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have been assigned to specific photoperiod pathways. In 
this review, we provide an overview of the studies that led 
to an in-depth understanding of the genetic control of flow-
ering time in rice, and of the current state of improving and 
fine-tuning this trait for rice breeding.

Introduction

After the rediscovery of the Mendelian concept of heredity 
in 1900, many genetic studies were performed to elucidate 
genes controlling plant phenotypes. Flowering is a profound 
transition from vegetative to reproductive development, and 
is determined largely by genetic pathways that integrate 
endogenous and exogenous signals. The ability of many 
plant species to initiate flowering at a time most favorable 
for their reproduction depends mainly on the accurate meas-
urement of seasonal changes in daylength and temperature 
(Thomas and Vince-Pure 1997; Hayama et al. 2003).

In this review, we summarize the findings from many 
studies of rice flowering time based on classical Mendelian 
genetics and on molecular genetics and genomics. Studies 
performed over a century clearly showed that integration of 
these approaches dramatically improves our understanding 
of the genetic control of flowering time in rice.

Mendelian genetics of flowering time in rice

Flowering time is important for regional adaptability and 
is easy to observe; its variability among rice varieties has 
been known for a long time. Studies of the inheritance of 
rice flowering time date back to the 1910s. On the basis of 
segregation patterns in progeny from experimental crosses 
between early- and late-flowering varieties, Hoshino (1915) 
suggested the involvement of at least three loci.

Abstract 
Key message Integration of previous Mendelian genetic 
analyses and recent molecular genomics approaches, 
such as linkage mapping and QTL cloning, dramati‑
cally strengthened our current understanding of genetic 
control of rice flowering time.
Abstract Flowering time is one of the most important 
agronomic traits for seed production in rice (Oryza sativa 
L.). It is controlled mainly by genes associated with pho-
toperiod sensitivity, particularly in short-day plants such 
as rice. Since the early twentieth century, rice breeders 
and researchers have been interested in elucidating the 
genetic basis of flowering time because its modification is 
important for regional adaptation and yield optimization. 
Although flowering time is a complex trait controlled by 
many quantitative trait loci (QTLs), classical genetic stud-
ies have shown that many associated genes are inherited 
in accordance with Mendelian laws. Decoding the rice 
genome sequence opened a new era in understanding the 
genetic control of flowering time on the basis of genome-
wide mapping and gene cloning. Heading date 1 (Hd1) 
was the first flowering time QTL to be isolated using natu-
ral variation in rice. Recent accumulation of information 
on rice genome has facilitated the cloning of other QTLs, 
including those with minor effects on flowering time. This 
information has allowed us to rediscover some of the flow-
ering genes that were identified by classical Mendelian 
genetics. The genes characterized so far, including Hd1, 
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Since the discovery of photoperiodism in plants (the 
response of an organism to the relative length of day and 
night) by Garner and Allard (1920, 1923), many research-
ers investigated flowering responses of rice varieties to day-
length. These studies revealed that rice is a short-day (SD) 
plant: its flowering is promoted under SD conditions, and 
the difference in photoperiod sensitivity among varieties 
results in extensive variation in flowering time (reviewed in 
Chandraratna 1964; Vergara and Chang 1985).

To investigate the genetic control of flowering time 
in rice, early- and late-flowering varieties were crossed 
(Nomura and Yamazaki 1925; Jones 1928, 1933; Fuke 
1955; Sampath and Seshu 1961), and the number of genes 
and their allelic effects were estimated from segregation 
patterns in F2 plants and their F3 progeny selected on the 
basis of flowering time (for example, early-, intermediate-, 
and late-flowering segregants). In F2 plants, the distribu-
tion of flowering time varied from continuous unimodal to 
clearly bimodal; the distribution depended on the photoper-
iod sensitivity of the parents used and on the environment 
(latitude and season) where the segregating population 
was grown. In several crosses, the ratio of late flowering 
to early flowering in F2 plants and their F3 progeny (3:1 
or 15:1) was similar to the ratio expected from Mendel’s 
law (Nomura and Yamazaki 1925; Jones 1928, 1933; Jones 
et al. 1935; Fuke 1955; Sampath and Seshu 1961). These 
results showed that one or two Mendelian genes likely play 
a major role, yet in some crosses, the presence of transgres-
sive segregants among F2 plants suggested the contribution 
of additional gene(s) (Jones 1928; Jones et al. 1935). More-
over, segregation patterns suggesting a complementary 
effect of two genes (9 late-flowering: 7 early-flowering F2 
plants) were also reported (Jones et al. 1935; Fuke 1955). 
These early studies eventually led to the identification of 
underlying genes, which are described in the following 
section.

Classical Mendelian genes for flowering time in rice

From the 1920s, with the development of the chromosome 
theory of inheritance and the discovery of genetic linkage, 
the linkage relationship between flowering time genes and 
known loci (for other phenotypic traits) was investigated, 
and thereby the possibility of a connection between phe-
notype and genotype in rice was reinforced (Chao 1928; 
Jodon 1940).

Chandraratna (1953, 1955) found bimodal segregation 
in F2 plants from crosses between varieties insensitive and 
sensitive to photoperiod, suggesting control by a Mende-
lian gene. A dominant allele at the locus resulted in late 
flowering. The gene (called Se) was linked to a locus for 
apiculus color (Table 1). To explain variation in flowering 
time among Japanese varieties, Fuke (1955) distinguished 

six genetic factors, Z, M, K, G, O, and F. Factor K had the 
largest effect on photoperiod sensitivity and was linked 
to a locus for apiculus color. Yokoo and Fujimaki (1971) 
reported that a late-flowering gene (designated Lm) is 
closely linked to a blast resistance gene in crosses between 
the O. sativa subspecies japonica and indica (Table 1). 
Yokoo and Kikuchi (1977) found that different alleles at 
the Lm locus determine photoperiod sensitivity. The gene 
for late flowering was also linked to a locus for apiculus 
color (called C) on chromosome 6. On the basis of link-
age relationships among these flowering time loci (Se, K, 
and Lm) and the apiculus color locus, Yokoo et al. (1980) 
suggested that they are the same locus (Table 1), and that 
the Se/K/Lm gene contributes to flowering time variation 
among both japonica and indica varieties.

Syakudo and Kawase (1953) and Syakudo et al. (1954) 
proposed that the loci E1 and E2 are the main determinants 
of the segregation patterns of flowering time in the prog-
eny of a cross between Japanese rice varieties (Table 1). 
Syakudo et al. (1954) suggested three additional loci (E3, 
E4, and E5), to interpret segregation of flowering time in 
crosses between other varieties, but E4 and E5 were later 
shown to be the same as E1 and E2, respectively (Okumoto 
et al. 1991). Of the three genes, E1 had the largest effect 
on flowering time and was investigated in detail; a reces-
sive allele at the E1 locus reduces photoperiod sensitivity 
(Yamagata et al. 1986). In addition, the allelic distribution 
of E1, E2, and E3 among Japanese varieties was estimated 
from the results of crosses with tester lines, in which the 
genotypes for these genes had been defined. The domi-
nant E1 allele was distributed among varieties grown in 
southwestern Japan; the recessive e1 allele was distributed 
among varieties grown in northern regions and was prob-
ably associated with early flowering (Okumoto et al. 1991, 
1996). Linkage analyses of a trisomic line with phenotypic 
markers revealed that E1 is located on chromosome 7 and 
is linked to the rolled fine strip and slender glume genes 
(Okumoto and Tanisaka 1997).

To delineate the effect of earliness genes carried by north-
ern varieties, Tsai and Oka (1966) developed near-isogenic 
lines (NILs) for early flowering by introducing earliness 
genes into the background of a photoperiod-insensitive 
variety by successive backcrossing. Genetic analysis of 
these NILs revealed that the genes E and M are involved 
in early flowering; a dominant allele at the E locus and a 
recessive allele at the M locus (m) resulted in early flower-
ing (Table 1). The effect of the E allele was enhanced in the 
presence of the m allele, implying epistasis between E and M 
(Tsai 1976). Recently, this epistasis was confirmed by Uwa-
toko et al. (2008). Independently of Tsai (1976), Sato et al. 
(1988) developed early-flowering NILs and identified the 
dominant earliness allele Ef1 (Table 1) on chromosome 10 
by examining linkage to phenotypic markers and cytological 
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interchange breakpoints on the chromosome. An allelism 
test performed by crossing NILs for Ef1 or E, which had the 
same background, placed these genes at the same locus (Sato 
et al. 1988). Okumoto et al. (1992) suggested that M is iden-
tical to E1 by crossing NILs for the m allele (developed by 
Tsai 1976) with tester lines for E1, E2, or E3 (Table 1).

Yokoo and Okuno (1993) found an early-flowering 
mutant among X-ray-irradiated plants. The mutant showed 
a significant reduction of photoperiod sensitivity. The 
mutated gene, designated se5, was located on chromosome 
6 but was distinct from Se/K/Lm.

Thus, in the above studies, the chromosomal locations 
and allelic relationships of genes were evaluated from their 
linkage relationships to known phenotypic markers and 
using experimental crosses with tester lines or NILs for 
flowering time.

In addition to the six major genes described above 
(Table 1), to our knowledge, at least 15 genes have been 
reported so far (Se2, Yu and Yao 1968; Se3, Poonyarit et al. 
1989; Ef2, Ef3, and Ef4, Tsai 1991; Efx and Efy, Sato et al. 
1992; Se4, Ohshima et al. 1993; Se6 and Se7, Tsai 1995; 
Se9, Ichitani et al. 1998a; Se10 and Se11, Tsai 1999; Ef5, 
Khun et al. 2004; Ef6, Khun et al. 2006). However, little 
is known about the allelic relationships among these genes 
and their precise positions in the genome.

Mendelizing flowering time in rice on the basis of QTL 
analysis

In the 1990s, the development of DNA markers allowed 
researchers to clarify the number and effects of the genes 
underlying flowering time by using quantitative trait locus 
(QTL) analysis (Li et al. 1995; Xiao et al. 1996; Yano et al. 
1997).

Using several types of progeny derived from a single 
cross between the rice cultivars ‘Nipponbare’ (japonica) 
and ‘Kasalath’ (indica), our group identified 15 QTLs for 
flowering time (Fig. 1). Five of them (Hd1–Hd5) were 
mapped by QTL analysis of an F2 population (Yano et al. 
1997), and Hd7, Hd8, and Hd11 were detected with BC1F5 
lines (Lin et al. 1998). Other loci were detected only when 
we used advanced backcross progeny such as BC3F2 or 
BC4F2 (Yamamoto et al. 2000; Lin et al. 2002).

The development of NILs by marker-assisted selection 
(MAS) provided advantages for the genetic analysis of 
flowering time in rice. For example, QTL-NILs can be used 
to characterize epistatic interactions. This approach was 
used to clarify epistasis between Hd1 and Hd3 (Lin et al. 
2000). Lin et al. (2000) suggested that the ‘Kasalath’ allele 
of Hd3 does not affect photoperiod sensitivity but enhances 
the effect of the ‘Nipponbare’ alleles of the photoperiod 
sensitivity QTLs Hd1 and Hd2. A significant epistatic inter-
action between Hd2 and Hd6 was detected in the analysis 

of advanced progeny in which the effect of the ‘Kasalath’ 
allele of Hd6 was observed only in the presence of the 
‘Nipponbare’ allele of Hd2 (Yamamoto et al. 2000).

QTL-NILs can also be used for fine mapping of tar-
get QTLs. In such advanced backcross progenies, Hd1–
Hd3, Hd6, and Hd9 were fine-mapped on a genetic link-
age map as single Mendelian factors (Yamamoto et al. 
1998, 2000; Lin et al. 2002). High-resolution mapping 
dissected two tightly linked loci, Hd3a and Hd3b, in the 
Hd3 region (Monna et al. 2002). The ‘Kasalath’ allele of 
Hd3a promotes flowering under SD conditions, whereas 
that of Hd3b delays flowering under long-day (LD) and 
natural-field conditions (Monna et al. 2002). These efforts 
have led to map-based cloning of genes for flowering time 
and thereby improved our understanding of the function of 
these genes at the molecular level and of the gene regula-
tory network for flowering time in rice, as described in the 
following section.

Fig. 1  Plant materials used for QTL mapping of flowering time in 
rice. Mapping populations were derived from a cross between the cul-
tivars ‘Nipponbare’ and ‘Kasalath’. QTL mapping was performed by 
using F2, BC1F5, BC3F2, and BC4F2 lines. Fine mapping and selec-
tion of NILs were conducted by using advanced backcross progeny. 
QTLs are shown next to the mapping populations in which they were 
detected. MAS marker-assisted selection, SSD single seed descent. 
Modified from Fig. 1 in Yano et al. (2001)
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Molecular cloning of flowering time genes in rice

Hd1 was the first rice flowering time gene cloned using 
natural variation (Yano et al. 2000). Using more than 
9000 BC3F3 plants, we defined the Hd1 region within 
12 kb on chromosome 6. This region contained one candi-
date gene highly similar to Arabidopsis CONSTANS (CO). 
Comparison of the candidate gene in ‘Nipponbare’ and 
‘Kasalath’ revealed many sequence variations, including 
a 36-bp insertion and a 33-bp deletion (in exon 1) and a 
2-bp deletion (in exon 2) in ‘Kasalath’. A 7.1-kb fragment 
of ‘Nipponbare’ containing the Hd1 candidate gene was 
transferred into a NIL and was found to promote flower-
ing under SD conditions. These results clearly indicated 
that the candidate gene homologous to Arabidopsis CO 
was Hd1.

More than 70 rice genes associated with flowering time 
have been isolated by using mutants, transgenic plants, 
and natural variation (Table 1; see also the OGRO data-
base, Yamamoto et al. 2012). In segregating populations 
derived from crosses between rice varieties that differ in 
flowering time, at least 14 flowering time QTLs have been 
identified using natural variation and subsequently iso-
lated by map-based cloning strategies (Table 1; Yano et al. 
2000; Takahashi et al. 2001; Kojima et al. 2002; Doi et al. 
2004; Xue et al. 2008; Wei et al. 2010; Bian et al. 2011; 
Matsubara et al. 2012; Gao et al. 2013; Hori et al. 2013; 
Koo et al. 2013; Ogiso-Tanaka et al. 2013; Wu et al. 2013; 
Shibaya et al. 2016). Rice mutants have also been used 
to isolate flowering time genes and investigate their func-
tions (Izawa et al. 2000; Lee et al. 2004; Matsubara et al. 
2008b; Kuromori et al. 2009; Saito et al. 2009, 2012; Dai 
and Xue 2010; Yang et al. 2013; Yokoo et al. 2014; Yoshi-
take et al. 2015). Other flowering time genes have been 
identified and their functions have been investigated by 
forward- and reverse-genetics approaches such as experi-
ments using overexpression or knockdown transgenic 
plants. For example, the functions of OsMADS34 and 
OsTrx1 were revealed using knockdown transgenic plants, 
whereas the functions of OsMADS50, OsMADS56, and 
OsMADS15 were identified using overexpressing trans-
genic plants (Ryu et al. 2009; Lu et al. 2012; Choi et al. 
2014; Lin et al. 2014).

It should be noted that even in such a modern genom-
ics era, classical Mendelian genetics is still in an important 
position in the analysis of the genetic control of flowering 
time in rice. For example, in map-based cloning, an asso-
ciation between phenotype and molecular marker is often 
examined based on the Mendel’s law. The law of domi-
nance gives us a useful estimation about gene function; 
recessive phenotype may be caused by loss-of-function 
mutation of gene of interest.

Relationships between genes identified by classical 
Mendelian genetics and molecular genomics

Unfortunately, in the almost studies on rice flowering time 
genes, different parental varieties or mutant lines have been 
used in classical Mendelian genetics and recent genom-
ics approaches. Nevertheless, sequence comparison of 
isolated genes in rice varieties and mutant lines provided 
critical information about the connection between genes 
identified by the two approaches. For example, Hd1 was 
isolated in the segregating populations of ‘Nipponbare’ 
and ‘Kasalath’, and sequence comparisons of Hd1 in the 
two varieties revealed multiple sequence variations, such 
as insertions and deletions (Yano et al. 2000). In the same 
study, they analyzed sequences of the Hd1 gene in the Se1 
mutants of HS66 and HS110 and their progenitor variety 
‘Ginbozu’, in which the Se1 gene had been considered as a 
different allele at the Hd1 locus based on the chromosomal 
location on linkage maps (Tamura et al. 1998; Yamamoto 
et al. 1998). By sequence comparisons with the ‘Ginbozu’, 
HS66 had a 43-bp deletion and HS110 had a 433-bp inser-
tion in their Hd1 genes (Yano et al. 2000). Both polymor-
phisms in HS66 and HS110 were estimated to cause the 
nonfunctional protein of Hd1. These results could lead to 
the conclusion that Hd1 is allelic to Se1. Other isolated 
genes have been also defined clear relationships with some 
classical Mendelian genes (Table 1). Tsai and Oka (1966) 
reported that a Taiwan variety ‘Taichung 65’ showed a 
long vegetative growth period and had a recessive allele 
of Ef1. Sequencing analysis of Ehd1 in various rice varie-
ties revealed that the nonfunctional Ehd1 allele had been 
identified only in Taiwan varieties including ‘Taichung 65’ 
(Saito et al. 2009), showing that Ehd1 is allelic to Ef1. In 
the same way, it could be estimated that E1 (M), E2 and E3 
are allelic to Ghd7, Hd17 and Hd6, respectively (Ichitani 
et al. 1998b; Matsubara et al. 2008a; Monden et al. 2009; 
Saito et al. 2012). Thus, molecular genomics approaches 
including map-based cloning and sequencing analysis have 
unraveled correspondence between classical Mendelian 
genes and isolated genes.

Gene regulatory network for flowering time in rice

Map-based cloning revealed a regulatory network of flow-
ering time genes in rice. Rice photoperiodic flowering is 
controlled by two independent signaling pathways. The 
OsGI–Hd1–Hd3a pathway is evolutionarily related to the 
Arabidopsis GI–CO–FT pathway, whereas the other path-
way, which includes Ehd1, Ghd7, Ehd2, Ehd3, and Ehd4, 
has no Arabidopsis counterpart.

Under SD conditions, rice flowering is promoted by the 
transcription of Hd3a, which is activated independently 
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by Hd1 and Ehd1 (Yano et al. 2000; Kojima et al. 2002; 
Doi et al. 2004; Tamaki et al. 2007) (Fig. 2). Hd3a acts as 
a mobile flowering signal (florigen) (Tamaki et al. 2007). 
OsGI expression is regulated by the circadian clock and 
activates Hd1 expression (Hayama et al. 2003). Ehd1 
expression is upregulated by the products of Ehd2, Ehd3, 
Ehd4, and OsMADS51 and downregulated by the product 
of OsCOL4. Ehd2 is a homolog of maize indeterminate1 
and is a strong promoter of flowering (Matsubara et al. 
2008b). Ehd3 encodes a putative transcriptional regula-
tor with two plant homeodomain finger motifs (Matsubara 
et al. 2011). Ehd4 encodes a zinc finger CCCH domain–
containing protein, which is an Oryza-specific regulator 
of photoperiodic flowering (Gao et al. 2013). OsGI also 
strongly activates Ehd1 expression, either directly or via 
OsMADS51 (Itoh et al. 2010).

Under LD conditions, transcriptional activation of Hd3a 
is lower than under SD conditions; consequently, flower-
ing is suppressed. Although Hd1 activates Hd3a expres-
sion under SD conditions, it represses Hd3a expression 
under LD conditions (Fig. 2); this functional conversion of 
Hd1 is caused by phytochrome-mediated signaling (Hay-
ama and Coupland 2004; Izawa 2007). The Hd1 repressor 
function under LD conditions is enhanced by the activity 
of a kinase encoded by Hd6 and is mediated by unknown 

genes (Takahashi et al. 2001; Ogiso et al. 2010); it is also 
regulated by a complex of Hd1 and Ghd7 (Nemoto et al. 
2016). RFT1, located within 11.5 kb of Hd3a, is an Hd3a 
paralog (Komiya et al. 2008). RFT1 expression increases 
under LD conditions, and RFT1 moves from the leaves 
to the shoot apical meristem. These results strongly indi-
cate that flowering time control in rice involves two flo-
rigen genes, Hd3a and RFT1 (Komiya et al. 2008; 2009). 
RFT1 expression is promoted by the product of Ehd1 and 
DTH2, but is repressed by the product of Se14 (Doi et al. 
2004; Wu et al. 2013; Yokoo et al. 2014). Ehd1 expres-
sion is induced by the products of DTH3, OsMADS51, 
OsMADS56, Ehd2, and Ehd4, but is repressed by the prod-
ucts of DTH8, OsCOL4, OsCOL10, and OsLFL1. DTH8 
might form a complex with Hd1 to control flowering (Wei 
et al. 2010; Yan et al. 2011). DTH3 and OsMADS56 form a 
complex that regulates Ehd1 (Ryu et al. 2009). OsMADS51 
is upregulated by Hd18 and induces Ehd1 expression (Kim 
et al. 2007; Shibaya et al. 2016). OsLFL1 is induced by the 
product of OsVIL2, and has been proposed to downregulate 
Ehd1 expression (Peng et al. 2008; Yang et al. 2013). Ehd2 
is downregulated by Se13, and induces Ehd1 expression 
(Matsubara et al. 2008b; Yoshitake et al. 2015). OsCOL4 
and OsCOL10 are members of the CONSTANS-like family. 
OsCOL4 is a constitutive repressor upstream of Ehd1 (Lee 

Fig. 2  Gene regulatory network for flowering time in rice. The clocks at the top indicate the circadian clock. Genes with natural allelic variation 
are underlined. SD short-day conditions, LD long-day conditions. Arrows upregulation, bars downregulation
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et al. 2010). OsCOL10 downregulates the expression of 
Ehd1 and is upregulated by the product of Ghd7 (Tan et al. 
2016). Ghd7 expression is induced by the products of Ehd3 
and Hd17 and is repressed by OsTrx1, which is a chroma-
tin-remodeling factor having histone methyltransferase 
activity (Choi et al. 2014). Ghd7 activity is increased by 
phosphorylation by the casein kinase I–like protein Hd16 
(Hori et al. 2013). Hd16 also phosphorylates the product of 
OsPRR37 (likely allelic to Hd2), which encodes a pseudo-
response regulator protein (Koo et al. 2013). Regulation 
of flowering time genes downstream of Hd3a and RFT1 is 
the same under both SD and LD conditions. Hd3a interacts 
with the 14-3-3 protein OsFD to initiate floral transition in 
the shoot apex (Purwestri et al. 2009). OsFD and GF14c 
induce the expression of OsMADS14 and OsMADS15 that 
control the phase transition of the SAM from vegetative to 
reproductive (Lim et al. 2000).

Circadian clock genes control the expression 
of flowering time genes in rice

The expression of many rice flowering time genes is strictly 
controlled by a critical daylength (Izawa 2007; Itoh et al. 
2010; Matsuzaki et al. 2015). For example, Hd3a and 
Ehd1 are expressed in the morning under SD conditions, 
whereas Ghd7 is expressed in the morning under LD con-
ditions. OsGI expression shows daily circadian oscillation 
with a peak at the end of the light period (Hayama et al. 
2002). Expressions of some flowering time genes are reg-
ulated by the circadian gating of light responses through 
phytochromes (red light receptors) and cryptochromes 
(blue light receptors) (Itoh et al. 2010). Ghd7 expression 
is induced through phytochrome signaling, and sensitiv-
ity to red light is gated at the beginning of the light period 
under LD conditions. Ehd1 expression confers clear gating 
responses of blue light pulses (Itoh et al. 2010). Recently, 
Matsuzaki et al. (2015) developed a statistical model for the 
expression of multiple genes with phase setting by sunlight 
and the circadian clock. The integration of the expression 
patterns of individual flowering time genes can accurately 
estimate both the internal biological time determined by the 
circadian clock and actual physical time of day (Matsuzaki 
et al. 2015). However, additional molecular genetics and 
physiological analyses are needed to understand the cir-
cadian clock and the gating mechanisms of flowering time 
pathways in rice.

Genetic architecture of variation in flowering time 
among rice varieties

To date, more than 700 additional QTLs for flowering 
time have been detected on all 12 chromosomes by using 
segregating populations derived from crosses among rice 

varieties (Yonemaru et al. 2010; Youens-Clark et al. 2011). 
To comprehensively characterize natural allelic variations 
in flowering time, we carried out QTL analyses in 12 F2 
populations derived from crosses of ‘Koshihikari’ (japon-
ica), a widely grown elite Japanese cultivar commonly used 
as a parental line, with varieties originating from various 
regions in Asia (Ebana et al. 2011; Shibaya et al. 2011). A 
limited number of loci that coincided with Hd1, Hd2, Hd6, 
RFT1, Ghd7, DTH8, and Hd16 explained some varietal dif-
ferences, but additional QTLs are likely to be involved in 
the phenotypic variation in these populations.

To detect such “hidden” QTLs, we analyzed advanced 
backcross progeny (BC4F2) derived from each cross com-
bination of Ebana et al. (2011) and Shibaya et al. (2011) 
and detected a total of 255 QTLs distributed widely across 
the genome (Hori et al. 2015). We detected relatively large 
additive effects of 128 of these QTLs, which corresponded 
to the genomic positions of previously identified flowering 
time genes such as Hd1, Hd2, Hd6, RFT1, Ghd7, DTH8, 
and Hd16. Sequence analyses revealed that the chromo-
somal positions of the large-effect QTLs corresponded 
in the main to those of different alleles of the flowering 
time genes in 12 rice varieties. The other 127 QTLs were 
detected in chromosomal regions other than those of flow-
ering time genes, and had relatively small additive effects. 
These results indicate that much of the phenotypic varia-
tion in flowering time can be explained by combinations of 
large- and small-effect QTLs.

Genome-wide association studies have also supported 
the hypothesis that allelic variations play an important role 
in the differences in flowering time among rice varieties 
(Zhao et al. 2011; Huang et al. 2012). Zhao et al. (2011) 
detected 10 genomic regions significantly associated with 
flowering time variation, although only Hd1 was detected 
as a major QTL. These genomic regions explained fewer 
than 50 % of the phenotypic variations (Zhao et al. 2011). 
Huang et al. (2012) found 14 significant genomic regions: 
5 around Hd1, Ghd7, RCN1, OsGI, and Hd3a and 9 newly 
discovered regions. The identified regions explained 36 % 
of the phenotypic variation in flowering time. The above 
studies suggest that multiple QTLs are associated with nat-
ural variation in flowering time in rice varieties.

Regional adaptation conferred by allelic differences 
in flowering time genes

Early flowering conferred by deficient alleles of flower-
ing time genes has been important for expanding the range 
of rice cultivation to high latitudes (Izawa 2007; Shrestha 
et al. 2014; Zheng et al. 2015), where early heading and 
maturity coincide with a period of optimal climatic con-
ditions. Sequence analysis of the known flowering time 
genes, including Hd1, Ghd7, DTH8, Hd16, OsPRR37, 
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DTH2, and Ehd4, indicates that allelic differences contrib-
ute greatly to regional adaptation (Takahashi et al. 2009; 
Shrestha et al. 2014; Gómez-Ariza et al. 2015; Zheng et al. 
2015). Functional alleles of Hd1 are associated with late 
flowering and its nonfunctional alleles with early flowering 
under natural-daylength conditions; the geographic distri-
bution of Hd1 alleles suggests that favorable alleles have 
been selected by breeders to enhance rice productivity and 
adaptability for each region (Takahashi et al. 2009; Fujino 
et al. 2010; Ebana et al. 2011; Takahashi and Shimamoto 
2011; Gómez-Ariza et al. 2015). Deficient or weak alleles 
of Ghd7, DTH8, DTH2, Hd16, and OsPRR37 are distrib-
uted in cultivation areas at high latitudes (Xue et al. 2008; 
Wei et al. 2010; Fujino et al. 2013; Hori et al. 2013; Koo 
et al. 2013; Wu et al. 2013; Kwon et al. 2014), strongly 
suggesting that these alleles must be involved in the expan-
sion of rice cultivation areas.

Fine‑tuning of flowering time by gene introgression 
into rice varieties

Information about additive effects of individual flowering 
time genes and their epistatic interactions allows the esti-
mation of phenotypic effects, such as the degree of altera-
tion in flowering time, when flowering time genes are intro-
gressed into a particular rice variety. Rice breeders have 
used this information to develop novel rice varieties. Mod-
ulation of rice flowering time helps to avoid flowering and 
ripening during periods with high risk of drought, flooding, 
and extreme temperatures in each cultivation area (Bentley 

et al. 2013). Plants can, thus, avoid severe stresses during 
the most sensitive developmental stages. Thus, the fine-tun-
ing of flowering time is a major objective of rice breeding 
programs to adapt cultivars to regional cultivation systems 
and environmental conditions.

To facilitate modification of flowering time for use in 
commercial cultivars, we used MAS to develop a set of 
NILs of ‘Koshihikari’ with different alleles of flowering 
time genes derived from ‘Kasalath’ (Takeuchi et al. 2006; 
Takeuchi 2011). The set included NILs with a loss-of-func-
tion allele at Hd1 (designated ‘Koshihikari Kanto HD1’) 
and gain-of-function alleles at Hd4 (Ghd7) (‘Wakei 370’), 
DTH8 (‘Kanto HD2’), and Hd6 (‘Kanto IL5’) (Fig. 3). 
Each NIL contained less than 650 kb of the ‘Kasalath’ 
genome. ‘Koshihikari Kanto HD1’ flowered earlier than 
‘Koshihikari’, whereas ‘Wakei 370’, ‘Kanto HD2’, and 
‘Kanto IL5’ flowered later. Most agronomic traits of the 
NILs were similar to those of ‘Koshihikari’, although culm 
length and some other traits differed (Takeuchi et al. 2006; 
Takeuchi 2011). A recent large-scale QTL analysis of agro-
nomic trait selected in rice breeding programs (Hori et al. 
2012) demonstrated that flowering time genes can have 
pleiotropic effects on morphological traits (such as culm 
length and panicle length) and eating quality. Therefore, it 
is important to consider these pleiotropic effects to modify 
flowering time by introgression of corresponding genes.

Our results demonstrate that MAS for alteration of flow-
ering time can be effective in rice. We started to develop 
novel NIL series in genetic backgrounds of elite rice vari-
eties grown in many regions of Japan. These NILs could 

Fig. 3  Development of a series of isogenic lines of the Japanese elite 
cultivar ‘Koshihikari’ with different flowering times. a Graphical 
genotypes of the developed lines. Introgressed chromosome segments 

with target flowering time genes are indicated in red. b Phenotypes 
of the same lines and ‘Koshihikari’ at flowering stage (color figure 
online)
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have high agronomic performance in terms of high grain 
yield and optimum flowering time. Moreover, similar MAS 
strategies could be used to develop NILs of rice varieties 
grown in subtropical areas, where plants are at risk of both 
high-temperature stress and drought stress during flowering 
and ripening stages.

Because not only single genes but also interactions 
between genes affect flowering time (Lin et al. 2000; Yama-
moto et al. 2000; Shibaya et al. 2011; Hori et al. 2013), one 
has to consider the genetic background of a rice variety when 
selecting the genes to introgress, combine, and pyramid for 
alteration of flowering time. Cultivation conditions also need 
to be considered, because the effects of flowering time genes 
often depend on daylength. For example, rice varieties with 
strong photoperiod sensitivity flower late in temperate areas 
(LD conditions during the growing season) and early in 
tropical areas (SD conditions). Accumulation of knowledge 
about flowering time genes and their regulatory network 
would facilitate the development of new rice varieties.

Conclusions and perspectives

In the last two decades, tremendous progress in genome 
sequencing has improved our understanding of genetic 
and molecular mechanisms that control flowering time in 
rice. This progress was made possible not only by genom-
ics approaches, such as QTL analysis and map-based clon-
ing, but also the large number of rice accessions (including 
wild relatives) and genetic mapping populations derived 
from artificial crosses. Before the development of genom-
ics, classical genetics based on the Mendelian concept had 
already shown that several genes and their interactions are 
involved in the control of flowering time in rice. A com-
bination of expanding genome sequence information with 
appropriate tools and plant materials has dramatically 
enhanced our understanding of the genetic control mech-
anism. Eventually, this progress has contributed to rice 
breeding because it allows us to fine-tune flowering time by 
combining several QTLs.

Unlike flowering time, some other agriculturally and 
economically important rice traits, such as yield perfor-
mance and stress tolerance, are difficult to measure and are 
strongly affected by environmental conditions. To improve 
them to satisfy the demand for food supply for still increas-
ing world population under climate change, we have to 
understand the genetic complexity of these traits at a funda-
mental level. In this situation, survey of genetic resources 
and development of plant materials will also be inevitable 
to strengthen our understanding of these traits.
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