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differentially expressed (P  <  0.005) as early as 2  h post 
inoculation of Genesis090 (resistant) or Kaniva (suscep-
tible). The highly aggressive isolate, 09KAL09, induced 
vastly different expression profiles of eight key defence-
related genes among resistant and susceptible genotypes. 
Six of these same genes were differentially expressed 
among ten host genotypes, inclusive of the best resistance 
sources within the Australian chickpea breeding program, 
indicating potential use for discrimination and selection of 
resistance “type” in future breeding pursuits.

Introduction

Chickpea (Cicer arietinum L.) is an important food legume 
and break crop when grown in rotation with cereals and oil-
seeds, which ultimately improves yields and maintains soil 
fertility through atmospheric nitrogen fixation (Singh 1997; 
Dalal et al. 1998). Globally, 10.5 million tonnes of chick-
pea is produced annually (FAOSTAT 2013). However, the 
fungal pathogen Ascochyta rabiei (Pass.) Labr. constrains 
both production and quality (Nene et  al. 1987; Gaur and 
Singh 1996). As a seed-borne pathogen, dissemination usu-
ally occurs through anthropogenic movement of seed as 
well as dispersal by wind and rain splash, which eventually 
affects all aerial plant parts (Pande et al. 2005).

Ascochyta rabiei spores germinate 12  h post inocula-
tion (hpi) (Pandey et  al. 1987). Appresoria are formed at 
24 hpi and mucilaginous exudates are secreted to provide a 
tight contact with the host surface (Köhler et al. 1995). At 
this point, necrotrophic fungi are known to produce com-
pounds, such as saponin detoxifying enzymes (Markham 
and Hille 2001), to suppress plant defence responses and 
prevent the signalling of host defence pathways (Staples 
and Mayer 2003). Once A. rabiei mycelia penetrate the 
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host epidermal cells (Pandey et  al. 1987), they expand 
and secrete cell wall degrading enzymes and toxins such 
as solanapyrone A, B and C (Hohl et al. 1990; Alam et al. 
1989; Kaur 1995). Subsequently, pycnidia are formed in 
the host tissue 6–8  days later to complete the life cycle 
(Hohl et al. 1990).

Chickpea has both active and passive defence responses 
to stop initial pathogenic attacks and to prevent success-
ful invasion and spread to neighbouring cells (Coram and 
Pang 2006). Passive defence mechanisms include pre-
formed structural and chemical barriers such as glandular 
trichomes, which secrete antifungal isoflavones (Arm-
strong-Cho and Gossen 2005). Active defence systems in 
plants may employ R genes to recognise pathogen-specific 
effectors encoded by the Avr genes (McDonald and Linde 
2002), leading to effector-triggered immunity (ETI) and 
possible programmed cell death (PCD) via a hypersensitive 
response (HR) (Jones and Dangl 2006).

Few sources of stable resistance to A. rabiei exist. Singh 
and Reddy (1993) identified five (ICC4475, ICC6328, 
ICC12004, ILC200 and ILC6428) from 19,343 chickpea 
accessions resistant to six races of A. rabiei in Syria. The 
accession ICC3996 was added to this list by Chen et  al. 
(2004) and together these have become the genetic basis of 
A. rabiei resistance breeding programs worldwide. How-
ever, some moderate resistance has recently broken down 
(Tar’an et al. 2007; Kanouni et al. 2002) and in 2010, the 
widely adopted resistant cultivars ‘Genesis090’ and ‘PBA 
HatTrick’ were heavily infected indicating that, as well as 
optimal environmental conditions, the pathogen may have 
increased aggressiveness.

Although, molecular studies of the 2010 Australian A. 
rabiei population uncovered a relatively low genetic diver-
sity when measured with microsatellites and compared to 
that observed in other countries (Phan et al. 2003; Pradhan 
2006; Leo et al. 2011), the low diversity for neutral genetic 
markers may not accurately reflect the evolutionary adap-
tive potential for pathogenicity of the population. Indeed, 
when 24 isolates with an identical microsatellite genotype 
were tested for their ability to cause disease on 12 Aus-
tralian chickpea genotypes, extensive pathogenic variation 
(aggressiveness) was observed among the Australian cul-
tivars and caused significant damage to the most current 
resistant cultivars (Elliott et  al. 2011). This suggests that 
there may be differences in the perception, signalling and 
defence-related pathways among resistance sources to dif-
ferent isolates.

The defence of chickpea to A. rabiei is multigenic and 
quantitative with resistance-quantitative trait loci (R-QTL) 
identified on linkage groups 1, 2, 3, 4, 6 and 8 (Huettel 
et al. 2002; Flandez-Galvez et al. 2003; Iruela et al. 2006; 
Tar’an et  al. 2007). This indicates that several defence-
related mechanisms are involved as previously postulated 

(Tar’an et  al. 2007). However, little is known on whether 
chickpea selectively employs differing types and levels of 
defence responses when infected with isolates of different 
aggressiveness known to exist in the Australian popula-
tion (Elliott et al. 2011). One method to investigate this is 
to assess and compare, among host genotypes, the respon-
siveness of previously characterised defence-related genes 
that are representative of diverse defence-related pathways 
and following exposure to individual isolates of differing 
aggressiveness.

The expression profiles of several host genes, related 
to a range of defence mechanisms, have previously been 
characterised within the chickpea (ICC3996)—A. rabiei 
pathosystem (Coram and Pang 2005a, b, 2006). For exam-
ple, pathogenesis related (PR) proteins which are induced 
by pathogen-derived elicitors, such as glucan and chitin 
within fungal cell walls, as well as fungus-secreted gly-
coproteins and peptides (Kombrink and Schmelzer 2001; 
Edereva 2005). In particular, PR-2B (β1,3-glucanase) (EC 
3.2.1.39) releases glycosidic fragments that elicit host 
defence mechanisms, and weakens and decomposes fun-
gal cell walls containing glucans (Kombrink and Schm-
elzer 2001; Edereva 2005). The speed and coordination of 
pathogen perception by the host is vital to achieve effective 
defence. Resistant hosts often respond faster and produce 
larger quantities of defence related compounds than sus-
ceptible ones (Yang et al. 1997). For example, PR proteins 
β-1,3-glucanase and chitinase (EC 3.2.1.14) are more rap-
idly synthesized in resistant cultivars (Vogelsang and Barz 
1993; Hanselle and Barz 2001; Coram and Pang 2006; 
Vaghefi et al. 2013).

Meanwhile, glutathione S-transferases (GST) (EC 
2.5.1.13) is a multi-gene family that protect uninfected 
cells from oxygen toxicity, suppress apoptosis (Coelho 
et al. 2010) and detoxify various compounds (Marrs 1996; 
Edwards et  al. 2000; Dixon et  al. 2002). The down-regu-
lation of GST indicates an increase in cellular H2O2 from 
a possible oxidative burst (Neill et  al. 2002). Another, 
Snakin-2 (SN2), is a broad-spectrum antimicrobial 
cysteine-rich peptide from potato (Solanum tubersum L.) 
(Segura et  al. 1999), which is also known as gibberellins 
stimulated-like proteins (GSL2) (Meiyalaghan et al. 2014). 
The cysteine-rich nature of this peptide acts as both consti-
tutive and inducible defence barriers crucial to the occur-
rence of disulphide bridges important in enhancing the 
structural stability of the plants when under stressful condi-
tions (Berrocal-lobo et al. 2002; Pelegrini et al. 2011).

Other gene targets to asses defence to necrotrophic fun-
gal pathogens have included the disease resistance response 
gene (DRRG) in pea (Pisum sativum) infected with Fusar-
ium solani (Chiang and Hadwiger 1990) and those regulat-
ing the cellular oxidative burst in barley (Hordeum vulgare 
L.) infected with Botrytis cinerea. Also, members of the 
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NAC (for NAM, ATAF1,2 and CUC2) gene family (Peng 
et al. 2010), and transcription factors such as those detected 
in Medicago truncatula following infection with Uromyces 
striatus (Madrid et  al. 2010). One of these, TF1082, con-
fers an ethylene response (ER) during infection (Madrid 
et al. 2010). Previously, the ERG (ethylene receptor gene) 
also known as CaETR1 (Cicer arietinum L. Ethylene 
receptor-like sequences) was found to be responsive to A. 
rabiei infection (Madrid et  al. 2010). Another, TF1063, a 
myelobastosis (MyB) gene family member, was associ-
ated with the hypersensitive response (Madrid et al. 2010). 
Assessing the differential expression of these gene homo-
logues in chickpea would aid in better understanding the 
complexities of defence-mechanism responses to A. rabiei.

High throughput quantitative Real-Time PCR (qRT-
PCR) is an appropriate method to sensitively detect expres-
sion level changes of potentially low-abundance and pre-
viously characterised transcripts (Kakar et  al. 2008). This 
approach was employed to compare the temporal and 
quantitative expression of key defence-related genes in 
chickpea to isolates that represent the breadth of aggres-
siveness within the Australian A. rabiei population. This 
will determine: (1) if isolates with different aggressiveness 
provoke differential host defence gene expressions, and the 
speeds in which these occur and (2) if different genes are 
expressed during the response, providing further evidence 
of different defence mechanisms among different chickpea 
genotypes.

Materials and methods

Plant material and fungal isolates

Ten chickpea genotypes used in this experiment (Table 1) 
were chosen as a representative of a differential host range 
based on their previously determined disease reactions to 
24 Australian A. rabiei isolates (Elliott et al. 2011). These 
included susceptible and resistant cultivars which are com-
mercially used, as well as parental lines used in the Austral-
ian breeding program. All genotypes were obtained from 
the Victorian Department of Environment and Primary 
Industries in Horsham, Victoria, Australia. Chickpea geno-
types, ‘Genesis090’ and ‘Kaniva’ which were categorised 
as resistant (Pulse Australia 2009c) and susceptible (Carter 
1999), respectively, were used to screen and selectively 
identify differentially expressed defence-related genes prior 
to testing the genes on other chickpea genotypes.

Ascochyta rabiei isolates; 09KAL09, 09MEL04, 
09KAN19 and 09KIN11 used in this study were collected 
in 2009 (Leo et al. 2015). The isolates comprised two sets 
of two isolates with different aggressiveness based on 
the mean area under disease progress curve (AUDPC) in 

the pathotyping study by Elliott et  al. (2011) which used 
the disease rating scale adopted from Singh et  al. (1981). 
Briefly, the number of times each treatment (isolate on 
host) received a particular score was determined based on 
the established 1–9 scale. Scores of 1 & 3, 5 and 7 & 9 
were grouped into three categories. For leaf infection, iso-
lates which at 21  days post inoculation had a score of 7 
or 9 greater than 80 % of the time were classified as high 
risk. Isolates with a score of 7 or 9 less than 60 % of the 
time were classified as low risk. For stem infection, iso-
lates which at 21  days post inoculation had a score of 7 
or 9 greater than 10 % of the time were classified as high 
risk. Isolates with a score of 7 or 9 less than 5  % of the 
time were classified as low risk. Overall severity/rank 
was based on the highest risk rating from either the stem 
or leaf data if they did not match. The highly aggressive 
isolates, 09KAL09 and 09KAN19 were isolated from the 
resistant cultivar, Genesis090 in Kalkee and Kaniva, Vic-
toria, respectively. The low aggressive isolates, 09MEL04 
and 09KIN11 were isolated from the moderately resistant 
cultivars, CICA0503 and Almaz in Melton and Kingsford, 
South Australia, respectively.

Bioassay

All isolates were passaged on sterilised chickpea leaves 
(autoclaved at 80 °C for 15 min) on 1 % (w/v) water agar 
for 1 week before being transferred onto V8 juice growth 
agar. Cultures were grown at 20 ± 2 °C with a 12 h photo-
period for 14 days. Spore suspensions were then prepared 
by adding 10 mL of sterile water and scraping the spores 
off the plate with a scalpel. The spore suspensions were 

Table 1   Chickpea genotypes and disease ratings to A. rabiei in Aus-
tralia

Genotype Disease rating Citations

Genesis090 Resistant (R) Pulse Australia (2009c)

PBA HatTrick Resistant (R) Pulse Breeding Aus-
tralia (2009)

90102-5Q-1103 Resistant (R) Hobson (pers. comm.)

94-121*99V4006 Resistant (R) Hobson (pers. comm.)

ICC3996 Resistant (R) Nasir et al. (2000)

Genesis114 Moderately resistant 
(MR)

Pulse Australia (2009d)

Flipper Moderately resistant 
(MR)

Pulse Australia (2009b)

Almaz Moderately susceptible 
(MS)

Pulse Australia (2009a)

Howzat Moderately susceptible 
(MS)

Pulse Australia (2009e)

Kaniva Susceptible (S) Carter (1999)
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then filtered through a muslin cloth and the concentration 
adjusted to 1 × 105 spores/mL using a haemocytometer.

Seeds were surface sterilized in 5  % (w/v) sodium 
hypochlorite for 15 min and washed three times with ster-
ile distilled water prior to sowing in 15 cm diameter pots 
(containing three seeds each) in sterile soil. A total of four 
biological replicates per chickpea line per isolate includ-
ing mock controls was used. All plants were grown at 
20 ± 4 °C for 14 days (until six to eight leaf stage) before 
inoculation. Plants were then sprayed with A. rabiei spore 
suspensions until run-off (approximately 5  mL/plant). 
Mock-inoculated controls were sprayed with sterile dis-
tilled water until run off. Following inoculation, each pot 
was covered with a disposable plastic cup for maximum 
darkness and sealed in a plastic storage box in a 20 ± 4 °C 
growth room to maintain humidity.

RNA extraction, cDNA preparation and development 
of qRT‑PCR‑based markers

Main stem and young leaf tissue weighed 100 mg were col-
lected from mock and spore inoculated plants at 2, 6, 12, 
24, 48 and 72 h post inoculation (hpi) for total RNA extrac-
tion using the RNeasy® Plant Mini Kit (Qiagen, CA, USA). 
RNase-Free DNase (Qiagen, CA, USA) was added to elim-
inate gDNA contamination. RNA concentration and integ-
rity (RQI) values were determined on an Experion with 
RNA StdSens Chips (Bio-Rad Laboratories, CA, USA). 
RQI values higher than eight were used for downstream 
applications (Fleige and Pfaffl 2006). Total RNA (1 µg) was 
reverse-transcribed with a combination of Oligo(dT)20 and 
random primer using the iScript™ select cDNA synthesis 
kit (Bio-Rad Laboratories, NSW, Australia). The quality of 
cDNA and absence of gDNA were assessed on agarose gel.

Seventeen genes including transcription factors which 
were highly and differentially expressed in various legume 
defence mechanisms (to mostly biotic but in some cases 
abiotic stress factors) were selected from the literature 
(Table 2). Sequences were derived from GenBank and three 
sets of qRT-PCR primers were designed from each using 
Primer3 v.0.4.0. (Rozen and Skaletsky 2000). The primers 
were designed with the following criteria: Tm of 60 ± 1 °C 
and PCR amplicon size of 55–250  bp, primer sequences 
length of 18–27 nucleotides and GC contents of 45–65 %. 
To normalise the relative quantities (NRQs) of these genes, 
three reference genes (PUBQ, RIB, PP2A) (Table 2) previ-
ously proven to give stable expressions after biotic stresses 
to Fusarium oxysporum f. sp. ciceris and A. rabiei in chick-
pea were assessed (Castro et  al. 2012). All primers were 
synthesised at Sigma-Genosys Ltd (NSW, Australia). All 
primers were tested with both randomly pooled cDNA and 
gDNA samples, and cycle sequenced three times at the 
Australian Genome Research Facility (AGRF, Melbourne, 

Australia) to determine the correct expected amplicon size 
and BLASTn to ensure the amplicons were of the target 
sequences.

All PCR were carried out with the iQ5 Real-Time PCR 
detection System (Bio-Rad Laboratories, NSW, Australia). 
A standard curve was produced for each of the target and 
reference genes. The 25  µL reaction comprised 4  µL of 
DNA template, 13.5  µL of 1× iQSYBR Green Supermix 
(Bio-Rad Laboratories, NSW, Australia) and the specified 
primer concentration (Table 2). Thermal cycling conditions 
were: Initial denaturation at 95 °C for 1 min; 40 cycles of 
95 °C for 10 s, 60 °C for 15 s, 72 °C for 30 s, 83 °C for 
10 s (fluorescence reading), followed by melt curve analy-
sis at 60–95  °C every 0.5  °C for 10  s. All reactions were 
performed in triplicate and the sample maximisation layout 
strategy was employed (Hellemans et al. 2007). The cDNA 
samples for each gene were preferably run within a single 
plate to reduce technical, run-to-run variation. However, 
inter-run calibrators (IRC) were used whenever all samples 
could not be analysed in the same run. Minus reverse tran-
scription control (-RTC) and no template control (NTC) 
were carried out for every gene to detect the presence of 
contaminating DNA and/or primer dimers.

Data analysis

Data and PCR efficiency of each gene were analysed using 
Bio-Rad iQ5 v2.0 software (Bio-Rad, CA, USA). Reac-
tions with more than one melt curve peak and not within 
the PCR efficiency range of 95–110 % were discarded.

Reference genes were analysed and selected based on 
stable expression using geNormPLUS (Hellemans et  al. 
2007). Normalization of expression values from targeted 
genes were calculated using qbase PLUS software, and 
were reported as normalized relative quantities (NRQs) 
(Hellemans et al. 2007).

General linear model was performed using SAS and 
Minitab 16 to determine differentially expressed genes at 
P < 0.05. A mean fold change of 2.0 was used as the cut-
off point. Differentially expressed genes between geno-
types, treatments, or genotype × treatment interactions, 
were clustered using an hierarchical cluster analysis. A 
data matrix for each genotype with the expression ratio was 
used to calculate an Euclidean distance matrix. The UPMG 
method was used to generate a dendogram using K-means 
clustering with Cluster v3.0 (Eisen et al. 1998) and viewed 
with Treeview v1.60 (Page 1996) as a heat map.

To assess for differences in host gene expression levels 
when infected with different isolates, the mean expressions 
derived from each interaction were compared and an analy-
sis of variance (ANOVA) was then performed with qbase 
PLUS software (P = 0.05). The same analyses determined 
significant gene expression differences among ten chickpea 
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genotypes (Table  1) infected with the aggressive isolate, 
09KAL09. A total of eight defence genes which were up-
regulated in ‘Genesis090’ when infected with 09KAL09 
(CARNAC, GST, PR2B, SN2, ERG, PAMP, RGA4, 
TF1082) were selected to identify and determine potential 
responses induced among four other resistant, two mod-
erately resistant and two moderately susceptible chickpea 
genotypes relative to the susceptible genotypes (Table  1) 
and compared using ANOVA.

Results

Single fragments of 80–250  bp were amplified with effi-
ciencies of 90–110  % from 15 of the 17 target genes 
and were used to assess expression levels with qRT-PCR 
(Table 2). Of the sequences tested for suitability for expres-
sion normalisation, PUBQ and RIB were the most stable 
with M (gene stability) values of 1.102 and coefficients 
of variation (CV) values of 0.414 and 0.412, respectively 
(Hellemans et al. 2007). The M value for PP2A was 1.411 
and thus excluded.

Timing and expression levels of defence‑related host 
genes based on interactions with different levels 
of isolate aggressiveness

All 15 defence-related genes were differentially expressed 
in at least one time point following inoculation of ‘Gene-
sis090’ and ‘Kaniva’ when compared to the un-inoculated 
controls. Of the four isolates assessed, the highly aggres-
sive 09KAL09, produced a grossly different expression 
profile across all 15 genes. The most down-regulation, was 
consistent in timing and levels across both the resistant 

(Genesis090) and susceptible (Kaniva) genotypes (Fig. 1). 
Conversely, the expression profile produced by the other 
highly aggressive isolate (09KAN19) was not largely dif-
ferent in either timing or magnitude to the two less aggres-
sive isolates (09MEL04 and 09KIN11). Again, this was 
consistent among host genotypes (Figs.  1, 2). In general, 
the majority of differentially expressed genes were up-reg-
ulated as early as 2 hpi and started to be down-regulated at 
72 hpi (Supplementary Material 1).

Similarities in host gene expression trends 
among isolate interactions

Cluster analysis shown similarities in individual gene 
expression profiles following exposure to each of the four 
isolates (Fig.  2). Mega Cluster I contained PR2B, up-
regulated as early as 12 hpi in ‘Kaniva’ and ‘Genesis090’ 
regardless of isolate applied. Cluster II was divided into 
six subgroups. Cluster II.1:2 comprised ERG and LZP 
genes, which were not up-regulated when either host gen-
otype was inoculated with either 09KAL09 or 09MEL04, 
but were up-regulated when inoculated with 09KAN19 
or 09KIN11 (as early as 2 hpi). Cluster II.2:3 comprised 
CARNAC, GST and SDCCP. CARNAC was up-regulated 
in all interactions except when Kaniva was inoculated with 
09KAL09, suggesting that lack of expression may lead to 
susceptibility when inoculated with the highly aggressive 
isolates. GST and SDCCP were up-regulated in at least one 
time point in both genotypes when exposed to any of the 
isolates. Cluster II.3:5 comprised PAMP, RGA4, RGA7, 
TF1063 and SPK. Cluster II.4:1 contained TF1082, Cluster 
II.5:2 and Cluster II.6:1 comprised RGA10&5, and SN2, 
respectively. Genes in Cluster II 3, 4, 5 and 6 were up-
regulated in both genotypes infected with 09KAN19 and 
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09KIN11 as early as 6 hpi. When infected with 09MEL04, 
these genes were up-regulated at later infection stages (>12 
hpi), but remained at either a basal expression rate or were 
down-regulated when the genotypes were infected with 
09KAL09.

Differentially expressed defence‑related genes and their 
relations to different levels of host susceptibility

Following inoculation with isolate 09KAL09, major dif-
ferences in the gene differential expression profiles were 
observed among the ten host genotypes assessed, which 
ranged in classification from resistant to susceptible (Sup-
plementary material 2; Fig.  3). The mean expression pro-
files of each genotype at a 95 % confidence interval iden-
tified six genes, CARNAC, ERG, GST, RGA4, SN2 and 
TF1082, differentially expressed across all ten host geno-
types (Supplementary material 2). The expression of PR2B 
was not differential but consistently highly up-regulated 
among all hosts. PAMP was up-regulated in all hosts except 
for the highly susceptible Kaniva, perhaps indicating a 
lack of recognition. To further identify which genes were 
up-regulated in the resistant and moderately resistant geno-
types in comparison to the susceptible genotypes, the mean 
expression profiles of each genotype were categorised into 
their susceptibility levels and compared (Supplementary 

materials 3, 4). Between moderately resistant and resist-
ant genotypes, only SN2 was differentially expressed, more 
highly in moderately resistant genotypes. Interestingly, no 
genes were differentially expressed between moderately 
resistant and moderately susceptible classified genotypes 
at any of the time points assessed, however, four genes, 
SN2, GST, ERG and RGA4, were differentially expressed 
between resistant/moderately resistant and susceptible 
genotypes. Three, SN2, GST, and ERG, were expressed at 
higher levels in resistant/moderately resistant than suscepti-
ble genotypes and one, RGA4, at a higher level in suscepti-
ble genotypes. Following validation across a broader germ-
plasm and in response to a larger number of isolates, the 
differential expression of these four genes may be useful 
as tools for future molecular selection of resistance within 
breeding programs.

Discussion

For the first time, they study has demonstrated that A. 
rabiei isolates of a similar high aggressiveness level are 
able to cause different host responses within the same 
chickpea genotype. One might postulate that 09KAL09 is 
able to evade detection and recognition and then goes on to 
suppress host defence responses whilst it establishes itself 

CLUSTER I 

Genesis090 infected 
with 09KAN19 & 

09KIN11 

Kaniva infected with 
09KAL09 & 09MEL04 

Kaniva infected with 
09KAN19 & 09KIN11 

Genesis090 infected 
with 09KAL09 & 

09MEL04 

CLUSTER II 

1:2 

2:3 

3:5 

4:1 

5:2 

6:1 

Fig. 2   Heatmap of 15 genes expression profiles for Genesis090 
(resistant) and Kaniva (susceptible) over the time course after infec-
tion with 4 A. rabiei isolates, 09KAL09, 09MEL04, 09KAN19 and 
09KIN11. Up-regulation is indicated in red, down-regulation is indi-

cated in green, normalised expression values close to the mean are 
in black. No detectable expression is in grey. The Log2 values of the 
expression profile for each treatment and genotype were normalised 
with two reference genes and non-inoculates samples
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and begins to evade and colonise the tissues. Meanwhile 
09KAN19, also highly aggressive, is detected and recog-
nised almost immediately (and certainly by 2  hpi), caus-
ing the up-regulation of the spectrum of defence responses 
related to the genes under study. The question remains 
regarding what differentiates the ability for the 09KAL09 
isolate to be highly aggressive compared to the two less 
aggressive isolates. Perhaps other isolate-related fitness 
characteristics are important in establishing and maintain-
ing infection ahead of host defences? Certainly, the tim-
ing of gene expressions was largely indifferent following 

exposure to the highly aggressive 09KAN19 or either of 
the less aggressive isolates, indicating that molecular evi-
dence of pathogenicity differences among these three iso-
lates was not captured in this study and on these cultivars, 
hence a wider range of defence-related genes and cultivars 
would need to be assessed. This would be more feasible 
with whole genome transcriptomics in response to A. rabiei 
inoculation.

Another plausible reason to the down regulation of 
most differentially expressed genes in both susceptible and 
resistant genotypes is the production, deletion or selection 

Fig. 3   Heatmap of eight genes 
expression profiles for 10 chick-
pea genotypes (Table 1) over 
the time course after infection 
with the most pathogenic A. 
rabiei isolate, 09KAL09. Up-
regulation is indicated in red, 
down-regulation is indicated in 
green, normalised expression 
values close to the mean are in 
black, no detectable expression 
is in grey. The Log2 values of 
the expression profile for each 
treatment and genotype were 
normalised with two refer-
ence genes and non-inoculates 
samples
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of fungal effectors in 09KAL09 that impact on pathogen 
recognition. This may trigger different host defence mecha-
nisms. Positive selection occurring within the effector pro-
teins has been observed quite extensively for Phytophtora 
sojae of soybean (Jiang et al. 2008). This was postulated as 
a mechanism employed to enable escape from host resist-
ance protein detection and potentially adapt to different 
host virulence targets (Ellis et al. 2009). Indeed, mutation 
of motifs in the C-terminus of an Avr1b protein reduced 
the ability of the pathogen to suppress programmed cell 
death (PCD) and also abolished the avirulence interaction 
of Avr1b with the Rps1b resistance gene in soybean (Dou 
et al. 2008). A similar mechanism may be occurring within 
A. rabiei isolate 09KAL09, enabling it to evade detection 
by chickpea.

During industry establishment, selection of a narrow 
gene pool and subsequent inbreeding has led to a lack of 
genome diversity across cultivated chickpea, which has 
also likely constricted the potential diversity of defence 
mechanisms retained within Australian chickpea cultivars. 
This low diversity of defence mechanisms was shown in 
the considerably fewer number of disease resistance gene 
homologues in chickpea in comparison to other legume 
species (Varshney et al. 2013). However, significant differ-
ences in expression levels and timings of the 15 defence-
related genes assessed in the current study were detected 
among the 10 host genotypes assessed. At very early time 
points (2–6 hpi) these are likely related to differences in 
the timing of pathogen recognition and subsequent speed to 
signal down-stream defence mechanisms.

Indeed, the faster expression of GST in ‘Kaniva’ (6 hpi) 
compared to ‘Genesis090’ (24 hpi) is likely associated with 
the earlier accumulation of H2O2 in the susceptible culti-
var to trigger a rapid hypersensitive response. However, 
across genotypes, the susceptible genotypes produced sig-
nificantly less GST than the resistant ones at earlier time 
points and greater expression in the resistant genotypes 
later on (24–48 hpi). This may indicate that although the 
hypersensitive response is employed by susceptible geno-
types this is not effectual for containing the pathogen and 
that resistant genotypes only instigate this defence response 
after other first-line defence responses have been triggered. 
Indeed, other reactive oxygen species involved in the pre-
cursors to the hypersensitive response have been detected 
in resistant genotypes at earlier time points of the interac-
tion (Hohl et al. 1990; Coram and Pang 2006).

The pattern of expression of SN2 was similar to GST 
(another antioxidant) with greater quantities detected in 
resistant/moderately resistant genotypes than suscepti-
ble genotypes. This is in accordance to the up-regulation 
of SN2 previously detected in ICC3996 (Coram and Pang 
2005b, 2006). Sequence similarities of SN2 peptides to 
GIP2 (GASA-like protein) from Petunia hybrida suggests 

involvement in redox regulations which regulate the pro-
duction of reactive oxygen species in pathogenesis and 
wounding (Berrocal-lobo et  al. 2002; Wigoda et  al. 2006; 
Balaji and Smart 2012).

Meanwhile, CaETR1 (Cicer arietinum L. ethylene 
receptor-like sequences) was the first ethylene receptor 
discovered in chickpea associated with A. rabiei resistance 
(Madrid et  al. 2010). The ERG locus is closely linked to 
a major QTL, QTLAR1 proposed to condition resistance 
to pathotype II (Iruela et  al. 2006; Madrid et  al. 2012). 
Recently, the CaETR1 and CaETR-1a/CaETR-1b alleles 
from resistant and susceptible chickpea genotypes (Madrid 
et  al. 2012) were used to negatively select and eliminate 
susceptible individuals from a breeding program (Madrid 
et  al. 2013). The differential expression of the allele 
(unknown) observed in the current study between resistant/
moderately resistant and susceptible genotypes may further 
indicate its suitability for resistance selection across broad 
range of germplasm.

A spectrum of differences in levels and timings of the 
CARNAC transcription factor was observed among the 10 
genotypes. Down- or unaltered expression in the major-
ity of genotypes may be related to involvement in devel-
opmental processes such as apical meristem develop-
ment, flowering and secondary wall formation (Peng et al. 
2010). This may be anticipated in response to a pathogen 
attack, as reserves are rerouted to defence-related activi-
ties (Coram and Pang 2006). However, up-regulation wit-
nessed in Almaz, Genesis114, Genesis090 and Kaniva may 
have been directly related to defence responses through 
participation in signalling pathways and regulatory net-
works (Nuruzzaman et  al. 2013). Indeed, NAC proteins 
activate PR genes, induce the hypersensitive response and 
cause cell death at the infection site (Kaneda et  al. 2009; 
Seo et al. 2010). NAC proteins also have the ability to form 
alliances with certain host regulatory complexes, enabling 
them to act as negative regulators of the defence response 
by suppressing defence-related genes (Wang et al. 2009).

Meanwhile, PR proteins are pathogen-induced proteins 
classified into 17 families from PR-1 to PR-17, based on 
biochemical properties (Van Loon et al. 2006). As observed 
for PR2B in the current study, they may be expressed 
prior to infection due to involvement in plant development 
(Edereva 2005), accumulated and synthesized for a long 
lag period. They may then be translocated from the site 
of induction to other plant parts during pathogenic attack 
(Matsuoka and Ohashi 1986). Ultimately, PR2B (β1,3-
glucanase) produces glycosidic fragments which weakens 
and decomposes fungal cell walls containing glucans, chi-
tin and proteins (Kombrink and Schmelzer 2001; Edereva 
2005). As previously reported, the PR2B gene was sig-
nificantly up-regulated at 48–72 hpi compared to other 
time points, particularly in ‘Genesis114’, ‘PBA HatTrick’, 
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‘Almaz’, ‘Genesis090’ and ‘Kaniva’ (Hanselle and Barz 
2001; Coram and Pang 2006; Cho and Muehlbauer 2004).

The gene deemed to regulate polymorphic antigen pro-
teins (PAMP) was up-regulated at 12 and 48 hpi in all 
genotypes except for the susceptible ‘Kaniva’. This gene is 
likely to be a homologue of Enolase phosphatise E1 protein, 
a bifunctional enzyme of methionine salvage that regener-
ates methionine from 5′-methylthioadenosine (MTA) (Wang 
et al. 2005). Its function in the resistance response is likely 
via its metabolism that utilises polyamines (PAs), nico-
tianamines (NAs) and interacts with ethylene biosysnthesis 
(Waduwara-Jayabahu et al. 2012). PAs are associated with 
cell division as a response to abiotic and biotic stress (Taka-
hashi and Kakehi 2010; Vera-Sirera et al. 2010). NAs act as 
chelators for long distance ion transport and defence signal-
ling processes (Curie et al. 2009), and ethylene is a phyto-
hormone capable of signalling within defence pathways.

The transcription factor TF1082 was increasingly upreg-
ulated in several resistant and moderately resistant geno-
types from 48 hpi onwards after exposure to the highly 
aggressive isolate 09KAL09. Previously, in Medicago 
truncatula infected with Uromyces striatus, this gene was 
up-regulated in resistant genotypes and down-regulated 
in susceptible genotypes, thought to bind to the GCC box 
of PR gene promoters and confer ethylene responsiveness 
(Madrid et al. 2010).

In conclusion, this study showed that chickpea has a 
number of defence-related mechanisms which are activated 
simultaneously to mount defence to A. rabiei, confirming 
that it is a race-nonspecific resistance controlled by genes 
with minor to intermediate and additive effects. Although 
a small subset of genes was assessed, several were dif-
ferentially expressed among cultivars, further indicating 
the potential of different defence mechanisms in chickpea 
under controlled conditions where all plants are subjected 
to the same environment conditions. Further studies such as 
RNA sequencing and identifying sequence polymorphisms 
of within or upstream or downstream signalling regions of 
the differentially expressed genes in susceptible and resist-
ant cultivars may identify potential allelic differences that, 
once functionally validated, could be converted into stable 
markers for future selective breeding purposes. Breeding 
chickpea genotypes containing several defence strategies 
will improve durability against the pathogenic diversity of 
the pathogen population.
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