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integrating genomic prediction with phenological model-
ling of Asian rice (Oryza sativa, L.), allowing the heading 
date of untested genotypes in untested environments to be 
predicted. The method simultaneously infers the phenolog-
ical model parameters and whole-genome marker effects 
on the parameters in a Bayesian framework. By cultivating 
backcross inbred lines of Koshihikari × Kasalath in nine 
environments, we evaluated the potential of the proposed 
method in comparison with conventional genomic predic-
tion, phenological modelling, and two-step methods that 
applied genomic prediction to phenological model param-
eters inferred from Nelder–Mead or Markov chain Monte 
Carlo algorithms. In predicting heading dates of untested 
lines in untested environments, the proposed and two-step 
methods tended to provide more accurate predictions than 
the conventional genomic prediction methods, particularly 
in environments where phenotypes from environments sim-
ilar to the target environment were unavailable for training 
genomic prediction. The proposed method showed greater 
accuracy in prediction than the two-step methods in all 
cross-validation schemes tested, suggesting the potential of 
the integrated approach in the prediction of phenotypes of 
plants.

Abbreviations
BIL  Backcross inbred line
C-Bay  Crop (DVR) model based on an MCMC 

algorithm
C-Nel  Crop (DVR) model based on a Nelder–Mead 

algorithm
DTH  Days to heading
DVR  Developmental rate model for rice heading date 

prediction
DVS  Developmental stage
EBL  Extended Bayesian LASSO

Abstract 
Key message It is suggested that accuracy in predict‑
ing plant phenotypes can be improved by integrating 
genomic prediction with crop modelling in a single hier‑
archical model.
Abstract Accurate prediction of phenotypes is important 
for plant breeding and management. Although genomic 
prediction/selection aims to predict phenotypes on the basis 
of whole-genome marker information, it is often difficult 
to predict phenotypes of complex traits in diverse environ-
ments, because plant phenotypes are often influenced by 
genotype–environment interaction. A possible remedy is 
to integrate genomic prediction with crop/ecophysiological 
modelling, which enables us to predict plant phenotypes 
using environmental and management information. To this 
end, in the present study, we developed a novel method for 
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GBLUP  Genomic best linear unbiased prediction
IM  A hierarchical model integrating EBL with the 

crop (DVR) model
LOEO  Leave-one-environment-out cross-validation
LOELO  Leave-one-‘combination of an environment and 

a line’-out cross-validation
LOLO  Leave-one-line-out cross-validation
MCMC  Markov chain Monte Carlo
QTL  Quantitative trait locus
RMSE  Root mean squared errors
T-Bay  Two-step approach based on C-Bay and EBL
T-Nel  Two-step approach based on C-Nel and EBL

Introduction

Accurate prediction of phenotypes of plants is important 
for breeding and management because it facilitates the 
design and selection of new genotypes, the introduction 
of new genetic resources and decision-making in manage-
ment practices. It is desirable for a number of traits to be 
predicted in cultivation, including yield, phenology, stress 
resistance and morphological architectures. These traits are 
often complex and influenced by a number of factors such 
as interactions among genes, environments and manage-
ment methods. A key statistical technique recently devel-
oped for the prediction of complex traits is genomic pre-
diction or genome-wide prediction. Genomic prediction 
uses genome-wide DNA markers simultaneously as predic-
tor variables and plays an essential role in genomic selec-
tion. Although this approach was proposed for predicting 
genetic merit in animal breeding (Meuwissen et al. 2001), 
it has been suggested that accurate genomic prediction is 
of practical use for phenotypic prediction in plants such as 
crops (Crossa et al. 2010), trees (Resende et al. 2012) and 
fruits (Iwata et al. 2013). However, a drawback of genomic 
prediction is that it is often difficult to predict the perfor-
mance of plants in diverse environments (Resende et al. 
2012; Ly et al. 2013), because phenotypes of complex traits 
are often influenced by genotype–environment interaction. 
As climate change and variability are serious concerns for 
crop and livestock production (Thornton et al. 2014), sta-
tistical models that enable prediction of the performance of 
plants cultivated in various environmental conditions will 
play a crucial role in breeding for environmental adaptabil-
ity and optimization of management methods.

Another approach for predicting phenotypes of plants is 
a mathematical modelling approach known as crop model-
ling or eco-physiological modelling (Yin et al. 2004; Ham-
mer et al. 2006). Crop models generally consist of multi-
ple functions that depict physiological processes (Tardieu 
2003). Using environment and management information, 
including temperature, photoperiod, precipitation and 

sowing date, the models predict the responses of plants/
organs to environment stimuli (Tardieu 2003). Because it 
is recognized that the parameters of crop models are geneti-
cally controlled, parameters are often referred to as genetic 
coefficients or model input traits (Yin et al. 2003). Thus, 
genetic dissection of crop model parameters has been con-
ducted to reveal the genetic control of responses to the envi-
ronment. Models include those for growth and flowering 
time in barley (Yin et al. 2000, 2005), leaf growth in maize 
(Reymond et al. 2003), fruit quality in peach (Quilot et al. 
2005), flowering time in rice (Nakagawa et al. 2005) and 
wheat (Bogard et al. 2014), yield under drought stress in 
rice (Gu et al. 2014) and flowering time in Brassica olera-
cea (Uptmoor et al. 2008). Based on estimated QTL effects, 
phenotypes of untested lines in untested environments can 
be predicted via the prediction of crop model parameter 
values. For example, Gu et al. (2014) predicted yields in 
rice and reported that prediction accuracy, measured as 
the coefficient of determination between the observed and 
predicted values, was 0.20‒0.21. Reymond et al. (2003) 
predicted leaf elongation rates in maize and reported that 
the coefficient of determination was 0.74. Days to heading 
(DTH) in wheat was predicted by Bogard et al. (2014) with 
a root mean squared error (RMSE) between the observed 
and predicted of 6.3 days. These studies used only signifi-
cant QTLs (markers) to predict the parameter values of 
crop models. Because detected QTLs usually capture only 
a part of the genetic variance and QTL effect sizes tend 
to be overestimated, using whole-genome markers (i.e. 
genomic prediction) is preferable for prediction.

A straightforward way to use genomic prediction with 
crop models is to predict the model input traits (param-
eters of crop models) using genomic prediction methods. 
This approach (the two-step approach) is similar to the 
studies based on detected QTLs described above. In this 
approach, the model input traits are first statistically opti-
mized. Then the genomic prediction methods are trained 
with the optimized model input traits. A major advantage 
of this approach will be the feasibility of statistical imple-
mentation. However, when the model input traits are sta-
tistically optimized, an issue for this approach will be that 
uncertainty in the optimization of model input traits is not 
taken into account in building genomic prediction models 
because these processes (optimization of model input traits 
and training of genomic prediction) are performed sepa-
rately. Another issue is that, because crop model parame-
ters are often optimized for each line/cultivar independently 
(Nakagawa et al. 2005; Bogard et al. 2014), genetic related-
ness among lines/cultivars cannot be taken into account in 
the optimization. A possible way of addressing these issues 
would be to adopt an approach more comprehensive than 
the two-step approach, i.e. a single hierarchical model that 
combines a crop model with a genomic prediction model. 
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With this approach (the integrated approach), the issues of 
the two-step approach can be avoided through the simul-
taneous inference of crop model parameters and marker 
effects and consideration of genetic relatedness among 
lines/cultivars via whole-genome markers. Thus, the pre-
dictions of the integrated approach would be expected to 
be more accurate and robust than those of the two-step 
approach.

Technow et al. (2015) proposed a statistical approach 
to combine genomic prediction with crop modelling for 
predicting the yield of maize. Using genome-wide mark-
ers, the authors defined prior distributions of four meas-
urable traits that are inputs for a maize growth model and 
predicted the input traits and grain yield using an approxi-
mated Bayesian computation technique. During simulation 
analysis, the authors showed that based on environmental 
information, the integrated approach predicted grain yield 
more accurately than genomic prediction. However, to date, 
there has been no comparison between the integrated and 
two-step approaches; therefore, it has not been revealed 
whether the integrated approach, which is statistically 
more complex than the two-step approach is superior to the 
two-step approach pertaining to their prediction accuracy. 
Moreover, the integrated approach has not been applied to 
real data.

To achieve the integration of genomic selection with 
crop modelling, in this study, we developed an integrated 
approach to predict the heading date of rice (Oryza sativa, 
L.) and compared the predictive ability of the integrated 
approach with that of the two-step approaches using real 
data. Modelling of phenological events including the head-
ing date (i.e. flowering time) and maturity time is important 
when simulating crop growth, and is thus an indispensable 
part of a complete crop model (Soltani and Sinclair 2012). 
We also compared the integrated approach with conven-
tional genomic prediction and phenological (crop) model-
ling. As a phenological model for the trait, we used a devel-
opmental rate (DVR) phenological model (Yin et al. 1997; 
Nakagawa et al. 2005). We compared four approaches for 
predicting the heading date. The first approach is conven-
tional genomic prediction. In this approach, heading date 
was directly predicted using whole-genome markers with 
the extended Bayesian LASSO (EBL) (Mutshinda and 
Sillanpaa 2010). The second is conventional phenologi-
cal modelling. In this approach, heading date was pre-
dicted based on daily mean air temperature and photoper-
iod using the DVR model. Parameters of the DVR model 
were inferred in two ways using Nelder–Mead (i.e. non-
Bayesian) and Markov chain Monte Carlo (MCMC) (i.e. 
Bayesian) algorithms. The third approach is the two-step 
approach. In this, the DVR model parameters were first 
inferred by the Nelder–Mead or MCMC algorithms, and 
then the genomic prediction model for the parameters was 

built using the EBL. The fourth approach is the integrated 
method, wherein the DVR model was combined with a 
genomic prediction model in a Bayesian two-level hierar-
chical model. The first level was the DVR model and the 
second level was the EBL, which inferred whole-genome 
marker effects from the DVR model parameters. The pre-
dictive performance of these methods was evaluated via 
field experiments using 174 backcross inbred lines (BILs) 
derived from japonica and indica varieties, Koshihikari and 
Kasalath, respectively. These lines were cultivated across 
3 years in six locations that represented a wide range of day 
lengths.

Materials and methods

Plant materials and field evaluation

We used 174 Koshihikari/Kasalath//Koshihikari BILs 
together with the parental lines (Koshihikari and Kasal-
ath). These lines were developed by the National Insti-
tute of Agrobiological Sciences Rice Genome Resource 
Center (Ma et al. 2002). Genotypes and a linkage map of 
162 restriction fragment length polymorphism markers are 
available at http://www.rgrc.dna.affrc.go.jp/ineKKBIL182.
html. All these markers were bi-allelic. The BILs were cul-
tivated in six experimental fields across 3 years, resulting 
in field trials in a total of nine environments (Table S1). At 
each site, seeds were pre-germinated in water and sown to 
seedling trays filled with soil. Emergence was recorded for 
each genotype when about 80 % of plants emerged from 
the soil surface. Seedlings were grown either in a puddled 
field or in a poly-house, depending on the environment, and 
air temperature was measured in the nursery environment. 
Nursery duration varied from 15 days to 25 days depend-
ing on the environments (Table S1), but we commonly 
transplanted seedlings with 3–4 leaves. Each environment 
included two field replicates, in each of which 10 seedlings 
of each BIL were transplanted in a single row, with 30-cm 
spacing between the rows. The distance between the plants 
in a row was 15 cm. All fields received an equal amount 
of fertilizer at a rate of 50 kg/ha of N, 50 kg/ha of P2O5 
and 50 kg/ha of K2O, applied prior to transplanting. The 
field was kept flooded at least until flowering for all lines. 
Heading dates were recorded for five central plants for each 
line and were averaged. Although two field replications 
were available at each environment, missing records were 
occasionally observed. Averages of two replications and 
records from one replication had different proportions of 
environmental (non-genetic) variance. Thus, for each envi-
ronment, we used the phenotypic records (i.e. DTH) of the 
replication with the fewest missing records. Air tempera-
tures were measured onsite and the daily photoperiod (Pd) 

http://www.rgrc.dna.affrc.go.jp/ineKKBIL182.html
http://www.rgrc.dna.affrc.go.jp/ineKKBIL182.html
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was calculated astronomically, as per Horie and Nakagawa 
(1990), from:

where ω is the angular rate of daily rotation, φ represents 
the latitude of the observation point and δ is the declination 
of the sun.

Prediction methods

The prediction methods used were categorized into four 
groups (Table 1). Genomic prediction based on EBL (the 
GP method) used DTH and whole-genome marker geno-
types as response and predictor variables, respectively. 
The phenological (DVR) models based on the Nelder–
Mead and MCMC algorithms (C-Nel and C-Bay, respec-
tively) predicted DTH based on mean air temperature and 
photoperiod in the growth period of the rice plants. The 
two-step methods were the combinations of C-Nel and 
C-Bay with EBL (T-Nel and T-Bay, respectively). In the 
EBL regression of the two-step methods, the DVR model 
parameters derived from the respective algorithms and the 
marker genotypes were considered to be the response and 
predictor variables, respectively. In the integrated model 
method (IM), the DVR model parameters were regressed 
on genome-wide markers using EBL and the model param-
eters and marker effects on them were inferred simultane-
ously. In the Bayesian methods (C-Bay, T-Bay and IM), the 
DVR model parameters were log-transformed. In T-Bay 

cos
(

̟Pd

/

2
)

= − tan φ tan δ,

and IM, regression analysis was also conducted in the log-
transformed scale. The prediction methods are explained in 
the subsequent sections.

EBL

The EBL was developed from the Bayesian LASSO (Mut-
shinda and Sillanpaa 2010). Whereas the Bayesian LASSO 
controls the level of shrinkage of predictor variables with 
a single hyperparameter (Park and Casella 2008), the EBL 
controls the level with two hyperparameters: one at the 
global level, the other at the marker-specific level (Mut-
shinda and Sillanpaa 2010). EBL has been shown to be 
robust across factors, e.g. the number of QTLs or heritabil-
ity, which influence the prediction accuracy of genomic pre-
diction (Onogi et al. 2015). We initially tried the genomic 
best linear unbiased prediction (GBLUP) method, which 
is more commonly used for genomic prediction. However, 
because EBL proved more accurate than GBLUP for the 
genomic prediction of DTHs using the rice population of 
the present study (data not shown), we focused on EBL. 
Because the primary purpose of this study was to compare 
the integrated approach with the two-step approach and 
genomic prediction, it was important to use the same regres-
sion method in all the approaches compared (IM, T-Nel, 
T-Bay and GP). We had not intended to compare the differ-
ent regression methods (EBL vs. GBLUP) in this study.

We used the variational Bayesian algorithm introduced 
by Li and Sillanpaa (2012) and modified by Onogi et al. 

Table 1  Prediction methods used in this study

a GP is a regression analysis that uses days to heading and genome-wide markers as a response and predictor variables, respectively. We used 
the extended Bayesian LASSO (EBL) as the regression method. C-Nel is based on the developmental rate (DVR) model, which predicts heading 
dates on the basis of only environmental information and optimizes the model parameters with a Nelder–Mead algorithm. C-Bay is also based 
on the DVR model and infers the parameters in a Bayesian framework. T-Nel and T-Bay perform regression analysis using the DVR model 
parameters estimated by C-Nel and C-Bay, respectively, as response variables, and using the marker genotypes as predictor variables. We used 
the EBL for regression. IM integrates C-Bay with the EBL in a Bayesian framework and infers the DVR model parameters and whole-genome 
marker effects on the parameters simultaneously. Log indicates that the parameters of the DVR model were log-transformed and inferred
b Input information used for prediction. E and G indicate environmental and genomic information, respectively
c Cross-validation schemes used for evaluation of the prediction methods; LOEO, leave-one-environment-out cross-validation; LOLO, leave-
one-line-out cross-validation; LOELO, leave-one-‘combination of an environment and a line’-out cross-validation
d LOLO was conducted in each environment separately
e LOELO was conducted in the environment closest to the target (untested) environment with regard to the root mean squared difference in days 
to heading, which is presented in Table S2

Methoda Inputb Cross-validationc

Type Name Description Log E G LOEO LOLO LOELO

Genomic prediction GP Extended Bayesian LASSO (EBL) ✓ ✓d ✓e

Phenological (crop) model C-Nel DVR model with Nelder–Mead optimization ✓ ✓
C-Bay DVR model with MCMC ✓ ✓ ✓

Two-step approach T-Nel C-Nel → EBL ✓ ✓ ✓ ✓ ✓
T-Bay C-Bay → EBL ✓ ✓ ✓ ✓ ✓ ✓

Integrated model IM C-Bay + EBL ✓ ✓ ✓ ✓ ✓ ✓
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(2015) for parameter estimation. The algorithm was exe-
cuted using an R package, VIGoR (Onogi 2015). We pro-
vide the model structure of EBL and the calculation pro-
cedure performed by the package in the Supplementary 
Methods. The EBL was used in GP, T-Nel, T-Bay and IM. 
In each method, the predictor variables were marker geno-
types and regression coefficients were marker effects. In 
GP, the response variable was DTH. In T-Nel and T-Bay, 
the response variables were the DVR model param-
eters derived from C-Nel and C-Bay, respectively. In IM, 
the response variables were the DVR model parameters 
derived simultaneously with regression coefficients for 
predictor variables (i.e. marker effects on the DVR model 
parameters). In these methods (GP, T-Nel, T-Bay and IM), 
the response variable was standardized and the hyperpa-
rameters were set to the values common across the methods 
(see Supplementary Methods).

DVR model

We used the DVR model developed by Nakagawa et al. 
(2005) which was originally proposed by Yin et al. (1997) 
as a ‘three-stage Beta model’. The model assumes three 
developmental phases before flowering: (1) the ‘juvenile 
phase’, when plants are insensitive to photo stimulus; (2) 
the ‘photosensitive phase’, when photo stimulus is influen-
tial on DVR; and (3) the ‘post-photosensitive phase’ after 
the photosensitive phase for flowering. DVRs accumulate 
from the emergence day, and growth of developmental 
stages (DVSs) is given by:

where D is the number of days since the emergence day. 
Flowering occurs when DVS reaches 1. The DVR at day d 
is defined as follows:

where Td is the mean air temperature (°C) at day d, Pd is 
the photoperiod (h), f and g denote the functions that relate 
Td and Pd with DVRd, respectively, G (≥ 0) represents ear-
liness of the heading date given optimal temperature and 
photoperiod, and DVS1 and DVS2 denote the ends of the 
juvenile and photosensitive phases, respectively. The func-
tions f and g are defined as follows:

and

DVS =

D
∑

d=1

DVRd ,

DVRd =

{

f (Td)
/

G if DVSd < DVS1 or DVSd > DVS2

f (Td)g(Pd)
/

G if DVS1 ≤ DVSd ≤ DVS2
,

f (Td) =







�

�

Td−Tb
To−Tb

��

Tc−Td
Tc−To

�(Tc−To)/ (To−Tb)
�α

if Tb ≤ Td ≤ Tc

0 otherwise

,

where Tb, To and Tc denote the base, optimum and ceil-
ing temperatures, respectively, and Pb, Po and Pc denote 
the base, optimum and ceiling photoperiod, respectively. 
According to Nakagawa et al. (2005), Tb, To, Tc, Pb, Po and 
Pc were fixed to be 8, 30, 42 °C, 0, 10 and 24 h, respec-
tively. Thus, G represents DTH under a 10-h photoperiod 
at 30 °C in the present study as well as in Nakagawa et al. 
(2005). Parameters α (≥0) and β (≥0) represent the tem-
perature and photoperiod sensitivity, respectively. Sensitiv-
ity increases as these parameters increase. The change of 
sensitivity due to these parameters is illustrated in Fig. 1 in 
Nakagawa et al. (2005). DVS1 and DVS2 are defined as

according to Nakagawa et al. (2005). Although some pre-
fixed parameters such as To may show genetic variation, we 
assumed genetic variations existed only in G, α and β in 
this study. Thus, we use Gi, αi and βi to denote the DVR 
model parameters of line i. Note that all these parameters 
are constrained to be ≥0.

Nelder–Mead optimization of the DVR model

The objective function is

where Hij is the DTH of line i in environment j, h is a func-
tion that calculates the DTH for given values of Gi, αi and 
βi and mean daily temperature (Tj) and photoperiod (Pj) in 
environment j. | | indicates absolute difference. Although 
we also tried optimization based on squared loss in the 
preliminary study, prediction accuracy was lower than that 
based on absolute loss (data not shown). This may indicate 
the presence of outliers, because the absolute loss function 
is more robust than the squared loss function in handling 
outliers. However, we did not observe any obvious outli-
ers in the distribution of DTH (Fig. S1) or in the local out-
lier factor analysis (Breunig et al. 2000, data not shown). 
Optimization was conducted for each line. As initial val-
ues for the optimization of G, we tried 40, 55 and 80. For 
α and β, we tried 0.01, 5 and 10. These values were cho-
sen to cover the ranges of estimates in the BIL population 
derived from Nipponbare and Kasalath (Nakagawa et al. 
2005). Consequently, we conducted optimization a total 
of 27 (3 × 3 × 3) times with different initial value com-
binations and obtained 27 sets of estimates of G, α and β. 
From these, we chose the set that minimized the objective 

g(Pd) =







�

�

Pd−Pb
Po−Pb

��

Pc−Pd
Pc−Po

�(Pc−Po)/ (Po−Pb)
�β

if Po ≤ Pd

1 if Po > Pd

,

DVS1 = 0.145+ 0.005G

DVS2 = 0.345+ 0.005G

argminGi ,αi ,βi

∑

j=1

∣

∣Hij − h
(

Gi,αi,βi,Tj,Pj

)∣

∣,
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function. When multiple sets of estimates minimized the 
objective function, we calculated the average of the esti-
mates over the sets. Optimization was conducted by using 
the optim function in R (R Development Core Team 2011).

MCMC inference of the DVR model

In C-Bay, the DVR model was regarded as a regression 
model where the response variable was fixed to be 1:

(1)
1 =

Hij
∑

d=1

DVRij,d + eij,

where DVRij,d is the DVR of line i in environment j at day 
d and eij is the residual. The residual was assumed to follow 
a normal distribution, N

(

0, σ 2
e

)

 where σ 2
e ∼ 1

/

σ 2
e . Log-

transformed values of Gi, αi and βi were assumed to follow 
normal distributions:

G̃i = log(Gi) ∼ N
(

µG, σ
2
G

)

α̃i = log(αi) ∼ N
(

µα , σ
2
α

)

β̃i = log(βi) ∼ N
(

µβ , σ
2
β

)

,

,

Fig. 1  Marker effects on the 
developmental rate model 
parameters derived from the 
two-step approaches (T-Nel 
and T-Bay) and the integrated 
model (IM). Different shades 
indicate different chromosomes 
(left to right, chromosome 1 
to chromosome 12). Dashed 
lines indicate the chromosomal 
positions of known major genes 
illustrated in the figure. Because 
T-Bay and IM estimated the 
marker effects in log-trans-
formed scales, scales of y axes 
differ from those of T-Nel for 
all the parameters. G, α and β 
represent earliness of heading 
date under optimal conditions, 
temperature sensitivity and pho-
toperiod sensitivity, respectively
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where µG, µα and µβ are the means, and σ 2
G, σ 2

α and σ 2
β are 

the variances. Non-informative prior distributions were 
assigned to the means and variances. µG, µα and µβ were 
assumed to be proportional to a constant value. σ 2

G, σ 2
α and 

σ 2
β were assumed to follow scaled inverse Chi-squared dis-

tributions with the degree of freedom being −2 and the 
scaling parameter being 0. Parameter estimation was con-
ducted by using a Metropolis algorithm (Metropolis et al. 
1953) (see Supplementary Methods). The number of itera-
tions was 60,000, and the sampling interval was 50. The 
first 200 samples were discarded as burn-in, and the poste-
rior distributions were inferred from 1000 samples. T-Bay 
used the posterior means of G̃, α̃ and β̃.

Integrated model

Together with C-Bay, the DVR model in IM was regarded 
as a regression model wherein the response variable was 
fixed to be 1 (Eq. 1). The residual was assumed to follow 
a normal distribution N

(

0, σ 2
e

)

, where σ 2
e ∼ 1

/

σ 2
e . G̃, α̃ 

and β̃ were regressed on marker genotypes. For line i, we 
assume

where gp, ap and bp are effects of marker p, and xip is the 
genotype at marker p coded as −1 (AA), 0 (AB) and 1 
(BB). IM infers the DVR model parameters (G̃, α̃ and β̃) 
and the parameters included in these regressions simulta-
neously. The intercepts (µG, µα and µβ) were assumed to 
be proportional to a constant value. As described above, we 
used the EBL to model marker effects, gp, ap and bp. The 

prior distributions of the residual precisions, τ 20,G,τ 20,α and 

τ 20,β were τ 20,G ∼ 1
/

τ 20,G, τ 20,α ∼ 1
/

τ 20,α and τ 20,β ∼ 1
/

τ 20,β , 

respectively. To infer these parameters, we developed a 
variational Bayesian method using MCMC simulation 
to derive the expectations of the DVR model parameters 
(see Supplementary Methods). In this method, the means 
and variances of the DVR model parameters (e.g. E

[

G̃i

]

 or 
V
[

G̃i

]

) that are required for updating the EBL parameters 
(e.g. gp) are obtained via MCMC sampling. Because the 
variational Bayesian inference is related to the EM algo-
rithm (Ghahramani and Beal 2001; Bishop 2006), our algo-
rithm for IM can be seen as analogous to the Monte Carlo 
EM algorithm (Wei and Tanner 1990). MCMC samples of 
G̃, α̃ and β̃ at the last iteration of the combined procedure 

G̃i ∼ N

(

µG +
P
∑

p=1

gpxip,
1
/

τ 20,G

)

α̃i ∼ N

(

µα +
P
∑

p=1

apxip,
1
/

τ 20,α

)

β̃i ∼ N

(

µβ +
P
∑

p=1

bpxip,
1
/

τ 20,β

)

,

were used to derive the posterior distributions of DTH. The 
number of MCMC samples at the last iteration was 300.

Full data analysis

To compare the behaviours of the prediction methods, anal-
ysis was conducted using full data: GP was fitted to each 
environment and C-Nel was fitted to each line separately. 
T-Nel re-estimated the DVR model parameters by using 
the EBL from the estimates from C-Nel. C-Bay and IM 
were fitted to data comprising all lines in all environments. 
T-Bay re-estimated the DVR model parameters by using 
the EBL from the estimates by C-Bay.

Leave‑one‑out cross‑validation

The predictive ability of the prediction methods was evalu-
ated by using three types of leave-one-out cross-validation 
(LOO). The first is leave-one-environment-out cross-vali-
dation (LOEO). In this scheme, one of nine environments 
was removed from the data, and the DTHs of all lines in the 
removed environment were predicted with the prediction 
model derived from the DTHs of all lines of the remain-
ing eight environments. This procedure was repeated until 
all environments were removed once. When T-Nel and 
T-Bay were tested by LOEO, the values of G, α and β esti-
mated by C-Nel and C-Bay, respectively, were used as the 
response variables for regression. The fitted values, i.e. the 
values without residuals, were used for prediction. The sec-
ond LOO is leave-one-line-out cross-validation (LOLO). 
One of 176 BILs was removed from the data, and the DTHs 
of the removed line in all environments were predicted with 
the prediction model derived from the retained data. This 
was repeated until all BILs were removed once. The third 
type is leave-one-‘combination of an environment and a 
line’-out cross-validation (LOELO). In this scheme, one 
of nine environments and one of 176 BILs were removed 
from the data, and the DTH of the removed line at the 
removed environment was predicted with the prediction 
model derived from the data consisting of 175 BILs in eight 
environments. This was repeated until all combinations of 
environments and lines were removed once. LOEO, LOLO 
and LOELO correspond, respectively, to tests of predictive 
ability for tested lines in untested environments, untested 
lines in tested environments and untested lines in untested 
environments.

The phenological models C-Nel and C-Bay were evalu-
ated using only LOEO because they were not able to predict 
new lines (Table 1). Conversely, GP was not evaluated using 
LOEO because GP could not use the environment informa-
tion (Table 1). LOLO of GP was conducted at each envi-
ronment separately. To assess the ability of GP for untested 
lines in untested environments, LOLO was conducted at the 
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environment most similar to the target (untested) environ-
ment. We used the root mean squared difference of DTH 
between environments as the metric of between-environ-
ment similarity. We report the results of this ‘LOLO at 
the most similar environment’ together with the results 
of LOELO for the two-step and integrated approaches, 
because both LOO schemes evaluated the predictive abil-
ity for untested lines in untested environments. Because we 
used DTH of the target environments to determine the most 
similar environments, the prediction ability of GP may have 
been biassed towards an overestimate. However, because GP 
showed the least accuracy, as described later in the Results 
section, such bias, if it existed, would not have influenced 
our conclusions. Another approach for constructing the GP 
training data set for prediction in untested environments is 
to average DTH across the tested (available) environments. 
Although we attempted this, the results were extremely poor 
(data not shown).

In each LOO scheme, predicted DTH values were 
obtained for individual lines in each environment. Predic-
tive ability was measured as RMSE and the Pearson cor-
relation between the predicted and observed DTH. Unlike 
other traits, including yield, DTH needs to be controlled at 
a preferable value rather than to be increased or decreased 
as far as possible; therefore, RMSE is more important in 
practice. Thus, we compared the methods by primar-
ily using RMSE as the metric of accuracy, although we 
reported both metrics (RMSE and correlation). We also cal-
culated the regression coefficients of the predicted values 
on observed values. Because coefficients lower than one 
indicate shrinkage of prediction, we reported the coeffi-
cients as the level of shrinkage.

Results

Phenotype evaluation

The distribution of DTH in each environment is shown 
in Fig. S1. As expected, DTH tended to be longer at 

higher latitudes. Correlation and root mean squared dif-
ference of DTH between environments are presented in 
Table S2. Scatterplots of DTH between environments 
are shown in Fig. S2. As described in the “Materials and 
methods”, on the basis of the root mean squared differ-
ence, we determined the environments used for training 
of GP to test predictive ability of DTH for untested lines 
in untested environments: for prediction at Tsukuba2007, 
Tsukuba2009 was used as the environment for training; for 
Tsukuba2008E, Ishikawa; for Tsukuba2008L, Ishigaki; for 
Tsukuba2009, Ishikawa; for Ishikawa, Tsukuba2009; for 
Fukuoka, Tsukuba2008L; for Ishigaki, Ha Noi, for Thai 
Nguyen, Ishigaki and for Ha Noi, Ishigaki were used as the 
environments for training.

Full data analysis

RMSEs between the observed and estimated DTH were the 
smallest in C-Nel and the largest in T-Bay (Table 2). The 
residual variance σ 2

e  inferred by C-Bay and IM were quite 
small, suggesting good fitting of the models.

The Markov chains of C-Bay converged quickly (data 
not shown). Acceptance rates of Metropolis algorithms 
for the estimates of G̃, α̃ and β̃ were 0.26, 0.83 and 0.67, 
respectively, suggesting good mixing properties. To assess 
the reproducibility of IM, we repeated runs five times with 
different initial values of G, α and β. The estimates (pos-
terior means) of G̃, α̃ and β̃ were highly consistent among 
the replications: mean Pearson correlation coefficients 
among the replications were >0.99 for all the parameters. 
Estimated marker effects on these parameters were also 
consistent among replications (mean Pearson correlation 
coefficients >0.98).

The marker effects inferred by T-Nel, T-Bay and IM are 
shown in Fig. 1. Effects estimated by these methods were 
largely consistent between the methods, and association 
signals were often observed around known heading date 
genes, Hd1 (Yano et al. 1997, 2000), Hd2 (Yano et al. 
1997), Hd3a (Yano et al. 1997; Monna et al. 2002), Hd5 
(Yano et al. 1997) and Hd6 (Takahashi et al. 2001) (Fig. 1). 

Table 2  Root mean squared 
errors (RMSEs) (day) and 
Pearson correlation between 
estimated and observed values, 
regression coefficients of 
estimated values on observed 
values (slope), and posterior 
means of the residual variance 
of the Bayesian methods in the 
full data analysis

a GP was fitted to data collected in each environment separately
b C-Nel was fitted to data collected for each line separately
c T-Nel and T-Bay re-estimated the DVR model parameters by fitting the extended Bayesian LASSO to the 
estimates by C-Nel and C-Bay, respectively, which were pooled across all the lines

GPa Phenological (crop)  
model

Two-step IM

C-Nelb C-Bay T-Nelc T-Bayc

RMSE 5.6 3.6 4.1 6.4 8.7 4.0

Correlation 0.96 0.99 0.98 0.95 0.93 0.98

Slope 0.91 0.96 0.95 0.87 0.75 0.95

σ 2
e  (10−3) 2.39 2.82
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A major difference between the methods is that a relatively 
large signal was detected in chromosome 12 for T-Nel and 
T-Bay. The associated marker was R1684.

Leave‑one‑out cross‑validation

Results for LOEO are presented in Table 3. RMSE and 
Pearson correlation calculated for each environment are 
presented in Table S3. The least RMSE was observed in 
IM. IM also showed the regression coefficient (slope) that 
was closest to one, suggesting less shrunken prediction. 
In LOLO, GP showed the least RMSE and IM showed the 
second least (Tables 3 and S4). The slope of GP was also 
closest to one and that of IM was secondly closest. Thus, 
it is suggested that GP is suitable for heading date predic-
tion of untested lines when the training data set at the target 
environment is available. In LOELO, IM showed the least 
RMSE with the least shrinkage tendency (Tables 3 and S5), 
suggesting the usefulness of the integrated approach in 
prediction of untested lines in untested environments. The 
RMSE of GP was greater than the RMSEs of the two-step 
and integrated approaches. Considering that GP showed 
the least RMSE in LOLO, the results suggest that genomic 
prediction of heading dates is sensitive to the differences 
in environmental conditions between the training and target 
environments.

In each LOO experiment, IM consistently showed higher 
accuracy than the two-step approach, regardless of the opti-
mization algorithms for the DVR model, Nelder–Mead and 
MCMC algorithms (Table 3). This suggests that prediction 
accuracy can be improved by integrating genomic predic-
tion with crop modelling in a single hierarchical model.

IM can estimate the posterior variance of predicted 
DTH. To investigate the empirical reliability of the poste-
rior variance, we calculated the frequency with which the 
observed (true) DTH was included in the credible intervals 
of the predicted DTH (Table 4). In each LOO scheme, pos-
terior variance is suggested to have been underestimated. 
This underestimation was most severe in LOEO. However, 
in LOLO and LOELO, the underestimation was relaxed 
and the posterior variances would have reasonable sizes.

Discussion

We developed a novel method that integrated whole-
genome markers with a phenological model in predicting 
the heading date of Asian rice, and compared this method 
with conventional genomic prediction, phenological mod-
elling and two-step approach. The proposed method IM 
showed the best accuracy in LOEO and LOELO and the 
second best in LOLO. In each LOO scheme, IM was supe-
rior to the two-step approach (T-Nel and C-Nel) pertaining 
to both prediction accuracy and the amount of shrinkage. 
An approach that integrates genomic prediction with crop 
models will be statistically more challenging than the two-
step approach and will require the development of special 
algorithms and programs (e.g. the variational Bayesian 
inference combined with MCMC in the present study). 
Thus, it is important to demonstrate the superiority of the 
integrated approach over the two-step approach to sup-
port the development of the integrated approach. Our study 
has several limitations: the backcross inbred line popula-
tion used here is not usually used for the development of 

Table 3  Root mean squared 
errors (RMSEs) (day) and 
Pearson correlation between 
predicted and observed values 
and regression coefficients of 
predicted values on observed 
values (slope) in the three 
leave-one out cross-validation 
schemes

RMSE, correlation and slope were calculated over all the environments

LOEO leave-one-environment-out cross-validation, LOLO leave-one-line-out cross-validation, LOELO 
leave-one-‘combination of an environment and a line’-out cross-validation

GP Phenological (crop) model Two-step IM

C-Nel C-Bay T-Nel T-Bay

LOEO

 RMSE 6.2 5.2 7.5 9.5 5.1

 Correlation 0.96 0.97 0.94 0.92 0.97

 Slope 0.89 0.92 0.82 0.72 0.93

LOLO

 RMSE 7.2 7.7 9.4 7.4

 Correlation 0.94 0.93 0.91 0.94

 Slope 0.89 0.84 0.74 0.87

LOELO

 RMSE 10.8 8.6 10.2 8.0

 Correlation 0.87 0.92 0.90 0.93

 Slope 0.75 0.79 0.71 0.85
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new cultivars; heading date in rice is considered to have 
a relatively simple genetic architecture (Matsubara et al. 
2014) and the phenological model used in this study, the 
DVR model, is relatively simple, consisting of only a few 
functions. Nevertheless, for the first time, our results dem-
onstrate superiority of the integrated approach in predict-
ing plant phenotypes using real data. As the first empirical 
evidence, this study should encourage further development 
and application of the integrated approach in predicting 
plant phenotypes.

An issue in our integrated approach (IM) is the compu-
tational time required. When Nelder–Mead optimization is 
conducted for each line in tandem with the full data analy-
sis, the computational times of IM and T-Nel are similar. 
However, the Nelder–Mead optimization can be conducted 
in parallel, which significantly reduces the time required. 
The computational burden of IM mainly stemmed from 
the MCMC simulation used to infer the posterior distribu-
tion of the DVR model parameters. This can be reduced by 
decreasing the number of iterations of the MCMC (600) 
and/or the number of entire optimization steps (100) (see 
Supplementary Methods), though these reductions may 
prevent the solution from reaching the global optimum. 
The number of iterations (600 and 100) was set arbitrarily 
in this study, but when using IM in practical applications, 
it would be necessary to assess the effect of the number of 
iterations on the efficiency of optimization.

In all the cross-validation schemes, IM outperformed 
T-Nel and T-Bay in terms of prediction accuracy. This 
superiority can be attributed to several factors: consid-
eration of genetic dependency between lines in deriving 
the DVR model parameters, consideration of uncertainty 
of the DVR model parameter derivation in marker effect 
estimation and avoiding loss of information by simul-
taneously deriving the DVR model parameters and the 
marker effects on these. The relative contributions of 
these factors to the improvement in accuracy are unclear. 
Note that in C-Bay (i.e. the first step of T-Bay), the deri-
vation of the DVR model parameters was not independ-
ent between lines because the variances of the model 

parameters σ 2
G, σ 2

α and σ 2
β  were estimated from the param-

eter values of all the lines (see Supplementary Meth-
ods). Thus, information of the DVR model parameters 
was shared among lines via the variances. Nevertheless, 
C-Bay and T-Bay were not always superior to C-Nel and 
T-Nel in the cross-validation schemes tested. Thus, shar-
ing information between lines may not largely contribute 
in improving prediction accuracy of IM. Further work 
will be needed to elucidate the reasons for the superiority 
of the integrated approach.

Bogard et al. (2014) predicted heading dates in wheat 
using a two-step approach that was based on detected 
QTLs. The authors reported that, when untested lines 
were predicted at untested environments, the RMSE was 
6.3 days. Although the reported RMSE was lower than 
those obtained by T-Nel, T-Bay and IM in the present study, 
prediction accuracy will be influenced by various factors 
other than models and inference methods; therefore, direct 
comparison of accuracy between the studies would not be 
meaningful. These factors include: the number of lines and 
environments used for training (210 lines and 10 environ-
ments in Bogard et al. (2014)), the predictive ability of phe-
nological models, genetic relationships between lines and 
variation in environmental conditions.

IM is a two-level hierarchical model, where a regres-
sion model is embedded in each level: the first level is 
the DVR model and the second level is the genomic pre-
diction models, i.e. multi-locus regression models, which 
regard the DVR model parameters as the response vari-
ables. This model structure is similar to the structures used 
for functional QTL mapping by Malosetti et al. (2006), 
Sillanpaa et al. (2012) and Li et al. (2014). These studies, 
respectively, fitted logistic, polynomial and linear curves 
to temporary trends and regressed the curve parameters on 
multi-locus genotypes in single hierarchical models. Com-
parison between a single hierarchical model and a two-step 
approach that derives the curve parameters and the marker 
effects on the parameters separately was conducted by Li 
et al. (2014) using growth-related traits of conifers. The 
authors reported that both the methods detected similar sets 

Table 4  Frequencies for the 
true DTH being included in the 
credible intervals estimated by 
the integrated model in each 
leave-one-out cross-validation 
(LOO) scheme

In each LOO scheme, prediction was made for each line in each environment. The frequencies that the true 
DTH was included in the corresponding credible intervals of predicted DTH were calculated
a LOEO leave-one-environment-out cross-validation, LOLO leave-one-line-out cross-validation, LOELO 
leave-one-‘combination of an environment and a line’-out cross-validation
b Average (SD) of posterior standard deviation of predicted DTH

LOO schemea Average of posterior SDb Credible interval

95 % 90 % 80 % 70 % 60 %

LOEO 1.6 (±0.5) 0.42 0.35 0.26 0.19 0.14

LOLO 6.0 (±2.5) 0.86 0.78 0.69 0.58 0.49

LOELO 6.1 (±2.5) 0.84 0.76 0.65 0.55 0.46
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of QTLs when the sample size was large (≥250); whereas, 
when the sample size was small (<100), more associa-
tion signals were detected by using the two-step approach, 
although it was unclear whether these associations were 
true. In our results, the integrated (IM) and the two-step 
methods (T-Nel and T-Bay) detected similar sets of associa-
tion signals in the full data analysis (Fig. 1). This consistent 
result across the methods could be because of the relatively 
large sample size (176) and relatively simple genetic archi-
tecture of heading dates in the used population. The fact 
that both the integrated and two-step approaches captured 
similar association signals may suggest that the superiority 
of IM in prediction accuracy was because of the accuracy 
of marker effect size estimation rather than QTL detection 
power. The hierarchical model by Technow et al. (2015) 
also has a two-level structure; its first level is the crop 
growth model and the second is the genomic prediction 
model. However, one difference is that, although the model 
input traits (yTLN, yAM, ySRE, and yMTU in Technow et al. 
2015) are regressed on genome-wide markers in the second 
level, no residual term was assumed (see Eq. 2 in Technow 
et al. 2015). This means that the complete variance of the 
model input traits was assumed to be explained by the addi-
tive effects of the markers, which may be a strong assump-
tion in real data analysis.

In LOELO, the RMSE of GP was greater than the 
RMSEs of the two-step and the integrated approaches, 
particularly at Tsukuba2007 and Tsukuba2008E (Table 
S5). For prediction for these two environments, GP was 
trained with records at Tsukuba2009 and Ishikawa, respec-
tively, as described in the “Results” section. However, the 
root mean squared differences of DTH between the target 
and training environments (i.e. between Tsukuba2007 and 
Tsukuba2009 and between Tsukuba2008E and Ishikawa), 
were 10.3 and 17.9, respectively, which were the largest 
two values among the differences between the target and 
training environments. Thus, the results of LOELO clearly 
suggest that accuracy of genomic prediction depends on 
the similarity between the target and training environ-
ments, which is also illustrated by morphological traits in 
loblolly pine (Resende et al. 2012). On the other hand, the 
phenological model-based methods, IM, T-Nel and T-Bay 
did not appear to show the dependency on the similarity. 
GP can predict plant performance at multiple environ-
ments by modelling the covariance structure between geno-
typic (polygenic) effects between environments in a mixed 
model framework (Burgueno et al. 2012). However, this 
multi-environment mixed model is unable to predict phe-
notypes in environments where no line has been cultivated. 
To overcome this deficiency, Heslot et al. (2014) proposed 
mixed models that incorporate stress covariates derived 
from crop models to model genotype–environment interac-
tion and to predict phenotypes in untested environments. 

The authors performed multiple and separated steps in 
parameter inference, which may impair the predictive abil-
ity. Their approach is, however, an alternative to integrating 
genomic prediction with crop models; it will be interest-
ing to compare the predictive ability with that of the crop 
model-based methods.
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