling 
with an average difference of 0.19. The relaxed significance 
threshold resulted in an up to 20-fold increase in the num-
ber of putative quantitative trait loci (QTL). Interestingly, 
prediction accuracies validated in an independent sample 
were also lower compared to cross-validation accounting 
for genotype and environmental sampling with an average 
difference of 0.17 (Fig. 4).

Prediction accuracies of GS

We examined the prediction accuracies for three GS mod-
els using validations in an independent sample as well as 
applying fivefold cross-validation (Table  2). The predic-
tion accuracies of the three GS models varied slightly with 
a maximum difference of 8%. Prediction accuracies vali-
dated on an independent sample were lower than those esti-
mated through cross-validation accounting for genotype 
sampling. Nevertheless, prediction accuracies validated on 
an independent sample were comparable with those from 
cross-validation accounting for genotype and environmen-
tal sampling with an average difference of 0.02 (Fig. 4).

Prediction ability for individual genotypes

The reliability criterion is purely based on the genomic 
profiles of the lines and has been applied to estimate the 
prediction accuracy of individual genotypes in the context 
of GS. The reliability values of the individuals in the test 
set showed a broad variation from 0.49 to 0.91 (Fig.  5a). 
We subdivided the validation population into 4 subsets, in 
which the estimated reliability of genotypes fell into four 
different ranges (<0.65, 0.65–0.73, 0.73–0.83 and  >0.83). 
We observed an increase in prediction abilities for GS from 
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0.24 for individuals with reliability values <0.65 to 0.83 for 
individuals with reliability values >0.8 (Fig. 5b). This trend 
was also observed for MAS albeit with a lower average 
level of prediction abilities (Fig. 5b).

Discussion

Reduced temporal dynamics in allele frequencies 
with ongoing wheat breeding

Previous diversity studies based on European winter wheat 
lines reported a major genetic bottleneck which occurred 
during the green revolution (Boeven et  al. 2016; Huang 
et  al. 2007; Roussel et  al. 2005). Breeding efforts after 
the green revolution have caused also systematic shifts in 
allele frequencies in European winter populations albeit 
much less pronounced (Boeven et  al. 2016; Huang et  al. 
2007). In accordance with previous findings, we observed 
in particular for lines released more recently a slow tem-
poral dynamic in allele frequencies with ongoing breeding 
(Supplementary Fig. S2). This has to be considered when 
interpreting the prediction accuracies estimated for MAS 
and GS, which are both driven by relatedness between the 
training and test populations (Gowda et  al. 2014; Habier 
et al. 2007).

Cross‑validated prediction accuracies of MAS and GS 
evaluated by sampling genotypes are similar to those 
reported previously

The trends in prediction accuracies observed for MAS for 
FHB resistance in wheat (Table 2) are in accordance with 
earlier findings (Jiang et  al. 2015; Mirdita et  al. 2015a): 
accuracies increased with relaxed significance thresholds 
and amounted to ~0.6 when using ~30 independent loci for 
MAS. The surprisingly high prediction accuracies of MAS 
for the complex trait FHB resistance can be explained by 
the exploitation of relatedness between the training and val-
idation sets as discussed in detail by Gowda et al. (2014).

We observed for the three GS approaches prediction 
accuracies for FHB resistance of around 0.7 (Table  2), 

Table 2   Prediction abilities 
and accuracies of marker-
assisted and genomic selection 
(MAS and GS, respectively) 
for Fusarium head blight 
resistance of 133 wheat 
varieties in experiment II using 
372 varieties in experiment I 
as training set (IV) compared 
with the fivefold cross-validated 
prediction abilities within the 
experiment I (CV-G) Standard errors of estimations were included in the brackets

RR-BLUP, ridge regression best linear unbiased prediction; RKHS, reproducing kernel Hilbert space 
regression; the numbers in the brackets indicate the threshold of P values for detecting significant mark-
ers in association mapping. MIV, the effective number of marker–trait associations detected in association 
mapping for IV (not applicable for GS models); rIV, prediction ability of IV; rgIV, prediction accuracy of IV; 
MCV−G, the average effective number of marker–trait associations across 100 rounds of the CV-G scheme 
(not applicable for GS models); rCV−G, cross-validated prediction ability of CV-G; rgCV−G, cross-validated 
prediction accuracy of CV-G

Models MIV rIV r
g
IV

MCV−G rCV−G r
g
CV−G

MAS (0.0001) 2 −0.085 (0.078) −0.099 (0.091) 1.50 0.093 (0.058) 0.097 (0.061)

MAS (0.001) 9 0.231 (0.068) 0.270 (0.079) 9.58 0.477 (0.041) 0.500 (0.043)

MAS (0.005) 31 0.394 (0.069) 0.461 (0.080) 29.32 0.587 (0.036) 0.615 (0.038)

RR-BLUP – 0.587 (0.063) 0.687 (0.073) – 0.706 (0.030) 0.740 (0.031)

Bayes-Cπ – 0.548 (0.063) 0.641 (0.073) – 0.688 (0.031) 0.721 (0.032)

RKHS – 0.592 (0.062) 0.693 (0.072) – 0.708 (0.034) 0.742 (0.036)
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Fig. 4   Distribution of prediction abilities for marker-assisted and 
genomic selection (MAS and GS, respectively) in the fivefold cross-
validation scenario sampling genotypes and environments (CV-GE) 
based on the 372 varieties evaluated in four environments (experi-
ment I). In each fold, 80% of the 372 varieties were considered as 
training set and phenotypic data from only two environments were 
used to train MAS (MAS_0.0001, MAS_0.001, and MAS_0.005 at P 
values <0.0001, 0.001, and 0.005, respectively) and GS. The remain-
ing 20% formed validation set and the BLUEs across the other two 
environments were used as observed values. The three horizontal 
lines show the mean prediction abilities observed by only sampling 
genotypes within the training set (CV-G), along with those obtained 
by CV-GE and independent validation (IV) scenarios
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which is similar to results reported for panels of European 
(Jiang et al. 2015; Mirdita et al. 2015a, b) or US wheat lines 
(Arruda et al. 2015; Rutkoski et al. 2012). In summary, the 
experimental data underlying our study are representative 
being an interesting nucleus to contrast prediction accura-
cies estimated through cross-validation versus validation 
with independent samples.

Prediction accuracies of GS determined 
in independent samples are similar to those 
estimated with cross‑validation sampling genotype 
and environments

The predicting accuracy of GS most often has been esti-
mated performing cross-validation sampling genotypes 
but not environments (e.g., Crossa et  al. 2010; Hofheinz 
et al. 2012; Iwata and Jannink 2011; Jan et al. 2016). Nev-
ertheless, this leads to an overestimation of the potential 
of GS which resulted in our study in up to 12% inflated 
estimates of prediction accuracies (Table 2). The inflation 
was not severely impacted by population differentiation 
between the training set and the test set (Figs. 2, 3). Con-
sequently, unbiased estimates of prediction accuracies can 
be obtained also by cross-validation sampling genotypes 
and environments (Fig. 4). Our findings are in accordance 
with results for MAS (Utz et  al. 2000) and GS (Schulz-
Streeck et  al. 2013) in biparental populations leading to 
the recommendation to apply cross-validation sampling 
genotypes and environments for obtaining reliable esti-
mates of the prediction accuracy. Nevertheless, it is well 

known from the cross-validation schemes used in the pre-
sent study that the training set size for the independent 
validation is larger than that considered for cross-valida-
tion with simultaneous sampling of genotypes and envi-
ronments. Furthermore, the positive relationship between 
training set size and prediction accuracy is well docu-
mented in the literature (Daetwyler et al. 2008; Endelman 
et al. 2014; Krchov and Bernardo 2015). In order to rule 
out that the similarities (in terms of accuracies) between 
both validation methods were actually an artifact caused 
by the differences in training set sizes, we re-estimated the 
prediction ability of RR-BLUP for the independent valida-
tion scenario by randomly sampling a subset of 297 indi-
viduals from the full training set. Then, the average pre-
dictability of 100 samples was only 0.01 lower than the 
predictability obtained by using the full training set. On 
the other hand, the standard deviation of the predictabil-
ity in 100 samples was above 0.02. Hence the 0.01 differ-
ence between the prediction abilities obtained by using the 
reduced and the full training set can be considered mar-
ginal. As a result, no biases due to the differences in train-
ing set sizes are expected in our findings. It is important 
to note, however, that this holds true only if population 
differentiation between the training and validation sets is 
not pronounced. For European wheat breeding, which is 
so far characterized by a slow temporal dynamic in allele 
frequencies (Fig.  2; Boeven et  al. 2016), this assumption 
seems to be realistic. One important consequence is that 
GS models used to improve European wheat populations 
likely possess a long validity.
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Prediction accuracies of MAS are biased if estimated 
by cross‑validation

In contrast to our results for GS, we observed on average a 
126.8% upward bias of the estimates of prediction accura-
cies of MAS by cross-validation sampling genotypes and 
environments in comparison to validation with an inde-
pendent sample (Fig.  4). This finding suggests that MAS 
is more severely impacted by marginal differences between 
the genetic composition of the training and validation set 
as compared to GS. Hence, the evaluation of the potential 
of MAS cannot be precisely approximated by cross-valida-
tion sampling genotypes and environments; thus, validation 
using independent samples is recommended.

Reliability is not only useful for GS, but also for MAS

Results from a simulation study (Clark et al. 2012) showed 
that reliabilities are closely associated to the maximum 
level of relatedness between training set and the particu-
lar predicted individual. This suggests that highly reliable 
predictions would be expected for genotypes that were 
very well represented by a few or even by a single closely 
related individual(s) in the training set. Recently, a study 
based on a large European winter wheat population (He 
et al. 2016) has demonstrated the value of applying the reli-
ability criterion in the context of GS in order to evaluate the 
prediction accuracy of individual genotypes. We confirmed 
this finding and observed that the prediction ability of GS 
is nearly four times larger for individuals with high reli-
ability values above 0.8 (Fig.  5b). Interestingly, the same 
holds true also for MAS with an up to six times larger pre-
diction ability for individuals with high reliability values 
above 0.8. This can be explained on one hand by the role 
of relatedness driving also the prediction accuracy in MAS 
(Gowda et al. 2014). On the other hand, marker effects are 
impacted by genetic background effects (Mackay 2009). 
Thus, QTL information can be exploited more precisely if 
the genotype to be predicted is more related to the training 
population. Consequently, despite being developed in the 
context of GS, the reliability criterion is a valuable tool to 
judge the level of prediction accuracy of individual geno-
types in MAS.
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