
1 3

Theor Appl Genet (2016) 129:653–673
DOI 10.1007/s00122-016-2691-5

REVIEW

Envirotyping for deciphering environmental impacts  
on crop plants

Yunbi Xu1,2 

Received: 4 September 2015 / Accepted: 8 February 2016 / Published online: 1 March 2016 
© The Author(s) 2016. This article is published with open access at Springerlink.com

precision breeding and sustainable crop production system 
based on deciphered environmental impacts.

Introduction

Climate change has resulted in significant changes in 
weather pattern, precipitation distribution, temperature and 
moisture fluctuation, soil erosion, and desertification (FAO 
2008), although the average annual environmental meas-
urements may not change significantly. Extreme conditions 
caused by these changes bring about many unexpected and 
more frequent biotic and abiotic stresses (Bebber et  al. 
2013; Trenberth et  al. 2014). To feed increasing world 
population, total crop production will need to be signifi-
cantly increased with less arable land under much severe 
environmental conditions (Tilman et al. 2002). For the past 
50 years, such demanding has been met by continuous yield 
improvement. Unfortunately, yield growth has been slow-
ing, rather than increasing as required by global population 
increase. For example, annual yield growth for three major 
cereals, rice, wheat and maize, has been decreased to 0.79–
1.74 % for 1990–2010 from 2.19–2.95 % for 1960–1990. 
Moreover, if such reduction tendency continues, yield 
growth for 2010–2050 will decrease to 0.62–1.33 % (FAO 
2014; Pardey et  al. 2014). For the next 50 years, we will 
have more people, but less water on the planet, and have 
to develop two times better crops for a world free of poor, 
poverty, and environment degradation. To meet the chal-
lenges, we need to keep enhancing yield potential while 
filling the yield gap created by various abiotic and biotic 
stresses largely caused by climate change. Therefore, envi-
ronmental factors that affect plant growth and yield should 
be understood and managed better for less degradation and 
input but more output.

Abstract  Global climate change imposes increasing 
impacts on our environments and crop production. To deci-
pher environmental impacts on crop plants, the concept 
“envirotyping” is proposed, as a third “typing” technology, 
complementing with genotyping and phenotyping. Envi-
ronmental factors can be collected through multiple envi-
ronmental trials, geographic and soil information systems, 
measurement of soil and canopy properties, and evaluation 
of companion organisms. Envirotyping contributes to crop 
modeling and phenotype prediction through its functional 
components, including genotype-by-environment inter-
action (GEI), genes responsive to environmental signals, 
biotic and abiotic stresses, and integrative phenotyping. 
Envirotyping, driven by information and support systems, 
has a wide range of applications, including environmental 
characterization, GEI analysis, phenotype prediction, near-
iso-environment construction, agronomic genomics, preci-
sion agriculture and breeding, and development of a four-
dimensional profile of crop science involving genotype (G), 
phenotype (P), envirotype (E) and time (T) (developmental 
stage). In the future, envirotyping needs to zoom into spe-
cific experimental plots and individual plants, along with 
the development of high-throughput and precision enviro-
typing platforms, to integrate genotypic, phenotypic and 
envirotypic information for establishing a high-efficient 
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Crop production has been largely affected by environ-
mental factors that affect all the processes from metabolism 
to gene expression during plant growth and development. 
Increasing yield and filling yield gap largely depend on 
the management, control and improvement of the envi-
ronments where crop plants grow. The genotypes (G) that 
determine the yield potential and their responses to envi-
ronmental factors can be now investigated and measured 
through molecular and genomic approaches using chip 
or microarray (Hoheisel 2006) and sequencing technolo-
gies (Koboldt et al. 2013). The phenotypes (P) can be also 
measured precisely with the development of high-through-
put phenotyping tools and methodologies (Araus and 
Cairns 2014). Compared with genotyping and phenotyping, 
determination and measurement of environmental factors 
(E) has fallen behind, largely due to three reasons. First, 
environmental factors have been largely considered as a 
whole and treated as a blackbox that interacts with geno-
types to affect plant growth and yield, without dissection 
for individual plants. Second, only major environment fac-
tors have been considered and measured at the level of the 
whole experiment station or trial. Third, most environmen-
tal factors are dynamic and constantly changing throughout 
the plant growing period. Dissection of quantitative traits 
into individual Mendelian factors using molecular markers 
allows quantitative genetics walk out of the multiple-gene 
circle taking all the relevant genes as a whole (Paterson 
et  al. 1988; Lander and Botstein 1989). A similar signifi-
cant impact would be made if complex environments could 
be partitioned into individual factors and measured for indi-
vidual plants and every developmental stage.

Understanding better the environment where plants live 
is critical to our future crop science for several reasons. 
Firstly, gene expression is largely dependent on the envi-
ronment where the crop grows. Secondly, genetic map-
ping and gene cloning depends on the environment where 
the phenotyping is performed. Thirdly, many phenotyping 
procedures, including abiotic and biotic stress evaluation, 
is conducted under managed environmental conditions. 
Lastly, environmental assay becomes increasingly impor-
tant for many procedures of crop production. Precise dis-
section of complex environmental factors for both target 
environments and specific genotypes provides us a novel 
opportunity for management, control and optimization of 
environmental factors for enhanced genetic improvement 
and more efficient crop production. All environmental fac-
tors that affect plant growth and yield can be defined as 
envirotypes (environment +  types). The process for deter-
mination and measurement of all the environmental fac-
tors is called envirotyping (Xu 2015). The concept was first 
proposed at two international conferences as “etyping” (Xu 
2011, 2012), followed by journal articles with more details 
(Xu et  al. 2012; Xu 2015). The term “envirotyping” has 

also been used recently by other researchers to refer to the 
collective body of methodologies that are applied to char-
acterize environments within multiple environmental tri-
als and the frequent repeatable environment types within 
the target population of environments (Cooper et al. 2014, 
2016). Envirotyping is different from conventional envi-
ronmental assay in three aspects. First, envirotyping will 
measure all environmental factors that affect plant growth 
and production instead of only for the major ones. Second, 
envirotyping will zoom into specific field plots and individ-
ual plants so that the envirotypic data will be collected to 
match up with the corresponding genotypic and phenotypic 
data. Third, crop management and companion organisms 
will be included as a part of environmental factors so that 
their effects on crop plants can be investigated. As a new 
concept, envirotyping will be fully discussed in this article, 
including its conception, implementation, and application 
in crop science, by which environmental impacts on crop 
plants can be deciphered.

Environmental variables and envirotyping

Environmental variables

Environmental factors can be micro- or macro-, non-
organic or organic, and internal or external. Plant growth 
and yield are coordinated by both intercellular and exter-
nal environments. Intercellular environments in plants are 
largely dominated by what are essentially enclosed in vac-
uoles, which consist of water (inorganic and organic mol-
ecules), waste products and small molecules with internal 
hydrostatic pressure or turgor, temperature, and an acidic 
pH maintained. The internal environments are largely 
affected due to the changes of pH, osmotic pressure and 
temperature, etc., caused by material exchange and signal 
transduction with external environments. Through a series 
of receptors, signal transductions and responses, plants 
make full responses to specific external environmental fac-
tors, resulting in ion transmembrane transport, metabolic 
pathway regulation, cytoskeleton modification and gene 
expression regulation (Nicotra et al. 2010).

External environmental factors can be classified into 
four categories, climate, soil factors, biotic factors, and 
crop management or cropping system (Table  1). Climate 
factors, such as temperature, radiation, precipitation or 
water availability and wind, determine where a plant can 
grow, while other factors determine how a plant grows. 
Some companion organisms, such as pathogens, pests and 
weeds, cause damages or stresses to the plants, while oth-
ers, such as azotobacteria, are beneficial. Crop manage-
ment, as a unique environment component, involves inter-
cropping, rotating and agronomic practices. Environmental 
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Table 1   External environmental factors affecting plant growth and yield

Category Description Effects and associated stresses

Climate factors

 Light Solar radiation, light intensity (elevation, latitude, and 
season; clouds, dust, smoke, fog and smog), day length 
(photoperiod)

Most crucial factor for plant growth and development; 
shading stress

 Temperature Effective accumulated temperature; average, minimum 
and maximum daily temperatures

Photosynthesis, water and nutrient absorption, transpiration, 
respiration and enzyme activity, germination, flowering, 
pollen viability, fruit/seed set, rates of maturation and 
senescence, yield, quality, harvest duration and shelf life; 
cold, frost, and heat stresses

 Water Precipitation (rainfall, snow, hail, fog and dew) Crop productivity and quality; drought, flooding and 
waterlogging stresses

Atmospheric humidity (relative humidity) Soil evaporation and plant transpiration; dry air stress

 Air Wind velocity Supply of moisture, heat, and fresh CO2; strong wind stress

Atmospheric gases (CO2, O2, N); pollutants 
(SO2, CO, CH4)

Air pollution and shading stresses

Soil factors

 Soil type Soil type (clay, clayey loam, loam, sandy loam, and sand) Soil’s capacity to store water and nutrients, aeration, drain-
age, and ease of field operations; soil-related stresses

 Soil structure Soil structure (texture, soil sealing, erosion, contamination, 
compaction, hydro-geological risks)

Crop productivity and quality contributed by soil fertility, 
organic matter and soil biodiversity; soil-borne stresses

 Soil components Soil moisture Crop productivity and quality; drought, flooding and 
waterlogging stresses

Soil air Water absorption, respiration of roots and micro organisms, 
nutrient availability, decomposition of organic matter; soil 
air stresses including O2 limitation

Soil temperature Soil physical and chemical processes, absorption of water 
and nutrients, germination of seeds and growth rate, 
microbial activity and processes in the nutrient availability; 
cold and heat soil stresses

Soil pH Nutrient availability and microorganism activities; acidic, 
saline and alkaline soil stresses

Soil fertility (N, P, K, micronutrients/mineral and soil 
organic matters)

Plant nutrients and their balance for plant growth; nutrient 
deficiency stresses and nutrient use efficiency

Soil salinity (electrical conductivity) Osmotic tension and water takeup; salinity stress

Biotic factors

 Companion animals Soil fauna (protozoa, nematode, snails, and insects) Decomposition of raw organic matter, fixation of 
atmospheric nitrogen; damages to plant roots and 
other parts

Animals around plants (pest insects, parasites, fungi, 
bacteria, viruses, predators, honey bees, wasps, human)

Cross-pollination and increasing yield, damage to crop 
yield; various abiotic stresses

 Companion plants Weeds, epiphytic and allelopathic plants Competition for space, water, light and nutrients, mutual 
benefit (synergistic effect), interference with crop plants, 
releasing compounds, volatilization or decomposition of 
plant residues, inhibition or prevention of plant growth; 
various biotic stresses

Cropping system

 Intercropping Companion crop(s) Competition for space, water, light and nutrients, buffer-
ing and mutual benefit (synergistic effect); various biotic 
stresses

 Rotating cropping Fore-rotating crop(s) Residual effects of agronomic practices from the fore- 
rotating crop; various biotic stresses
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factors that affect plant growth and yield can be modified 
or dramatically changed by human activities. Controlled or 
artificial environments can be created using growth cham-
bers, phytotrons, hydroponic or other manmade facilities. 
Crop production activities per se have contributed to some 
significant environmental changes such as fertility deple-
tion, air pollution, acid rain, water contamination (toxic ele-
ment accumulation), noise (dynamic disturbance), salinity, 
land weathering, and desertification. Climate change and 
globe warming may result in extreme environments and 
wild fluctuation of environmental factors, which impose 
severe stresses on plants, including biotic stresses caused 
by companion organisms and abiotic stresses associated 
with climate and soil factors. For survival and sustainable 
production, crop plants must cope with all the challenges 
from climate change catastrophes, including stressful water 
regimes, extreme temperatures, elevated CO2 and salinity, 
which impact on all aspects of plant architecture individu-
ally or in combination (Ahuja et  al. 2010). Expanding of 
human population needs to increasingly explore less-farm-
able land with significant abiotic stresses, particularly for 
the pool soils with abnormal pH, low fertility, and salinity 
stress (Masuka et al. 2012). As a major constraint to crop 
yield in tropical regions, poor and depleted soil fertility 
force farmers into marginal lands and non-farming areas 
(Pingali and Pandey 2000). To stabilize crop production, 
stresses caused by pathogens, pests and other companion 
or symbiontic organisms should be paid more attention, as 
they are less predictable than soil or climate stresses. On 
the other hand, multiple abiotic stresses become increas-
ingly prevalent. For example, heat stress often happens 
with water deficiency, while drought is accompanied by 
salinity (Ahuja et al. 2010). Abiotic and biotic stresses may 
occur simultaneously (Bostock et al. 2014; Kissoudis et al. 
2014; Ramegowda and Senthil-Kumar 2015; Prasch and 
Sonnewald 2015), and one stress may show positive or neg-
ative impact over the other.

Multiple environmental trial data

Envirotyping can be implemented with a large amount 
of environmental information accumulated in crop sci-
ence and production (Fig.  1). Multiple environmental tri-
als (METs), involving a large number of genotypes tested 
in multiple locations, each with multiple replications, for 
multiple years (Johnson et  al. 1955), can be considered 
a basic type of envirotyping for systematic collection of 
environment-related data. To identify the environments 
best suitable for commercialization of the on-trial varieties 
(genotypes), weather, climate and soil data have been col-
lected systematically along with records of crop manage-
ment including fertilization and control of diseases, pests, 
and weeds. In developed countries, such practices have 

been for decades. As an average effect of the environment, 
the empirical mean response for the ith genotype can be 
measured in the jth environment with r replications. Under 
Consultative Group on International Agricultural Research 
(CGIAR), International Maize and Wheat Improvement 
Center (CIMMYT) and International Rice Research Insti-
tutes (IRRI), for example, have implemented international 
breeding programs yield testing for many years, with a 
large amount of environmental data collected for three 
major crops, rice, wheat and  maize. Such effort has been 
expanded to more countries and trial sites in recent years. 
However, envirotyping has not been well conducted in 
METs for three reasons: locations of MET sites are not pre-
cisely determined as needed; daily climate data linked to 
the trial sites are not available or difficult to collect; and 
data collection and completeness vary a lot across the sites.

Geographic data

Geographic information system (GIS) has been established 
with the merging of cartography, statistical analysis and 
database technology, which is designed for collecting, stor-
ing, integrating, analyzing, and managing all types of geo-
graphical data (Fig. 1). The data for any location in Earth 
space–time can be collected as dates/times of occurrence, 
with longitude, latitude, and elevation determined by x, y, 
and z coordinates, respectively. GIS integrates various data 
sources with existing maps and up-to-date records from 
climate satellites. To capture climate data, various types of 
weather observatory stations have been established world-
wide, including ground, radiosonde, wind, rocket, radia-
tion, agrometeorological, and automatic weather stations. 
These stations document climate data for numerous loca-
tions and sites, which are transferred in international or 
national central databases and become a part of GIS data.

Data from soil information systems

Soil data have been accumulating in worldwide soil infor-
mation systems (Fig.  1). International Soil Reference and 
Information Centre (ISRIC) provides the international 
community with the world soil information. With a world-
wide collaboration in soil data, soil mapping and their 
applications in global development issues, a centralized 
and user-focused World Soil Database is being developed, 
by which users can extract all validated and authorized 
data, including soil profiles and area-class soil maps (http://
www.isric.org). To help bridge the soil information gap on 
the African continent, ISRIC has produced predicted infor-
mation for various soil properties for the whole African 
continent at 250 m spatial resolution with multiple stand-
ard soil depths (http://www.isric.org). European Soil Portal 
(http://eusoils.jrc.ec.europa.eu/) is the focal point for soil 

http://www.isric.org
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data, contributing to a thematic data infrastructure with 
data and information regarding soils at European level, 
including maps and Atlases. At the national level, National 
Soil Information System (NASIS), USA, is one of the most 
comprehensive national systems, providing a dynamic 
resource of soil information for a wide range of needs. Soil 
Information System of China (SISChina) has been estab-
lished to include soil spatial and attribute data, and China 
1:1,000,000 soil database (Shi et al. 2007).

Lack of consistent soil classification systems across 
countries or organizations has hindered the communication 
and organizational functions. To bridge the gap, translations 
between systems should be developed. As a soil classifica-
tion system for naming soils and creating soil map legends, 
the World Reference Base for Soil Resources (WRB) with 
its third edition has been released (IUSS Working Group 
WRB 2014), as an adopted system for soil correlation and 
international communication. It allocates every soil into 
one of the 32 Reference Soil Groups and then character-
izes further each soil by a set of qualifiers. Information on 

the named soil, such as its genesis, ecological function and 
properties, will be provided through the system. To provide 
comprehensive spatial information, the same system can 
be refined slightly, and used to name the units of soil map 
legends. By accommodating national soil classification 
systems, WRB facilitates the worldwide correlation of soil 
information.

Soil properties

Agricultural soils can be classified based on their physical 
texture, the size of the particles that make up the soil. Based 
on the particle-size distribution, soil texture can be further 
clarified into sand, silt and clay. Then crop suitability can 
be determined for each soil class, and the soil responses to 
environmental stresses and agronomic practices, such as 
drought or nutrient requirements, can be explored.

Currently available and potentially useful techniques for 
proximal, on-the-go monitoring of important soil physical 
properties (Whelan and Taylor 2013) can be used to measure 
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and companion organisms, each containing several subgroups that 
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development. Photos used for illustration were selected from public 
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soil texture/type, soil water storage capacity, soil water in sea-
son and waterlogging. In general, soil conductivity can be 
measured as a product of soil composition and formation. A 
typical “spread” of soil types gives a certain range of conduc-
tivity and resistivity, which match up with different soil types 
from sand to saline (Bevan 1998). Apparent soil electrical con-
ductivity (ECa) measurement has been improved and becomes 
a widely accepted means to determine several soil physico-
chemical properties (Corwin and Lesch 2005). Ground-
based remote sensing technology has brought out a series of 
instruments for measurement of soil properties. For example, 
EM38, designed particularly for agricultural surveys and soil 
salinity measurement, provides a quick survey over large areas 
at depths of 1.5 and 0.75  m with its vertical and horizontal 
dipole modes, respectively. In a recent report on maize, meas-
uring soil water content to 300  cm depth identified signifi-
cant water extraction to a depth of 240–300 cm (Reyes et al. 
2016), indicating that in-depth measurement of soil properties 
is required to capture a full profile of available resources for 
crops with large plant and root sizes such as maize.

Time domain reflectometry (TDR) systems, designed to 
detect cable breaks, are now widely used to determine soil 
water content, bulk electrical conductivity, and rock mass 
deformation. To monitor soil water profiles, PR2 soil mois-
ture probe measures soil moisture at 4–6 depths down to 
40–100  cm (http://www.delta-t.co.uk). As a portable and 
robust device, Diviner 2000 can be used to measure soil 
water over multiple depths (at 10 cm intervals) in the pro-
file. With its probe and hand-held data logging display unit, 
onsite management decisions can be made at up to 99 sites 
(http://www.sentek.com.au).

Currently available Soil Atlases provide all information 
about soil sealing, erosion, organic matter loss, biodiver-
sity decline, contamination, compaction, hydro-geological 
risks and salinization (http://eusoils.jrc.ec.europa.eu). GIS 
can be used to sample, test and localize precisely to evalu-
ate soil fertility and nutrients. Soil fertility can be assessed 
accurately with GIS-assisted sampling, testing, and map-
ping. With grid or zone soil sampling, many soil properties, 
including macro- and micronutrients, pH, and salinity car-
bon content, can be tested.

Crop canopy

Remote sensing techniques, such as spectroradiometrical 
reflectance, digital imagery, thermal images, near Infrared 
reflectance spectroscopy and infrared photography, pro-
vide tools for characterization of crop canopy. These tools 
can be used with airborne remote sensing platform to col-
lect data for temperature, humidity, light, air, biomass and 
overage of the crop canopy. Robotic imaging platforms 
and computer vision-assisted analytical tools developed 
for high-throughput plant phenotyping (Fahlgren et  al. 

2015) can be used for measurement of the crop canopy. 
Automated recovery of three-dimensional models of plant 
shoots can be used for multiple color images (Pound et al. 
2014). The 3-D structure can be also determined directly 
using laser scanning (Paulus et  al. 2013) and deep time-
flight sensor (Chéné et al. 2012).

Companion organisms

Companion organisms are those surrounding crop plants, 
including bacteria, fungi, viruses, insects, weeds and even 
other intercropping plants (Fig.  1), which should be con-
sidered an important component of the environments. A 
series of methods and protocols have been developed to 
measure or determine companion organisms for different 
crops through multidisciplinary collaborations. For exam-
ple, rhizospheric microorganisms can be extracted from 
bulked soil samples followed by comprehensive analysis 
and evaluation. Bulked sample analysis combined with 
metagenomics and DNA or RNA seq can be used to deter-
mine precisely the species, quantity, and mutual relation-
ships of the organisms in bulked soil samples (Myrold et al. 
2014). Using bulked samples collected from leaves or crop 
canopy, the organisms on the plant surface can be analyzed 
for their species, quantity, origin, distribution, developmen-
tal stages, and possible symbiontic relationships.

Environmental characterization

Environments can be favorable and adverse to crop plants. 
The favorable environments are crop-friendly and resource-
use efficient, while the adverse ones involve the pollutions 
and stresses of air, water and soil, and unfavorable climate 
changes. Environmental characterization is essential to 
experimental error control, data interpretation, data meta-
analysis, and, in case of abiotic stresses, understanding pat-
terns of resource availability (Fig.  2; Masuka et  al. 2012; 
Trenberth et al. 2014). Envirotypic information can be used 
to reveal a series of important features for experimental and 
crop production environments (Xu 2015).

Determination of field properties and within‑site 
variability

Potential variables in a trial site can be largely reduced 
or eliminated while its historical features can be evalu-
ated by environmental characterization. Soil mechanical 
impedance and depth can be measured by proximal sen-
sors such as cone penetrometers. Due to the close relation-
ship between ECa and clay, water, and ionic content, field 
gradients can be determined with electromagnetic surveys 
(Rebetzke et al. 2013; Gebbers and Adamchuk 2010). As 

http://www.delta-t.co.uk
http://www.sentek.com.au
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the best indicator of field variability, crop performance, 
when combined with imaging techniques, wireless sensor 
networks and GIS, can be used to map and monitor spatial 
variability precisely (Lee et al. 2010). Linked with GPS, 
aerial high-throughput phenotyping platform enables fast 
non-destructive measurements of biomass. By conversion 
of biomass into normalized difference vegetation index 
(NDVI), such platforms provide a tool to measure field 
and within-experiment variability, which can be used to 
develop performance maps to guide next planting (Araus 
and Cairns 2014).

Classification of environments

In mega-environment analysis, target environments can 
be classified into three types (Yan et  al. 2007): single, 
simple mega-environments, which show no crossover 
genotype-by-environment interactions (GEI) with phe-
notypic performance repeatable across years; multiple 

mega-environments, which show crossover GEI that is 
repeatable across years; and single but complex mega-envi-
ronments, which show crossover GEI that is not repeatable 
across years. Based on all available environmental infor-
mation, potential trial sits can be accurately evaluated and 
thus the best trial sites can be selected. Such effort has been 
done in Africa for selection of the trial sites best suitable 
for stress tests of drought, low nitrogen, low pH, stemborer, 
and striga. The need for environmental data is particularly 
important in screening for drought tolerance where avail-
ability of soil moisture should be checked to ensure that 
the field condition and the drought stress imposed repre-
sent the target environment well (Römer et al. 2011). Three 
major criteria, maximum temperature, season precipitation 
and subsoil pH, have been used in sequential retrospec-
tive pattern analysis of environment similarity, by which 
eight maize mega-environments could be identified in 
southern Africa (Fig. 2a; Bänziger et  al. 2006). Similarly, 
typical temporal modes of environmental variation for the 
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Fig. 2   Applications of envirotypic information. Major applica-
tions include characterization of environments (a Bänziger et  al. 
2006; Crossa and Cornelius 2012), development of near-iso-environ-
ments (b http://www.google.com), control of experimental errors (c 
Prasanna et al. 2013), selection of experimental sites (d P. H. Zaidi, 
CIMMYT-India, personal comm.), agronomic genomics, studying 

the effects of crop management on gene expression (e Nagano et al. 
2012), prediction of disease epidemics (f Singh et al. 2006), and pre-
cision crop production (g McBratney and Whelan 2001). Photos used 
for application illustration were selected from public websites or pro-
vided by CIMMYT colleagues, except for those indicated otherwise

http://www.google.com
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soil–plant water balance have been identified for the US 
corn-belt target population of environments (Cooper et al. 
2014).

Construction of near‑iso‑environments

In many cases, experiments need to be done in two contrast-
ing environments. The concept of near-iso-environments 
(NIEs), which is conceptually similar to near-iso-genic 
lines, was proposed to represent two contrasting environ-
ments that are significantly different in one major factor 
(Fig.  2; Xu 2002, 2010). One environment imposes much 
less stress on plants than the other. The less stress or normal 
environment can be used as control to measure the effect of 
the stress environment. A relative trait is then obtained from 
two direct traits phenotyped in the two environments to 
measure the plant sensitivity to the stress. If different plants 
show a similar phenotype under the less stress, the sensi-
tivity can be measured using the direct trait value obtained 
in the more-stress environment. When both environments 
impose little stress the sensitivity should be measured 
instead using the relative trait value, that is, the difference of 
trait values measured in the NIEs, divided by the trait value 
measured in one of the NIEs or in the normal environment 
(Xu 2002). Traits suitable for measurement under NIEs 
include all abiotic/biotic stresses and plant responses to dif-
ferent environmental factors or crop management practices. 
NIEs can be used to facilitate identifying genes with envi-
ronment-specific effects. In rice, days-to-heading (flower-
ing) and photo-thermo-sensitivity were studied under condi-
tions of field (Xu 2002) and greenhouse (Maheswaran et al. 
2000), with different sets of quantitative trait loci (QTL) 
identified. Such QTL showing environment-specific effect 
have also been revealed for abiotic stresses under contrast-
ing environments by integrative analysis of a large number 
of QTL reports (Des Marais et al. 2013).

Control of environmental errors

Experimental errors are mainly contributed by micro-cli-
mate variability, non-uniformity of crop management and 
soil fertility, unpredictable influences of insects, diseases, 
weeds, companion microorganisms/plants/animals, winds, 
rainstorms and hails, and differences contributed by obser-
vation, measurement and production methods, tools, instru-
ments, experimenters and farmers. Envriotyping can play a 
vital role in reducing environmental errors (Fig. 2). Experi-
mental errors can be controlled through various approaches 
by reducing “signal-to-noise” ratio (Xu et al. 2012, 2013). 
(1) Trial sites selected should have uniform soil texture and 
fertility, relatively large in size, and fitting-in an appropri-
ate rotation system, with good record of land utilization, 
representative of soil texture, climate, natural and economic 

conditions of the target environment. (2) Experimental 
materials under testing should be genetically homogenous 
with uniform individual samples (in terms of, e.g., seed 
quality and seedling age/size). (3) The common standards 
should be taken for all experiment managements and tests, 
with uniform application of resources and consistent con-
trol of weeds, pests and diseases. (4) Multiple replications, 
random treatments and controls should be included along 
with an appropriate experimental design. (5) Border effects 
should be minimized using boarder protect planting and 
selecting the trial sites far from villages, trees and high-
ways. (6) New field-based techniques, such as precision 
resource application and remote sensing technology, should 
be used to measure secondary traits, by correctly select-
ing, calibrating and applying instruments, such as neutron 
probes, radiation sensors, and chlorophyll and photosynthe-
sis meters (Xu et al. 2013). Climatic and soil moisture con-
ditions can be characterized by wireless sensor networks, 
by which environmental conditions can be brought under 
real-time monitoring so that the environmental errors can 
be controlled (Araus and Cairns 2014).

Well-controlled or managed environments are often 
favored by molecular biologists because unwanted envi-
ronmental variation can be minimized using pots, soil-filled 
pipes, hydroponics, growth chambers and greenhouses. 
However, it is still needed to achieve a better understanding 
of the environmental stresses prevailing under the nature 
conditions. Facilities for environment management become 
increasingly important, as they enable selection under con-
trolled stresses (Rebetzke et  al. 2013), improve crop per-
formance measurement, and dissect phenotypic effects and 
their underlying genetic makeup (Blum 2011). However, 
controlled or managed environments could be very differ-
ent from the nature or target environments (Masuka et al. 
2012; Basu et  al. 2015). Therefore, the results from con-
trolled or managed environments could be far removed 
from what plants will experience in the field and will thus 
limit their application in germplasm development (Masuka 
et al. 2012; Araus and Cairns 2014). Compared to the field 
condition, for example, a pot is considerably smaller with a 
limited volume of soil available to roots, and the amount of 
water and nutrients will be limited to plants (Poorter et al. 
2012; Reynolds et al. 2012; Basu et al. 2015).

Crop modeling and phenotype prediction

Models

As a third “typing” technology, envirotyping can be applied 
in many fields of crop science (Fig. 2). One of the applica-
tions is in crop modeling and phenotype prediction. With 
envirotypic effect as a new component, phenotype (P) can 
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be partitioned into those contributed by genotypic effects 
(G), envirotypic effects (E), GEI (GE) and experimental 
error:

With genotypic and envirotypic information available, 
G and E and thus the phenotype can be further partitioned. 
E can be partitioned into major components each consist-
ing of several key environmental factors. In addition to 
crop management (M), both process and social econom-
ics can be also included as a part of E. For hybrid crops, 
phenotypic prediction can be performed for both inbreds 
and hybrids. Interactions of general and special combining 
abilities with E, GCA × E and SCA × E, can be estimated 
based on the responses of inbreds and hybrids to environ-
mental factors.

Phenotype prediction can be performed with three 
modalities, i.e., new genotypes with known environments, 
known genotypes with new environments, and new geno-
types with new environments (Bustos-Korts et  al. 2016). 
Phenotype prediction can be simplified with consideration 
of co-variances and conditional variances. For example, 
prediction can be optimized using known soil properties 
and texture, etc., as co-variances, performed crop manage-
ment as conditional variances, and improved simulation 
and modeling methodologies as facilitators. The prediction 
will be improved with managed conditions and precision 
envirotyping. If the contribution from E and GEI to phe-
notype is relatively small, the phenotype can be predicted 
largely by the genotype alone. Under well-managed envi-
ronments, uniformity or good control of major environmen-
tal factors can be achieved and used to eliminate a large 
part of E and GEI, and thus they can be largely taken out 
of the prediction equation. On the other hand, when identi-
cal, homogeneous genotypes are phenotyped under natural 
conditions, the relevant E and GEI can be estimated. With 
some major environmental effects fixed, the rest E effects 
and thus the phenotype can be predicted. Near-iso-envi-
ronments can be used to estimate the relevant major E and 
GEI. With the availability of known information about sev-
eral major environmental factors for a target environment, 
a certain level of reliability can be achieved for prediction 
of important traits. For example, using over ten decades 
of actual data for maize yield and seasonal precipitation 
in Africa, a highly positive correlation between them has 
been established (CIMMYT, internal comm.), and thus the 
maize yield in Africa can be predicted largely based on the 
seasonal precipitation.

Phenotypic prediction needs to be conducted for indi-
vidual traits and their conceptual models. In wheat, a con-
ceptual model for yield and heat-adaptive traits has been 
developed (Cossani and Reynolds 2012):

P = G + E + GE + error

YIELD = LI × RUE × HI

 where LI is light interception which involves rapid ground 
cover and functional stay-green, RUE is radiation use effi-
ciency, and HI is partitioning of total assimilates. RUE is 
dominated by three major components, photo-protection, 
efficient metabolism and water use. Photo-protection 
involves leaf morphology, down-regulation, pigment com-
position and antioxidants. Efficient metabolism is deter-
mined by CO2 fixation, canopy photosynthesis, spike pho-
tosynthesis and respiration. Water use efficiency involves 
the roots that match evaporative demand and regulation of 
transpiration. Partitioning (HI) consists of spike fertility, 
stress signaling, regulating, grain filling, and stem carbo-
hydrate storage and remobilization (Reynolds et al. 2011). 
A similar model has also been constructed for yield under 
drought.

As one of the great efforts in phenotype prediction, the 
Genomes to Fields Initiative was established to predict 
traits from genotype and environment, thereby leading to 
improved maize production (http://www.genomes2fields.
org). One of the subprojects, Genome by Environment, 
aims to assess environmental effects, using 31 inbreds and 
nearly 1000 hybrids tested in 22 environments across 14 
states in the US and Canada. Similarly, Next-Generation 
Crop Breeding Platform for Predicting Germplasm Per-
formance in Target Environments, proposed by University 
of Florida in collaboration with CG centers, is to develop 
a breeding platform for integrating and harmonizing geno-
type, phenotype, environment, and management data, and 
build next-generation crop-based models for predicting 
performance of genotypes in different environments (M. 
P. Reynolds 2015, presented at CIMMYT Science Week). 
However, greater efforts will be needed to establish a com-
prehensive predictive model to reveal the diverse biologi-
cal networks, by which plants respond to combined climate 
change catastrophes. Such a model could be utilized to 
improve plant adaptation to changing climates (Ahuja et al. 
2010).

Genotype‑by‑environment interaction

GEI has been investigated recently through QTL mapping 
and gene cloning. QTL mapping using phenotypic data col-
lected from multiple locations can be explored for under-
standing of the mechanisms involving GEI and their rela-
tive importance. The QTL with additive effects have four 
main GEI patterns (Des Marais et  al. 2013): (a) antago-
nistic pleiotropy, with sign or direction changing of addi-
tive effects; (b) conditional neutrality with environment-
dependent additive effects, which are limited to specific 
environmental conditions; (c) differential sensitivity, where 
the magnitude of additive effects are environment depend-
ent; and (d) no GEI with no detectable change in addi-
tive effects across environments. One of the earliest GEI 

http://www.genomes2fields.org
http://www.genomes2fields.org
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evaluations is to simply compare QTL identified across 
three locations in tomato (Paterson et al. 1991). QTL map-
ping under contrasting environments with one signifi-
cantly different factor can be explored for understanding 
of actual GEI. Such studies are largely performed for abi-
otic stresses. From over 700 research reports, 37 of them 
with QTL mapped for abiotic stresses and complete QTL 
information available were selected for an integrative anal-
ysis (Des Marais et  al. 2013), revealing that nearly 60  % 
of QTL exhibited GEI caused by antagonistic pleiotropy or 
environment-specific effects. These two GEI types showed 
strong influence on QTL effect plasticity as measured by 
the absolute difference in the standardized additive effects 
across environments.

Two types of GEI analyses have been done based on 
expression QTL (eQTL). One is based on the gene that 
shows different environment-dependent expression pat-
terns in two genotypes. Another is based on genome-wide 
association study using expression levels of many geno-
types across multiple environments. However, only few 
typical eQTL mapping reports are available with mapping 
populations tested under controlled abiotic conditions and 
quantified phenotypic expressions. One of the early formal 
eQTL studies involving an abiotic manipulation focused 
on Brassica rapa leaf tissue from plants grown under two 
levels of phosphorus (P) availability and identified over 
3226 transcripts and several notable hot spots responsive 
to P, without formal tests of GEI (Hammond et al. 2011). 
Using an RIL population tested across soil drying treat-
ments, thousands of genes that responded to soil drying and 
hundreds of main-effect eQTL were identified in Arabi-
dopsis by eQTL mapping. However, very few eQTL were 
identified with significant interaction with the soil drying 
treatment (Lowry et  al. 2013). There is accumulating evi-
dence in model organisms such as yeast and flies that GEI 
are ubiquitous, accounting perhaps for the greater part of 
the phenotypic variation (Grishkevich and Yanai 2013). 
Such interactions appear to be caused by the changes to 
upstream regulators rather than local changes to promoters. 
Moreover, genes show different levels of GEI, and many 
factors, including promoter architecture, expression level, 
regulatory complexity and essentiality, are associated with 
the environment-induced differential gene regulation. For 
example, significant differences in response to drought or 
cold were found between the genes with consistent expres-
sion and the genes with variable expression under abiotic 
stresses. On average, the consistently expressed genes 
tended to share relatively more pairwise haplotypes, with 
lower promoter diversity and fewer nonsynonymous poly-
morphisms (Lasky et al. 2014).

To understand the origin, spread, and evolutionary pro-
cesses of GEI, the specific genes that control GEI pheno-
types and the mutational variants that define functionally 

distinct alleles should be identified (Des Marais et  al. 
2013). We need to determine which of the following factors 
are more often GEI driver in plant abiotic stresses: gene 
type (e.g., environmental sensors, biosynthetic enzymes, 
or regulatory proteins), gene characteristics (e.g., paralogs, 
or complex cis-regulatory control), mutation type (coding/
noncoding, or transposable elements, etc.), and molecular 
mechanisms (condition-dependent epistasis, gene expres-
sion, enzymatic activity). Genes exhibiting GEI can be 
identified and used in comparative analyses across lineages 
and tests for parallel and convergent evolution in responses 
to the environment. The complex regulatory systems plants 
have evolved to control phenology are driven largely by 
environmental cues such as photoperiod, temperature, and 
circadian signals (Kim et  al. 2009). As summarized for 
cloned GEI genes using flowering time and soil and water 
availability as examples, a variety of natural variants and 
mechanisms have been revealed at the molecular level, 
including nonsynonymous changes in receptor proteins, 
loss-of-function mutations in transcriptional repressors, 
splicing variants in biosynthetic enzymes, and gene dupli-
cation in transcription factors (Des Marais et al. 2013).

To predict GEI, environmental covariates and crop mod-
eling have been integrated recently into the genomic selec-
tion framework through factorial regression model (Heslot 
et  al. 2014). Stress covariates for predicted crop develop-
ment stages were derived from daily weather data, with 
model tested by a large wheat dataset. For unobserved 
environments with available weather data, the accuracy of 
genotype performance (phenotype) prediction increased by 
11.1 % on average. With insight into the genetic architec-
ture of GEI provided by this model, genotype performance 
could be predicted based on available environment data 
such as past and future weather scenarios. In another report, 
using covariance functions GEI was modeled through inter-
actions between high-dimensional sets of markers and 
environmental covariates (Jarquín et al. 2014). Using data 
from 139 wheat lines genotyped by 2395 SNPs and pheno-
typed for grain yield over 8 years across locations in north-
ern France, prediction accuracy substantially increased 
(17–34  %) by including interaction terms in the models 
compared to models with main effects only. Similarly, GEI 
was modeled in genomic selection using a marker × envi-
ronment interaction (Lopez-Cruz et  al. 2015), which was 
used to analyze three CIMMYT wheat datasets with over 
1000 lines genotyped by GBS and phenotyped at CIM-
MYT. The model had substantially greater prediction accu-
racy, compared to an across-environment analysis with GEI 
excluded.

So far, environmental information has been used, col-
lectively in almost all cases, as a component in the model 
to investigate GEI and the phenotypic performance across 
different environments, without partitioning into individual 
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environmental factors. Such evaluation usually does not 
involve any envirotypic information, by assuming that dif-
ferent locations have different environmental effects and 
thus difference revealed in genetic and molecular analy-
sis can be attributed to GEI. With more thorough under-
standing of genotypic information, we can now precisely 
describe genes, alleles, haplotypes and their integrative 
contribution to a phenotype. As a result of envirotyping, we 
should be able to dissect the E component into individual 
factors. By incorporating precise measurements of G and 
E with precision phenotyping, therefore, GEI can be evalu-
ated precisely, and predicted based on the theoretical model 
established with G and E information.

Environment‑responsive genes

Plastic responses to environmental signals can occur at 
the molecular level. To initiate a signaling cascade, a 
receptor at the cell surface must first perceive an external 
stimulus. The environment-responsive genes can be classi-
fied into two major categories: one responding to neutral 
environments such as photoperiods, regular temperatures 
and normal nutrient levels, and the other to the environ-
ments with abiotic stresses such as drought, waterlog-
ging, extreme temperatures and deficiency of essential 
nutrients. Under half of the studies Alvarez et  al. (2015) 
reviewed (41  %) addressed how gene expression can be 
affected by environmental stimuli, such as abiotic stress, 
environmental heterogeneity in time or space, host–para-
site interactions and potentially selective biotic and abiotic 
interactions. Ten years of transcriptomics in natural envi-
ronmental fluctuations have shown that stress responses 
can have significant impacts on many categories of genes, 
and transcription may be affected by even small environ-
mental changes. Responses to the environmental change 
can involve the post-translational modifications of the com-
ponents of signaling pathways (Nühse et al. 2007). Alterna-
tively, regulatory gene transcription can respond to a wide 
range of external stimuli. Gene expression alternation and 
thereby plasticity generation can be created by epigenetic 
processes, such as DNA methylation, histone modifica-
tion and transposable element activation (Chinnusamy and 
Zhu 2009). Variation in small RNA populations can lead 
to post-transcriptional control (RNAi) as well as changes 
in chromatin modification. Lastly, gene expression can be 
also affected by the expansion of short repeat sequences 
(Nicotra et  al. 2010). With large-scale epigenomic analy-
sis involving large numbers of genetic samples, spatial 
and temporal effects on families or inbreds can be parti-
tioned to optimize the genetic variation to identify frequent 
epialleles.

Under well-managed or near-iso-environments, genes 
responsive to climate change catastrophes can be dissected. 

It is important to decipher and predict plant dynamics 
under field or natural conditions (Izawa 2015). Many genes 
have been cloned with function analyses for their responses 
to major neutral or extreme stressful environments. Identifi-
cation of specific genetic determinants of stress adaptation 
to waterlogging, drought, low temperature, Al toxicity and 
salinity has revealed that the genetic loci are often associ-
ated with distinct regulation or function, duplication and/
or neofunctionalization of genes that maintain plant home-
ostasis (Mickelbart et al. 2015). At the same time, a large 
number of genes have been cloned for biotic stress toler-
ance, including over ten genes for rice blast resistance (as 
summarized in Chen et  al. 2015). In addition, a series of 
genes responsive to neutral or normal environmental fac-
tors, such as normal light and temperature (for photo- and 
thermo-sensitivity), have been cloned (as summarized in 
Matsubara et al. 2014).

Due to selection of dramatic fluctuation of diverse envi-
ronmental factors, wild plants have evolved with their 
genetic networks responsive to such complex nature condi-
tions. Plant adaptation to environmental stresses are coor-
dinated and fine-tuned by adjusting growth, development 
and cellular and molecular activities. Responses to stresses 
are usually accompanied by major changes in the levels 
of transcriptome, proteome and metabolome. The meta-
bolic adaptations to environmental stress factors involve 
increase, decrease or accumulation of various metabolites 
in leaves, shoots, roots, flowers, seedlings, grains, and nod-
ules of plants (Ahuja et al. 2010). As an important contribu-
tor to abiotic stresses, miR156 isoforms are highly induced 
by heat shock, and the miR156-SPL module mediates the 
response to recurring heat shock in Arabidopsis thaliana 
and thus may function to integrate stress responses with 
development (Stief et  al. 2014). Plant adaptation to envi-
ronmental stresses is modulated by a myriad of genes, 
proteins and metabolites, and their corresponding meta-
bolic pathways or biological networks. Phenotypic expres-
sion over both space and time is inconsistently affected 
by environmental variability, which should be accounted 
for any statistical models for estimation of parameters of 
interest (Cobb et al. 2013; Araus and Cairns 2014). Further 
identification of the genome architecture associated with 
responses to particular stimuli might help us predict plas-
tic responses to adverse environments imposed by climate 
change (Nicotra et al. 2010).

Prediction of biotic and abiotic stresses

Based on the environmental factors and their predominant 
changes that affect disease and pest epidemics, epidemic 
time, place and distribution of biotic stresses can be pre-
dicted, in combination with other relevant social factors 
(Fig. 2). Such prediction can be also done to forecast new 
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abiotic stresses caused by significant weather variation and 
climate change. In general, biotic and abiotic stresses can 
be predicted based on Gb (genotype of biofactors in case of 
biotic stresses), Gh (genotypes of the host crop), E and their 
interactions. E should include all the environmental factors 
that affect crop growth and yield, dominate the boom, bust 
and epidemics of diseases and pests, and impose abiotic 
stresses to crop plants.

Prediction of biotic stresses involves examining new 
diseases and races due to weather variation and climate 
change, establishing prediction model to forecast new dis-
eases and races, and their spread paths and speeds. The 
prediction should be done for major environments, major 
experimental stations and production zones. With detailed 
envirotypic information available, prediction may be done 
for experimental blocks, plots and even individual plants. 
To predict abiotic stresses, environments should be well 
characterized, particularly for the prevalent factors.

Biotic stresses can be predicted for both short and long 
terms. The former is important for farmers to take actions 
to reduce stress-related losses. Such prediction should be 
done largely for the coming season or year based on cur-
rently available and forecasting weather data, in combi-
nation with historical data on diseases, pests and climate. 
With the prediction, forecasting before the season, boom 
or bust cycle is highly preferred. The long-term prediction 
is important for scientists to develop techniques and vari-
eties to be prepared for the diseases and pests to change, 
evolve, or move. It is largely done for the coming years 
and for their movement and spread, based on historical 
and current climate data and foreseeable climate change 
with updating knowledge on the epidemic diseases/pests, 
host–pathogen interaction (GbXGh), GEIs (GhXE, GbXE, 
and GhXGbXE), and the genes and genotypes of the host 
plants against diseases and pests. Based on a large num-
ber of pests and pathogens examined, an average poleward 
shift of 2.7 km per year since 1960 has been demonstrated, 
while a significant variation in trends was detected among 
taxonomic groups (Bebber et  al. 2013). The positive lati-
tudinal trends observed in many taxa provide evidence to 
support the hypothesis that global warming has driven the 
pest movement.

Wheat rust Ug99, detected first in East Africa, is one 
of the best examples for disease prediction. Relevant fac-
tors that determine movement of Ug99 in wheat have been 
integrated to predict the rust epidemics (Singh et al. 2006). 
The factors include the current status and distribution of the 
rust, prevailing winds, climatic factors favoring survival 
and sporulation, wheat production zones (geographical 
distribution and associated human populations), historical 
migration patterns for the rust races with East African ori-
gin, and responses of existing cultivars to the rust. The rust 
monitoring can be established and optimized by developing 

standardized data collection, building up lab capacity for 
rapid diagnostics, centralizing data management and infor-
mation dissemination, monitoring both pathogen and host 
in an integrative way, and establishing early warning/fore-
casting system.

Prediction for abiotic stresses should be more straight-
forward as the relevant environments are the direct causal 
factors. Stressful factors may come from climate (radia-
tion, temperature, precipitation, air, etc.), soil (nutrients, 
moisture, pH, salinity) and water (Deinlein et  al. 2014; 
Lobell et  al. 2014; López-Arredondo et  al. 2014; Hu and 
Xiong 2014). Abiotic stresses caused by soil factors, modi-
fied largely by production activities, are more predictable 
and measurable than biotic stresses. Climate factors can be 
largely predicted based on latitude, longitude and elevation. 
Compared to climate changes that cause long-term varia-
tion, weather changes cause short-term, less-predictable 
fluctuations. Both climate and weather changes may cause 
significant variation of abiotic factors and thus stresses on 
crop plants.

It has been predicted that global climate change will 
have significant impacts on crop productivity by creating 
significant abiotic stresses on crop plants such as ozone 
and heat. Depending on production zones, some crops 
show primary sensitivity to single stresses such as ozone 
(e.g., wheat) and heat (e.g., maize) (Tai et al. 2014). High 
temperatures contribute to reduced crop yields, and pre-
dicted global warming has raised growing concern regard-
ing future crop productivity and food security. Without 
adaptation, losses in crop production are expected for three 
major cereals (wheat, rice and maize) in both temperate 
and tropical production zones by 2  °C of local warming 
(Challinor et  al. 2014). Yield gains in most wheat-grow-
ing regions have been slowing down by global warming, 
and global wheat production would become more vari-
able over locations and time, with production decrease by 
6 % for each  °C of further temperature increase (Asseng 
et  al. 2015). With climate change, more frequent adverse 
weather conditions will happen in European wheat zones. 
For example, adverse conditions for 14 representative 
European wheat sites might substantially increase by 2060 
compared to 1981–2010, with more frequent crop failure 
expected (Trnka et  al. 2014). In maize, when adaptation 
is accounted for, average yield losses in the US from a 
2 °C warming would be reduced from 14 % to only 6 % 
(Butler and Huybers 2013). Rainfed maize yields in the 
US (Schlenker and Roberts 2009; Lobell et al. 2013) and 
elsewhere (Lobell et  al. 2011) have indicated a strong 
negative yield response to accumulation of temperatures 
above 30  °C. Maize also shows increased yield sensitiv-
ity to drought stress caused by high vapor pressure defi-
cits. Translation of improved drought tolerance into higher 
average yields becomes more acceptable agronomic 
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changes than decreasing yield sensitivity to drought at the 
field scale (Lobell et al. 2014).

As abiotic and biotic stress combination becomes very 
common, it is essential to predict all relevant stresses 
simultaneously. Responses to combined stresses are genet-
ically controlled to a great extent by different, even func-
tionally opposing, signaling pathways that may interact 
and inhibit each other, and therefore, it would be impos-
sible to extrapolate directly the response to simultaneous 
multiple stresses from those to single stresses (Suzuki 
et al. 2014; Prasch and Sonnewald 2015; Ramegowda and 
Senthil-Kumar 2015). By omics and functional analyses 
of individual genes, a convergence of signaling pathways 
has been revealed for abiotic and biotic stress adaptation. 
Complicated potential effects of abiotic stress have been 
expected on resistance components, for example, extra-
cellular receptor proteins, R-genes and systemic acquired 
resistance. Such elaborated stress resistance crosstalk 
would also happen at the levels of hormone, reactive oxy-
gen species, and redox signaling (Kissoudis et  al. 2014). 
The prediction for possible combined stresses would help 
develop breeding strategies for manipulation of individual 
common regulators and pyramiding of non-interacting 
components.

Integration of phenotyping with envirotyping

Crop modeling and phenotype prediction depend on preci-
sion phenotyping as a feedback correct for the best model-
fitting. A new trend in crop science will be to combine 
high-throughput precision phenotyping with large-scale 
envirotyping to collect, mine and utilize the two sets of 
information comprehensively. Currently, many robotic, 
high-throughput phenotyping systems are built under con-
trolled or well-managed environments. Automatic pheno-
typing platform has been established for plants in growth 
chambers with major environmental factors controlled 
(Jansen et  al. 2009; Massonnet et  al. 2010). Expensive 
sensors used in phenotying can be either in fixed location 
with moving plants, in mobile device with fixed plants, or 
colocalized with plants. However, it is very challenging to 
combine the high-throughput phenotyping with large-scale 
envirotyping for several reasons. First, there are a large 
number of genotypes to be tested under a wide range of 
environments. Second, precision phenotyping needs to be 
done across most, if not all, of the developmental stages 
and spaces. Third, it is very expensive. Due to the cost and 
capability limitation, early phenotyping efforts are seldom 
close to meeting the requirements of complete phenomics 
(Houle et al. 2010). Probably, more challenges come from 
establishing such high-throughput phenotyping platforms 
for the crops with big plants and long life cycle such as 
maize and sorghum, because it is very difficult to build up 

large enough controlled environments for a large number of 
big plants to grow for a long time.

Precision phenotyping needs to be coupled with preci-
sion envirotyping, as envirotyping plays a vital role in 
generating phenotypic data of high quality, consequently, 
improving crop research. Field variation in soil, moisture 
and fertility contributes to error variances, thereby masking 
major genetic variation for important traits and reducing 
repeatability, regardless of the cost and precision of avail-
able phenotyping platforms (Masuka et  al. 2012). High-
throughput platforms allow phenotyping a huge number of 
genotypes growing in a larger field, thereby increasing soil 
variability. In general, the larger the land is required for an 
experiment, the harder it becomes to identify a land with 
minimum soil variability (Araus and Cairns 2014).

Phenotypic and envirotypic information collected for 
the same set of genotypes will greatly contribute to crop 
modeling and phenotype prediction by complementary 
and comparison analyses. Firstly, phenotypes collected for 
homogeneous, identical genotypes under large-scale experi-
ments can be used to reveal within-site variation and envi-
ronmental variability, because significant phenotypic varia-
tion can be attributed to significant environmental variation 
and GEI. Secondly, under well-managed environments with 
appropriate experimental error control, phenotypic variation 
in genetically different materials can be largely attributed to 
genetic contribution. Thirdly, under near-iso-environments, 
or controlled vs uncontrolled environments, phenotypic 
differences are the genotypes’ response to the major envi-
ronment factor. Fourthly, envirotyping of all environmental 
factors along with phenotyping will reveal integrative phe-
notypes for different genotypes, by which we can determine 
the contribution of genotypes and their interaction to the 
phenotype. Fifthly, phenotyping overtime using homog-
enous genotypes will reveal dynamic environmental vari-
ation. A recent integrated phenotyping with soil content in 
maize rooting zones indicates that under water-limited con-
ditions grain yield increased significantly without signifi-
cant increase in total water extraction (Reyes et  al. 2016). 
Therefore, the measured long-term genetic gain for yield 
must have been achieved through improved maize adapta-
tion to water stress conditions by either increased water use 
efficiency or increased carbon partitioning to the grain.

Evirotyping for single plots and individual plants

For some major environment factors, such as soil mois-
ture, nutrients and pH, we can now implement envirotyp-
ing at the level of individual plots, single rows, or even 
single plants. For most environmental factors, however, 
it is not possible for a real envirotyping until some great 
technical innovations have been achieved. In one hand, 
variation for some environmental factors might be too 
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small to be detectable, and thus facilities currently avail-
able need to be improved significantly in terms of sen-
sitivity, precision and resolution. On the other hand, 
envirotyping process with well-equipped facilities may 
significantly disturb or interfere with plant growth and 
development, resulting in significant micro-environment 
changes around the crop plants. It can be expected that 
technical innovations with increased precision and mini-
mized disturbance on crop plants will allow our current 
environmental data collection move from the level of 
experimental station to the whole block and then to indi-
vidual plots and single plants, as a zooming-in process of 
photographing to focus on specific details with high reso-
lution (Fig. 3). By the end, we can generate plot- or plant-
based envirotypic data to match up with genotypic and 
phenotypic data for each genotype.

The bottleneck for a plot- or plant-based envirotyping 
could be the high cost involved along with a data tsunami. 
Significant advances in development of platforms and 
facilities are essential for envirotyping to match the cur-
rent scale and resolution of genotyping and phenotyping, 
since crop improvement and production involves a large 
number of varieties (genotypes) each involving a huge 
number of plants. With such a numbers game, significant 
cost reduction will be needed, including much cheaper 
high-throughout and precision envirotyping facilities, less 
labor-intensive processes, and highly effective information 
management platform.

In additional to the technical difficulties and potential 
high cost, dynamic envirotyping across development stages 
and individual plots/plants will result in a data tsunami that 
might be more difficult to manage compared to genotypic 
and phenotypic data, as envirotyping data formats vary 
greatly with huge numbers of images and videos generated 
across developmental stages. Moreover, understanding the 
effect of any single environmental factor often means that 
we have to control the rest, which might be difficult for 
some environmental factors. On the other hand, standardi-
zation of environmental designs for single environmental 
factors, which is required for cross-research and cross-lab 
comparisons, needs to consider the masking effects of one 
major environmental factor over the others.

Envirotyping‑driven precision agriculture 
and breeding

Precision agriculture

Agricultural activities have accumulated many types of 
data, which associate with climate, soil, disease and pest 
epidemics, relationship between yield and plant density, 
and market prices of agricultural products. Data-based 
integration, modeling and simulation help make decisions 
on large-scale agricultural production. In industrial coun-
tries, modern agriculture is moving from mechanization 

Light : intensity, day length 
Air: pollutant, Co2 emission 
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average, maximum, 
minimum 

Water: humidity, 
precipita	on, ground 
water, water quality, 
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microorganisms, weeds, 
pathogens, insects 

Cropping system: 
intercropping, previous 
crop 
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Fig. 3   A zooming-in process of envirotyping. It is vital to move 
envirotyping from the levels of experimental stations and the whole 
field blocks to individual experimental plots and plants by a zooming-

in process so that envirotypic information collected can be matched 
up with genotypic and phenotypic data for each entry or target plant. 
Revised from Xu (2015)
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to informatics, particularly, envirotyping driven, allowing 
high precision and efficient breeding and crop produc-
tion (Fig.  2). As a farming management concept, preci-
sion agriculture is developed based on observing, measur-
ing and responding to field variability, weather conditions 
and other external environmental factors. More generally, 
it should include climate-smart agriculture and intensifica-
tion involving irrigation, fertilization, cropping system and 
intercropping. Crop performance varies typically with both 
space and time which involve statistical treatments. The 
holy grail of research in precision agriculture will be the 
ability to develop information management and decision 
support systems for functional farm management to opti-
mize returns on inputs while preserve resources.

Multi-national corporations have been investing heavily 
to establish a research and development system with deci-
sions supported by big data (Cooper et al. 2016). To do that 
the seed business giant Monsanto recently purchased two 
companies, Precision Planting and Climate Corporation. 
Under guidance of these two companies, samples are col-
lected for soil tests from each point of every 4-acre of land, 
providing detailed soil information for famers to make 
decisions on fertilization, irrigation and also to predict the 
yield that can be achieved for different crops. Through its 
climate software, Climate Corporation provides farmers 
with farm-wide real-time weather data, including temper-
ature, humidity, wind, precipitation, which can be used to 
determine when planting, harvesting and crop management 
should be done for a given block of the farm land.

Using mobile systems supported by big data, real-time 
soil moisture, temperature and crop growth status can be 
obtained, so that farming precision can be significantly 
improved. Precision planting manufactured precision agri-
culture equipment that can be fixed in powerful tractors, par-
allel running planters or other machines. With built-in appli-
cation software, decisions can be made on when the crop 
field should be checked and when pesticides and fertilizers 
should be applied. Real-time soil moisture can be collected 
and used to make irrigation decisions. Such real-time moni-
toring has become increasingly important with increased 
climatic variability, particularly during the off-season and 
in managed drought phenotyping (Araus and Cairns 2014). 
For precision farming supported by big data, all agricultural 
inputs can be brought under precise control so that energy, 
fertilizers, water and pesticides can be significantly saved. 
Through GPS, auto-driving system, computer facilities and 
essential sensors, the information provided by big data soft-
ware can be accessed, manipulated and transferred to real-
ize intelligent agricultural mechanization. According to soil 
properties, such intelligent systems can adjust their planting 
to make the seed sowed at the same depth. They can also 
improve the operation quality, for example, by increasing 
the ratio of single seed planting to 99 %.

With historic climate data, Climate Corporation can pro-
vide more accurate weather prediction for a small area of 
land. The basic model is to develop an informative farm 
map using global germplasm information, historic yield 
data and Climate Corporation’s climate data, and then put 
all possible climate information onto the map. With all the 
data support, the company can provide farmers with crop 
insurance service, and the farmers can access to the map 
to search for specific information and to determine which 
crops and crop varieties should be planted and under what 
conditions they have a good harvest.

In the public sector, landscape-scale crop assessment 
tool (LCAT), a cloud-based tool developed by CIMMYT 
scientists in collaboration with Oak Ridge National Labo-
ratory and GEOGLAM (University of Maryland), can be 
used for crop land identification, crop classification, phe-
nology test, crop status measurement, and in season-fore-
casting input. Data sources include those from satellites 
(Landsat, Aster, MODIS, VIR, etc.), satellite-derived soil 
moisture and other products, and weather (Urs Schulthess, 
CIMMYT, personal comm.). As an example of applica-
tions, N-rate can be calculated by GreenSat for a crop field 
using NDVI maps derived from SPOT satellite with N-rich 
strips identified. Within-field (or rather treatment) variabil-
ity can be detected, as ground cover is measured directly by 
the amount of sun light that a crop captures for photosyn-
thesis (Ortiz-Monasterio et al. 2013). Actionable advice on 
crop management, planning, decisions and field operations 
can reach farmers through mobile phones to guide nutrient 
management (sources, rates, and times for field size, and N 
timing adjusted for water availability), crop establishment 
(seed source and seed rate), crop protection (weed, disease 
and insect management), irrigation (amount, time and fre-
quency), and yield estimation (before and at harvest) (Urs 
Schulthess, CIMMYT, personal comm.).

Agronomic genomics and improvement of companion 
organisms

To better understand the effects of agronomic practices 
on crop growth and yield, the genomic approaches widely 
used in genetics and crop improvement should be explored 
for agronomy. Agronomic genomics aims to integrate 
agronomy with omics to develop a high-efficient, cost-
effective, and environment-friendly crop management 
system to optimize the gene expression and thus the crop 
production (Fig.  2). Effects of agronomic practices, such 
as fertilization, irrigation, pest/disease management, weed 
control, etc., can be revealed by the changes of the level 
and pattern of gene expression as revealed by DNA-, RNA- 
and protein-sequencing technologies. Dynamics of gene 
expression patterns may be directly determined under com-
plex and changing environments. Currently, environmental 
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factors that shape transcriptomics are complex, vulnerable 
and multiplexed, making it difficult to integrate all the 
data collected for crop management for meaningful data 
mining. Nevertheless, agronomic genomics will facilitate 
breeding crop varieties with improved responses to crop 
management.

Compared to the natural conditions where crop plants 
experience, complicate environmental changes across their 
growth and developmental stages, i.e., the dynamics of 
gene expression changes, can be determined more directly 
and accurately under managed or controlled environments. 
Using transcriptome data collected from rice leaves along 
with the meteorological data in the field, including wind 
intensity, air temperature, relative humidity, atmospheric 
pressure, global solar radiation and precipitation, statisti-
cal models were developed for the endogenous and external 
influences on gene expression (Nagano et al. 2012; Fig. 2). 
The transcriptome dynamics is revealed to be predomi-
nantly governed by several key factors such as endogenous 
diurnal rhythms, ambient temperature, plant age, and solar 
radiation. Diurnal gates for environmental stimuli affected 
transcription and pointed to relative influences on differ-
ent metabolic genes exerted by circadian and environmen-
tal factors. In Arabidopsis, DNA microarrays were used 
to reveal how gene expression changes with development 
and responds to environmental conditions (Richards et  al. 
2012). Differences in accession and developmental status 
could equally explain the variation in gene expression in 
two accessions of A. thaliana grown in field conditions, and 
gene expression was significantly predicted with tempera-
ture and precipitation. Using a relatively simple design and 
several environmental factors, these two studies identified 
the molecular basis of response to environmental changes 
and teased apart the influences of development and com-
plex environmental variables (Nagano et al. 2012; Richards 
et  al. 2012), and should be applicable to other crops for 
deciphering the impacts of complex environments on tran-
scriptome fluctuations.

Companion organisms exist on or around the plants, par-
ticularly in the rhizosphere. Crop yield, quality and stress 
tolerance are largely affected by soil environments, particu-
larly the rhizosphere microorganism community. There-
fore, simultaneous improvement of crop and its rhizosphere 
microorganisms has significant implications in genetics, 
ecology and agronomy. Improvement of the rhizosphere 
microorganisms can help establish better environmental 
conditions for crop plants. The improvement involves inor-
ganic and organic conditions. The former includes upgrad-
ing of water and fertility maintainability of the soil, trans-
fer of ineffective inorganic nutrients to effective ones, and 
degrading of soil toxic matters. The latter involves inhib-
iting unfavorable soil organisms but enhancing favorable 
ones. Improving rhizosphere microorganisms will play 

roles in increasing crop yield similar to improving abiotic 
and biotic stresses of crop plants per se. Therefore, com-
panion organisms should be improved under the guidance 
of envirotyping. Molecular biology can be used to modify 
and optimize the environments surrounding the crop plants, 
and it is important to transform crop improvement from the 
crop oriented to crop community oriented.

Four‑dimensional profile of crop breeding

Environmental information has not been well exploited 
for improving our understanding of plant adaptation. It is 
being complemented with environmental characterization 
through large-scale envirotyping via information systems 
such as GIS. It can be exploited for plant breeding and 
crop production in various ways, including but not limited 
to, precision measurement of environmental factors affect-
ing specific developmental processes, selection of target 
environments for specific experiments, designation of envi-
ronmental factors associated with phenotypic variation, 
dissection of GEI factors into specific components, and 
breeding for improved response or adaptation to specific 
environments, environmental factors and their combina-
tions. Ultimately, an optimized precision breeding and crop 
production system can be built up with a four-dimensional 
(4D) profile, the first three (3D) being spatial determined 
by genotype, phenotype and envirotype, while the fourth 
being temporal involving developmental stages (Fig.  4), 
and thus a cultivar or genotype architecture can be designed 
with an optimized phenotype and best adaptation to a target 
environment or crop management system. With genome-
wide understanding of the environmental impacts on crop 
plants—enviromics and long-term trial data and outputs 
from general circulation models to form climate change-
oriented breeding—breeding by design can be driven by 
incorporating information from genotyping, phenotyping, 
and envirotyping across developmental stages. With the 
support of the 3D (G–P–E) information, for example, man-
agement of wheat rust race Ug99 can facilitate establish-
ing more effective G–P–E models for biotic stresses (Dave 
Hudson, CIMMYT, personal comm.). Monitoring systems 
for tackling biotic stresses that have been established with 
G–P–E informatics are well in the position to predict tem-
poral change of the relevant stresses for a 4D informatics-
driven precision breeding.

“Sustainable Intensification” aims at increasing crop 
production through more efficient use of all resources, 
while minimizing pressure on the environment and devel-
oping resilience, natural capital and environmental ser-
vices. Breeding under conservation agricultural system can 
help understand if full selection under conservation agri-
culture conditions results in genotypes with better perfor-
mance under such conditions, better emergence vigor/crop 
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establishment, and better performance under water-limited 
conditions. It may also help us understand if such a full 
selection would result in genotypes with excessive height 
and tendency to lodge, and less earliness. However, little 
has been done through breeding to fully realize the yield 
potential of new germplasm, for example, under no-tillage. 
On the other hand, low GEI (15 % of variability) suggests 
that no separate breeding program would be required for 
conservation agriculture (Hlatywayo et al., Cairns and Thi-
erfelder; CIMMYT, personal comm.). As envirotypic infor-
mation becomes available for all the factors under conser-
vation agriculture conditions, a precision breeding program 
can be designed and optimized based on the 4D breeding 
profile so that the breeders can deal with complexity with-
out being lost in complexity (Fig. 4).

The concept of 4D plant breeding profile can be used 
to identify the best environments for a specific crop and 
to adjust breeding strategies for the changing target envi-
ronments. As one of the examples for movement of crop 
belts, U.S maize production increase from 1.8 to 12.7 bil-
lion bushels during 1879–2007 accompanied a substantial 
change of the footprint of production (Beddow and Pardey 

2015). During this period, the US corn growing areas 
moved 279  km north and 342  km west. The new spatial 
output indices developed showed that such spatial move-
ment contributed to 16–21  % of the yield increase in US 
maize production over the 128  years. This long-run per-
spective provides historical precedent for how much crop 
production might adjust to future climate change and tech-
nology innovation.

Information and support systems

The phenotype we observed is the outcome of the interac-
tions between constantly changing environmental factors 
and a certain genotype. A full understanding of this pro-
cess posts a great challenge and depends on high-through-
put envirotyping platforms and the power of computation 
to analyze big datasets. In addition to currently available 
large datasets created by genotyping and phenotyping, 
envirotyping will generate a huge amount of information 
including images and videos, causing a data tsunami in the 
near future. Therefore, the G–P–E data space should be 
expanded to include a fourth dimension contributed with 
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the time (T) that lasts through the whole developmental 
stages of crop plants. There are 148,000 wheat accessions 
stored in CIMMYT Genebank and 113,000 rice acces-
sions in IRRI Genebank. These accessions can be geno-
typed using SNP chips to produce thousands to millions of 
genotypic data points per accession, or sequenced to pro-
duce Tb levels of DNA, RNA and protein data. To meet 
the challenges of increasing envirotypic information and to 
prevent agronomists and biologists from devouring by the 
data tsunami, standardized data generation and collection 
procedures, data collecting tools, sampling technologies, 
controlled vocabularies and ontologies, and interoperable 
query systems should be established. An integrative infor-
mation system will need a general database with ontology 
control to bring genotypic, phenotypic and envirotypic 
information together, which is particularly important for 
comparison and integration across crop species. In general, 
we need to develop a generic database and information 
system for all the data from different G–P–E–T sources. 
As significant efforts have been made in development of 
controlled vocabularies and ontologies for genotyping and 
phenotyping (Xu 2010), we need to follow the scenarios to 
develop the similar system for envirotyping. Unique iden-
tifiers that are associated with each concept in envirotyp-
ing should be developed and used for linking and querying 
databases.

High-performance computing cluster, hardware and 
software are needed for data analysis. Considering that 
G–P–E–T data have been generated and maintained largely 
through different research programs and groups, it is vital 
to establish a one-step-shopping system to allow all the 
data accessible to all relevant scientists and users. Systems 
biology approaches driven by information could prove ben-
eficial and biological models could be generated finally 
to show the contribution of different signaling pathways 
through building plant ‘-omic’ architectural responses to 
climate change catastrophes (Ahuja et al. 2010).

To meet the data tsunami challenge, a successful crop 
science research program needs to back up with appropri-
ate decision support tools. Integrative Breeding Platform 
(IBP) provides tools to help breeders in designing and 
managing experiments, collecting and storing data, and 
conducting analyses (https://www.integratedbreeding.net). 
Its interconnected software, Breeding Management Sys-
tem (BMS), is designed for breeders to manage their daily 
activities throughout their breeding programs. However, the 
databases and tools currently available or under develop-
ment are largely for genotypic and phenotypic information, 
with little consideration of environmental data. Apparently, 
incorporation of all environmental information into data-
bases and tools deserves a special attention. Future changes 
for long-term breeding program orientation can be pre-
dicted by utilizing downscaled general circulation model 

outputs in combination with mega-environment defini-
tions, crop production areas, specific areas or locations, and 
socioeconomic data. Learning from the best and the past 
through data mining will help us to develop an integrated 
approach to optimize crop production.

Future prospects

In the future, envirotyping will face more challenges than 
what genotyping and phenotyping have ever. Human 
resources and investments are needed to be dispatched 
among genotyping, phenotyping and envirotyping for a 
balanced development. As high-throughput and sequence-
based genotyping becomes routine and high-throughput 
and precision phenotyping becomes achievable, a full set 
of next-generation high-throughput precision envirotyp-
ing technologies will be also showing up at the corner. As 
in many cases, where biologists present challenges while 
computational scientists present solutions, envirotyping 
tools and methodologies need to be developed through 
multidisciplinary collaborations by standing on the shoul-
der of history. Companion organisms have more compli-
cated interactions with host plants than other environmental 
factors. Predictive phenomics would become possible with 
more and more envirotypic information available. Under-
standing the effects of crop management on gene expres-
sion will help us design more cost-effective, sustainable and 
multifunctional crop production systems. Envirotyping will 
help identify the best sets of crop management practices 
to optimize yield and yield components such as plant den-
sity. A great contribution to breeding and crop production 
by envirotyping would be the precision agriculture largely 
driven by envirotypic information and reducing drudg-
ery. Due to increasing soil and water pollutions, demand-
ing for healthier and nutritious food, which is becoming 
increasingly important in developing countries, will drive 
to establish soil–human health relationship and to develop 
new tools and methodologies for dynamic and continuous 
envirotyping to monitor the entire environmental profile. 
Cutting childhood mortality in half (FAO 2008) through 
biofortification by 2050 means that we need to develop new 
varieties with improved nutrition by combining varietal 
improvement for the changing soil nutrients. Envirotyping-
guided crop science will help us to face all the challenges 
through genetic studies, genotype reconstruction, variety 
development, abiotic/biotic stress prediction, and precision 
agriculture and breeding. Envirotyping, as a third “typing” 
technology for crop science, should be used to decipher all 
environmental impacts on growth, reproduction and sur-
vival of crop plants. With large-scale envirotyping, in com-
bination with known genotypic information, environments 
for crops can be optimized and phenotypic performance 

https://www.integratedbreeding.net
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under specific environments can be largely predicted, thus 
enhanced cost–benefit efficiency for precision breeding and 
crop production.
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