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clones or primers and segregating progenies. Although 
these markers are still useful for marker-aided selection, 
our results indicate that map-based cloning of Ms will 
likely be difficult due to reduced recombination near this 
gene.

Introduction

Hybrid onion (Allium cepa L.) seed is commonly produced 
using cytoplasmic male sterility (CMS). For the most com-
monly used source of onion CMS, male sterility is condi-
tioned by the interaction of the cytoplasm and a nuclear 
male-fertility-restoration (Ms) locus (Jones and Clarke 
1943). Male-sterile plants possess male-sterile (S) cyto-
plasm and are homozygous recessive at Ms. Male-fertile 
plants may possess S cytoplasm and a dominant allele at 
Ms, or normal (N) male-fertile cytoplasm with any geno-
type at Ms. Seed propagation of male-sterile plants (S 
msms) is possible by crossing with maintainer (N msms) 
plants (Jones and Davis 1944), and selection of superior 
maintainer lines is a primary focus of hybrid onion breed-
ing programs.

The identification of individual plants or inbred lines 
that maintain CMS requires the classification of the cyto-
plasm as well as genotypes at the nuclear Ms locus. S 
cytoplasm is likely an alien cytoplasm introduced in antiq-
uity into onion populations (Havey 1993) and as a result, 
many polymorphisms have been identified in the organel-
lar DNAs that distinguish N and S cytoplasms of onion 
(Courcel et  al. 1989; Holford et  al. 1991; Havey 1993, 
1995; Satoh et al. 1993; Sato 1998; Lilly and Havey 2001; 
Engelke et  al. 2003; Cho et  al. 2005, 2006; Kim et  al. 
2009; von Kohn et al. 2013). The use of classical crossing 
to establish genotypes of the Ms locus is time-consuming 
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and expensive, requiring testcrosses of an individual male-
fertile plant to a male-sterile (S msms) plant and scoring the 
male-fertility of the testcross progenies. Due to the bien-
nial generation time of onion, this process can take four or 
more years. To more quickly determine genotypes at Ms, 
several research groups have identified molecular mark-
ers from the genome or transcriptome showing linkage 
to Ms (Table  1). Molecular markers in linkage disequi-
librium with Ms allow for more efficient development of 
maintainer lines to facilitate hybrid development. Ideally 
the markers should be very tightly linked to confidently 
predict genotypes at Ms across diverse germplasm. Most 
researchers have used F2 or F3 families (Table 1) at or near 
maximum linkage disequilibrium to assess linkage to Ms; 
however Gökçe et  al. (2002), and Havey (2013) assessed 
disequilibrium between markers and Ms using plants ran-
domly selected from open-pollinated populations, presum-
ably at or near linkage equilibrium. Given the enormous 
size of the onion nuclear genome [16.3 megabases per 1C 
nucleus (Bennett and Leitch 2012)], we were intrigued as 
to why so many markers linked to Ms have been identified 
(Table 1), even though in some cases relatively few clones 
or primers were screened. If the Ms locus was located in 
a chromosome region experiencing relatively few recombi-
nation events, markers showing tight genetic linkage to Ms 
could be physically quite distant and affect the likelihood 
of eventual map-based cloning of Ms.

Fluorescence in  situ hybridization (FISH) is a tool 
to physically map DNA sequences onto chromosomes 
(reviewed by de Jong 2003; Jiang and Gill 2006; Figueroa 
and Bass 2010), as well as integrate physical and recom-
bination maps (Cheng et al. 2001; Khrustaleva et al. 2005; 
Danilova and Birchler 2008; Iovene et  al. 2008, Szinay 
et  al. 2008). A disadvantage of FISH is limited sensitiv-
ity and usually only sequences greater than 10 kilobases 

(kb) can be visualized on metaphase chromosomes. Still, 
researchers have successfully used FISH to map single-
copy sequences from 3 to 7  kb in maize (Lamb et  al. 
2007; Danilova and Birchler 2008), barley (Karafiátová 
et al. 2013) and wheat (Danilova et al. 2012, 2014). These 
authors reported the development of cytogenetic mark-
ers for particular chromosomal regions by selecting from 
numerous DNA clones those that produced distinguishable 
FISH signals. However, the ability to use FISH to place any 
marker onto chromosomes, as opposed to selecting only 
those few clones that show clear signals, would be highly 
beneficial.

Tyramide (tyr) FISH is an approach to increase the 
sensitivity of FISH (Raap et  al. 1995) and has been suc-
cessfully applied to plants (Khrustaleva and Kik 2001; 
Stephans et  al. 2004; Perez et  al. 2009; Sanz et  al. 2012; 
Kirov et al. 2014b; Romanov et al. 2015). Tyr-FISH takes 
advantage of an enzymatic reaction to deposit multiple 
copies of reactive tyramide conjugates at specific positions 
on chromosomes, resulting in up to 100-fold amplification 
of the fluorescent signal (Van Gijlswijk et al. 1997; Speel 
et al. 1999). However, the technique has not become rou-
tine because of inconsistent results for some probes, low 
detection frequency and low repeatability among differ-
ent laboratories (Jiang and Gill 2006). Tyr-FISH is highly 
dependent on the quality of slide preparation, and often a 
cDNA probe can produce multiple signals because exon 
sequences can be conserved across a large number of genes 
(Kirov et  al. 2015; Romanov et  al. 2015). In our previ-
ous research, we used genomic fragments possessing both 
exons and introns as probes to enlarge the target DNA sizes 
and increase hybridization specificity (Kirov et  al. 2014b, 
2015; Romanov et  al. 2015), and developed a robust and 
routine method for high-quality chromosome preparations 
for plants (Kirov et al. 2014a).

Table 1   Summary of molecular markers linked to the nuclear male-fertility restoration locus (Ms) of onion

z  Markers identified using genomic or complementary (c) DNAs
y  AFLP amplified fragment length polymorphism, RFLP restriction fragment length polymorphism, RAPD Randomly amplified polymorphic 
DNA, CAP Cleaved amplified polymorphism, SNP Single nucleotide polymorphism, SCAR Sequence characterized amplified region, SRAP 
cDNA sequence-related amplified polymorphism

Marker Originz Typey Family or population References

AOB272 cDNA RFLP and SNP F2 family and open-pollinated plants Gökçe et al. (2002) and Gökçe and Havey 
(2002)

WHR240 cDNA SRAP BC1 family Huo et al. (2012)

DNF-566
RNS-357

Genomic AFLP and SCAR BC1 family Yang et al. (2013)

ACms.1100 Genomic RAPD and CAP F2 family Bang et al. (2013)

Isotigs 29186, 34671, 30856 cDNA SNPs F2 family and open-pollinated plants Havey (2013)

Jnurf05
jnurf17

Genomic RAPD and CAP F2 and F3 families Park et al. (2013)

Jurf13 Genomic SCAR F2 family Kim (2014)
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In this research, we used tyr-FISH to physically locate 
markers linked to the Ms locus onto onion chromosomes 
with different degrees of compaction (mitotic metaphase, 
pachytene, and super-stretched pachytene). We demonstrate 
that Ms is located on the long arm of onion chromosome 2 
close to the centromere, where recombination occurs less 
frequently.

Materials and methods

Isolation of genomic clones corresponding to markers 
linked to Ms

Five onion cDNAs linked to Ms were used. API21 and 
AOB272 (Genbank accessions AA451546 and AA451592) 
reveal restriction fragment length polymorphisms (RFLP) 
mapping 63 and 0.9  cM, respectively, from Ms (Gokce 
et al. 2002; Martin et al. 2005). Single nucleotide polymor-
phisms (SNPs) in cDNA isotigs 29186, 34671, and 30856 
showed linkage disequilibrium with Ms among plants ran-
domly selected from open-pollinated populations of onion 
(Havey 2013). Primers (Table 2) were designed to produce 
genomic amplicons, which were cloned after TA tailing into 
the pGEM-T Easy vector using the manufacturer’s protocol 
(Promega, Madison WI USA), Sanger sequenced (Sam-
brook et  al. 1989), and aligned using Sequencer version 
5.1 (Gene Codes, Ann Arbor MI USA) to confirm identities 
with the original cDNA. Introns in genomic amplicons were 
identified after alignment with the corresponding cDNA 
sequences. Genomic sequences were evaluated for repetitive 
elements using CENSOR (Jurka et al. 2005).

Target material

Spreads of mitotic metaphase chromosomes were pre-
pared from meristematic tips of young roots from onion 

seedlings. Root tips were submerged in a saturated aqueous 
(50 %) solution of α-bromonaphthalene overnight at 4 °C, 
and subsequently fixed in fresh ethanol/acetic acid (3:1) 
for 1  h at room temperature (RT). Enzyme digestion and 
slide preparation were performed as described by Kirov 
et  al. (2014a) with slight modification that after digestion 
600 µl of ice-cold TE buffer was added to cell suspension 
and centrifuged at 300×g for 45 s. Slide pretreatment was 
performed in 4  % buffered paraformaldehyde in 1× PBS 
(0.13 M NaCl, 7 mM Na2HPO4, and 3 mM NaH2PO4, pH 
7.5) at RT for 10 min with subsequent dehydration in 70, 
90 and 100 % ethanol.

Anthers were sampled and fixed in fresh ethanol/ace-
tic acid (3:1) for 1  h at RT. Enzyme digestion and slide 
preparation of pachytene chromosomes were performed 
as described by Kirov et  al. (2014a) with the modifica-
tion described above. For super-stretched pachytene chro-
mosomes, suspensions of PMCs at appropriate meiotic 
stage were prepared according to Kirov et  al. (2014a) as 
described above. The cell suspension was placed on poly-
l-lysine-coated slides and air-dried until a granule-like sur-
face appeared, and then was stretched by pressing and roll-
ing in 60 % acetic acid with Triton X-100 as described by 
Koo and Jiang (2009).

Tyr‑FISH

DNA probes were labeled with digoxigenin-11-dUTP or 
biotin-16-dUTP by nick translation with plasmid DNA 
using DIG or Biotin-Nick Translation Mix (Roche, Man-
nheim, Germany). The hybridization mixture contained 
50 % (v/v) deionized formamide, 10 % (w/v) dextran sul-
fate, 2× SSC, 0.25  % sodium dodecyl sulfate, and 100–
200  ng of probe DNA per slide. The hybridization mix 
was denatured at 75 °C for 5 min, subsequently placed on 
ice for 5 min, and added to the chromosome slides. Slides 
were then denatured for 5 min at 80 °C and hybridization 

Table 2   Sequences of primers used to produce genomic amplicons for Tyramide-FISH analyses

z  F forward, R reverse
y  Amplicon sizes in basepairs

Marker Directionz Primer sequences (5′ to 3′) Sizey

Isotig 29186  
genomic

F
R

AAAACCACCTCTGACGTTGC
ACAGGCACCATGTTTTTGGT

800

Isotig 34671  
genomic

F
R

TTTTGACAAGAAAAAGGATTGGA
GATAATGGCGAGGGATTCAA

2251

Isotig 30856  
genomic

F
R

AGGGACGTTGTTTCATGGAG
AATGCGAACTTTTCATCTGTTT

1200

API21 cDNA F
R

GTAAAACGACGGCCAGTG
GGAAACAGCTATGACCATG

666

AOB272  
genomic

F
R

TTTGCATTGGCTTTTGTTGT
CAAAGATTACATTACAACGCATCA

1200
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was carried out at 37  °C overnight. Stringent washing at 
82  % used 2× SSCT (2× SSC +  0.05  % Tween 20) at 
42 °C for 15 min, 2× SSC at 42 °C for 5 min, 0.01× SSC 
at 55  °C twice for 7  min, and finally 2× SSC at RT for 
5  min. The digoxigenin-labeled probe was detected with 
anti-digoxigenin-HRP (anti-DIG-POD, Roche, Man-
nheim, Germany) diluted 1:100 in TNB buffer (100  mM 
Tris–HCl pH 7.5, 150  mM NaCl, 0.5  % blocking rea-
gent, Perkin Elmer, Waltham, Massachusetts, USA) and 
the biotin-labeled probe was detected with streptavidin-
HRP diluted 1:1000 in TNB buffer according to the pro-
tocol of the TSA-direct kit (PerkinElmer, Waltham, Mas-
sachusetts, USA). The tyramide detection solution was 
prepared by thoroughly mixing 1:50 tyramide-CY3 or 
tyramide-fluorescein. Incubation times with the tyramide 
solution varied from 5 to 9  min. In sequential tyr-FISH 
before second round of detection, remaining HRP activ-
ity was deactivated by incubating slides in 3  % H2O2 in 
TN buffer (100 m M Tris–HCl pH 7.5, 150 mM NaCl) for 
20  min. Chromosomes were counterstained in 1.5  µg/ml 
DAPI in Vectashield anti-fade (Vector Laboratories, http://
www.vectorlabs.com). Slides were examined under a Zeiss 
AxioImager M1 microscope (http://www.zeiss.com/) or 
Olympus BX60 microscope (http://www.olympusmicro.
com/) equipped with epifluorescence illumination, and 
small band filter sets for DAPI, FITC, and Cy3 fluores-
cence. Selected images were captured using a digital Axi-
oCam camera (http://www.zeiss.com/) or a SenSys charge-
coupled device camera (Photometrics, Tucson, AZ). Image 
processing and thresholding were performed using META 
IMAGING SERIES 7.5 (http://meta.moleculardevices.
com) or AxioVisionv.4.6 image analysis software. Final 
image optimization was performed using Adobe PHOTO-
SHOP (http://www.adobe.com).

The captured images of the chromosomes and posi-
tion of tyr-FISH signals were measured using the program 
MicroMeasure version 3.2 (Reeves and Tear 2000). Only 
non-overlapping chromosomes 2 were used for measure-
ments of positions of tyr-FISH signals. The relative posi-
tion of hybridization sites on chromosomes (RPHC) was 
calculated as the ratio of the distance between the site of 
hybridization and the centromere to the length of the chro-
mosome arm. Statistical analysis was performed using one-
way ANOVA tests with arcsine square root transformation 
of proportional data of the relative positions of tyr-FISH 
signals.

Results

RFLP marker AOB272 and SNPs in isotigs 29186, 30856, 
and 34671 are tightly linked to the Ms locus on chromo-
some 2 of onion (Martin et  al. 2005; Havey 2013). An 

RFLP revealed by cDNA clone API21 has been mapped at 
63 cM from Ms (Martin et al. 2005). Genomic amplicons 
were produced for the markers tightly linked to Ms. These 
five markers were used as probes for tyr-FISH (Table  2). 
Sequence alignments of genomic amplicons and the corre-
sponding cDNAs revealed presence of introns with a total 
length of 962  bp for isotig 34671, 159  bp for AOB272 g 
(genomic), and no introns for isotigs 29186 and 30856. 
CENSOR (Jurka et  al. 2005) was used to reveal repeti-
tive elements in the genomic amplicons. We did not find 
sequence similarity to any repeats in the database within 
sequences of AOB272 g and isotigs 29186 and 34671. The 
genomic amplicon of isotig 30856 carried a 168-bp region 
with homology to DNA transposon MuDR and a second 
102-bp region with homology to the non-LTR retrotranspo-
son L1.

Tyr-FISH of the largest genomic amplicon (isotig 
34671 at 2251 bp) revealed paired signals on the long arm 
of chromosome 2. A relative position of the hybridization 
sites on chromosome (RPHC) from the centromere was 
0.09 ± 0.02 (Fig. 1a, a′; Table 3). The size and sub-meta-
centric nature of this signal-bearing chromosome allowed 
us to identify it as chromosome 2 (length 14.4 ± 0.3 and 
centromeric index 33.9 ± 1.2; de Vries 1990), consistent 
with genetic mapping of Ms to chromosome 2 (Martin 
et al. 2005). The fluorescence signal appeared as double 
spots on both chromatids and at least on one homolog 
of chromosome 2 in 43 % of the observed mitotic meta-
phase cells (Table  3). Most of the cells revealed double 
fluorescent signals on only one homolog of chromosome 
2. The different frequencies of FISH signal detection 
between two homologs using unique probes may result 
from the differences in chromatin accessibility between 
homologous metaphase chromosomes (Khan et al. 2014, 
2015).

Tyr-FISH mapping of genomic amplicons of isotig 
34671 and API21 revealed that API21 is located on the 
short arm of chromosome 2 (Fig.  1b, b′, b″) distant from 
the centromere at a RPHC of 0.75 ± 0.08 (Table 3), con-
sistent with its relatively loose linkage to Ms (Fig. 4).

Isotig 30856 was located on the long arm of chromo-
some 2 at a RPHC of 0.1 ±  0.02 from the centromere 
(Fig.  1c; Table  3). Although the presence of the repeti-
tive elements in this genomic amplicon produced some 
background fluorescence, the hybridization signal on 
both chromatids from the target sequence can be dis-
tinguished from the background (Fig.  1c′). The effi-
ciency of signal detection was 18  %, less than half of 
value observed for the larger genomic amplicon of isotig 
34671 (Table 3).

Isotig 29186 was placed on the long arm of chromo-
some 2 at a RPHC of 0.1 ±  0.03 from the centromere 
(Fig.  1d, d′; Table  3). The target sequence for isotig 

http://www.vectorlabs.com
http://www.vectorlabs.com
http://www.zeiss.com/
http://www.olympusmicro.com/
http://www.olympusmicro.com/
http://www.zeiss.com/
http://meta.moleculardevices.com
http://meta.moleculardevices.com
http://www.adobe.com
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29186 was 846  bp and the fluorescence signal was 
detected in 15  % of observed mitotic metaphase cells 
(Table 3).

The genomic amplicon AOB 272g (1198 bp) revealed a 
more distal location at a RPHC of 0.17 ±  0.02 from the 
centromere of chromosome 2 and 19  % of the efficiency 

Fig. 1   Tyramide (tyr) FISH mapping of molecular markers linked 
to the Ms locus onto mitotic metaphase chromosome 2 of onion. 
Genomic amplicons of four (AOB 272 and isotigs 34671, 30856 
and 29186 markers were labeled with Dig-11dUTP and detected 
with Tyramide-FITC: a probing with isotig 34671; b probing in one 
hybridization mix with both isotig 34671 and API21, mapped 63 cM 
from  Ms, fluorescent signals were detected on only one homolog 

of chromosome 2 due to the difference in the probe accessibility 
between the two homologs; c probing with isotig 30856; d probing 
with isotig 29186; e probing with AOB 272g; f, g probing with four 
amplicons in one hybridization mix (extracted two homologous chro-
mosome 2 from two metaphase cells); a, b, b′, c, d, e, f, f′, and g 
merged DAPI and FITC filter images; a′, b″, c′, d′, e′, f″, and g′ FITC 
filter images). Cen centromere. Scale bars = 10 µm

Table 3   Relative positions and detection frequencies of tyr-FISH signals from molecular markers on mitotic metaphase chromosome 2 of onion

z  The relative positions of hybridization sites on chromosomes were calculated as the ratio of the distance between the site of hybridization and 
the centromere to the length of the chromosome arm
y  n number of non-overlapping the analyzed chromosomes 2 used to measure positions of hybridization signals
x  n number of mitotic metaphase cells analyzed

Relative positionz % Detection

Probe Mean ± SD ny Frequency nx

Isotig 34671 0.09 ± 0.02 Long arm 12 43 56

Isotig 30856 0.10 ± 0.02 Long arm 8 18 45

Isotig 29181 0.10 ± 0.03 Long arm 6 15 43

AOB272 g (genomic) 0.17 ± 0.02 Long arm 6 19 41

All four probes (isotigs 29181, 30856, and 34671 and AOB272 g) in one hybridization mix Proximal 0.09 ± 0.02 10 85 20

Distal 0.20 ± 0.02

Long arm

API21 0.75 ± 0.03 Short arm 5 9 55
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of the signal detection (Fig.  1e, e′; Table  3). Statistically 
significant differences in RPHC were found between 
AOB 272g and the isotigs (one-way ANOVA F =  18.52, 
P  <  0.001; Fig.  2). When amplicons of the four mark-
ers tightly linked to Ms (AOB 272g and isotigs 29186, 
34671 and 30856) were pooled into one labeling reaction 
and hybridized to mitotic metaphase chromosomes, a sin-
gle position was revealed near the centromere of chromo-
some 2 (Fig. 1f, f′, f″, g, g′). The fluorescence signal was 
more intense as compared to the signals of the individual 
probes and the position of the proximal border of the sig-
nal was 0.09 ± 0.02 and the distal border was 0.2 ± 0.02 
(Table 3). As an explanation of this result may be the mech-
anism of tyr-FISH detection based on the enzyme catalyzed 
deposition of many tyramide molecules. The advantage of 

tyr-FISH is a highly increased sensitivity and the disadvan-
tage lies in lowering of resolution. The tyramide deposition 
reaction runs very quickly and minor differences in ampli-
fication reaction time may lead to variations in the signal 
intensities. In an attempt to better resolve fluorescence 
signals, the amplification step with tyramide-FITC was 
reduced from 9 min to 5 min; however, this resulted in sub-
stantial decrease in the detection sensitivity and efficiency 
and did not improve resolution. The fluorescence signals 
arising from the pooled sequences were detected in 85 % 
of observed mitotic metaphase cells and 47  % of those 
showed signals on both homologs.

A single position was also revealed when these pooled 
amplicons were hybridized to less condensed pachytene 
chromosomes (Fig.  3a). Comparing the lengths of chro-
mosome 2 at mitotic metaphase (14.4 µm) with pachytene 
(112.6  µm mean synaptonemal complex length of chro-
mosome 2; Albini and Jones 1988), a 7.8-fold length dif-
ference was found. For comparison, this difference was 
15-fold for tomato, >20-fold for Arabidopsis, and 40-fold 
for rice (de Jong et al. 1999).

To overcome the limit of spatial resolution, stretching of 
pachytene chromosomes (Koo and Jiang 2009) was applied 
to onion meiotic chromosomes. When isotig 34671 (digox-
igenin-labeled and detected with tyramide-FITC) and AOB 
272g (biotin-labeled and detected with tyramide-Cy3) were 
simultaneously hybridized to stretched pachytene chromo-
somes, distinct green and red fluorescent signals with par-
tial overlapping were revealed. Isotig 34671 (green signal, 

Fig. 2   Diagram of the relative positions of hybridization sites of 
AOB 272g and isotigs 34671 (is34), 30856 (is30); and 29181 (is29) 
on mitotic metaphase of onion chromosome 2. Cen centromere. The 
bars denote 95 % confidence intervals

Fig. 3   Tyramide (tyr) FISH mapping of markers tightly linked to 
Ms locus on pachytene chromosomes and super-stretched pachytene 
chromosome: a four genomic amplicons (AOB 272g, and isotigs 
34671, 30856 and 29186) labeled with Dig-11dUTP and detected 
with Tyramide-FITC on pachytene chromosomes; b AOB 272g 
labeled with Biotin-16dUTP and detected with Tyramide-Cy3 (red; 
b′ Cy3 filter image) and isotig 34671 labeled with Dig-11dUTP 

and detected with Tyramide-FITC (green; b″ FITC filter image) on 
stretched pachytene; c four amplicons (AOB 272g, and isotigs 34671, 
30856 and 29186) labeled with Dig-11dUTP and detected with Tyr-
amide-FITC on super-stretched pachytene. Tel telomeric end of the 
short arm of chromosome 2, Cen putative position of centromere. 
Scale bars = 10 µm (color figure online)
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Fig.  3b, b″) was located more proximal relative to AOB 
272g (red signal, Fig. 3 b, b′). On super-stretched pachytene 
chromosomes probed with a cocktail of four monochromic-
labeled amplicons closely linked to Ms, tyr-FISH signals 
were readily separated from each other (Fig. 3c). The dis-
tance between signals varied depending on the degree of 
stretching; the track of the signals for the highest degree of 
stretched pachytene had a total length of 7.4 ± 0.6 µm.

The tyr-FISH map generated in this research was com-
pared with the genetic linkage map (Martin et  al. 2005). 
The physical positions of five mapped markers were 
expressed as a percentage of the fractional length from 
the end of the short arm of the chromosome 2, and corre-
sponded with their positions in the genetic map (Fig. 4).

Discussion

Genes may be located in chromosome regions experienc-
ing relatively low recombination, and markers showing 
tight genetic linkage may be quite physically distant from 
each other. Knowledge about the chromosomal locations of 
genetically linked traits and markers is important towards 
eventual cloning of target genes. Genomic in situ hybridiza-
tion (GISH) has been used to assign a pollen fertility gene 

to specific chromosome regions in interspecific hybrids of 
Allium (Yamashita et  al. 2005) and Helianthus (Liu et  al.  
2013). Direct mapping of a small single-copy DNA frag-
ment (less than 1  kb) on a physical plant chromosome 
remains a challenge because of the limit of FISH sensi-
tivity. We exploited the increased sensitivity of tyr-FISH 
(Van Gijlswijk et  al. 1997) to physically assign relatively 
short genomic amplicons (846–2251 bp) and a cDNA clone 
(666 bp) to one onion chromosome. The efficiency and sen-
sitivity of tyr-FISH depend on ability of the probe to access 
the target DNA, as well as quality of the probe and slide 
preparation. Probes for tyr-FISH in our study did not carry 
repetitive motifs, except for isotig 30856 which possessed 
short repetitive sequences that did not mask signals. Slide 
preparations of mitotic metaphase and pachytene chro-
mosomes were obtained from cell suspensions using the 
“SteamDrop” method (Kirov et al. 2014a) and a relatively 
low concentration (25 %) of acetic acid to produce high sig-
nal-to-noise ratios. The more common usage of 45 % acetic 
acid significantly diminished the height of chromosomes 
as revealed by atomic force microscopy of barley chromo-
somes (Sugiyama et al. 2004). Flattening of chromosomes 
over the glass slides may also impede access to target sites 
by the labeled probe. The efficiency of tyr-FISH to reveal 
the location of 5.5 kb (the total length of all four markers 

Fig. 4   Alignment of the genetic 
and cytogenetic maps of onion 
chromosome 2. The genetic 
map (left figure) is the center 
part of the entire linkage group 
described by Martin et al. 
(2005) distances in centiMor-
gans are shown on the left of 
linkage group. The physical 
positions (right figure) of five 
mapped markers are expressed 
as percentage of the fractional 
length (distance from the end 
of the short arm to the signals 
divided by the length of the 
entire chromosome). Cor-
responding positions on the 
genetic map are indicated with 
lines
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genetically linked to Ms) was 85  % and signals on both 
homologues were observed in 47 % of cells (Fig. 1f, f′, f′, 
g, g′; Table 3). When the target sequence was reduced from 
5.5 kb to 2.3 kb, the percentage of chromosomes showing 
signals decreased from 85 to 43  %. Further reducing the 
target length to 0.8  kb (isotig 29181) decreased detection 
efficiency to 15 %. The lowest efficiency (9 %) of tyr-FISH 
detection was for a target site of 0.7 kb (API21). However, 
detection efficiency might also depend on the level of con-
densation along chromosomes. Tyr-FISH detection of a 
0.7 kb T-DNA insertion in transgenic shallot (Allium cepa) 
was 37 % (Khrustaleva and Kik 2001). The T-DNA insert 
was distally located on the long arm of chromosome 1 in 
a transcriptionally active and less condensed euchromatic 
region. The influence of chromosome condensation on the 
efficiency of tyr-FISH to detect single-copy sequences has 
also been demonstrated in wheat (Perez et  al. 2009). Our 
results indicate that 2  kb is the minimum probe size for 
reliable detection when observing only a few metaphase 
cells with tyr-FISH under our experimental conditions. 
Probe sizes less than 2 kb can be located on chromosomes, 
but more cells need to be analyzed because detection effi-
ciency is significantly decreased. Nevertheless, tyr-FISH 
successfully placed single-copy sequences from RFLP or 
SNP markers onto onion chromosomes, accelerating align-
ment of recombinant and cytogenetic maps as an aid for 
map-based cloning of important genes.

Spatial resolution is the shortest physical distance 
between adjacent sequences that can be resolved using 
fluorescence microscopy (de Jong et al. 1999; Cheng et al. 
2002). A minimum separation of two to 10  Mb is neces-
sary to resolve FISH signals from two adjacent sequences 
on metaphase chromosomes of numerous plants (Ped-
ersen and Linde-Laursen 1995; de Jong et al. 1999; Cheng 
et al. 2002; Jiang and Gill 2006; Lamb et al. 2007). In this 
research, four probes were co-localized in a centromeric 
region that could not be resolved with tyr-FISH on both 
mitotic metaphase and pachytene chromosomes (Figs.  1f, 
f′, f′, g, g′, 2a). The mean condensation of an onion mitotic 
metaphase chromosome has been estimated at 249.6  Mb/
µm, assuming uniform condensation along the entire chro-
mosome (Khrustaleva and Kik 2001). This is much greater 
than the condensation of tomato metaphase chromosomes 
at 40.6 Mb/µm (Anderson et al. 1985) and on average one 
onion chromosome possesses the same amount of DNA 
as the entire diploid genome of tomato. Assuming that a 
maximum distance of 0.2 µm can be resolved using fluo-
rescence microscopy, we estimate that the spatial resolution 
on onion metaphase chromosomes may be up to 50  Mb. 
Less condensed pachytene chromosomes have been used 
for mapping of single-copy sequences in plants with rela-
tively small chromosomes such as tomato (Szinay et  al. 
2008), potato (Iovene et  al. 2008), Arabidopsis (Fransz 

et al. 2000), and rice (Cheng et al. 2001). Pachytene chro-
mosomes of onion are only 7.8 times less condensed than 
metaphase chromosomes, and identification of individual 
onion chromosomes during pachytene is difficult (de Jong 
et al. 1999).

Super-stretching of pachytene chromosomes can 
increase lengths by 20 times their regular sizes. Strik-
ingly, maize pachytene chromosomes can be stretched up 
to 1000  µm (Koo and Jiang 2009). We applied this tech-
nique to onion pachytene chromosomes and were able to 
reveal the location of marker AOB 272g relative to a SNP 
marker (isotig 34671) and the centromere (Fig. 2b, b′, b″). 
On super-stretched pachytene chromosomes, four markers 
(AOB 272g and isotigs 29186, 30856, and 34671) were 
visualized as a linear string of fluorescent signals measur-
ing 7.4 ± 0.6 µm (Fig. 2c). If the lengths of super-stretched 
pachytene chromosome are assumed to be 20 times longer 
than regular pachytene chromosomes and correspond to 
1.5  Mb/µm (Koo and Jiang 2009), the markers would be 
located across a 10-Mb region. However, precise estimation 
of distances between these markers would require sequenc-
ing of a large genomic clone or contig from this region. The 
RFLP and SNP markers linked to Ms were used to screen 
a BAC library of onion (Suzuki et al. 2001), but were not 
able to isolate BACs carrying these markers likely due to 
its relatively low (0.3×) coverage.

CMS has been widely utilized for large-scale production 
of hybrid seed of many crops (Havey 2004), and hybrid 
development can be aided by genetic markers distinguish-
ing cytoplasms and closely tagging nuclear male-fertility 
restoration loci (Gökçe et  al. 2002). We used tyr-FISH to 
successfully assign molecular markers tightly linked to the 
Ms locus to a region adjacent to centromere on long arm 
of onion chromosome 2 (Fig. 1). The more loosely linked 
AOB 272g marker was distally located relative to the more 
closely linked SNP markers (Martin et  al. 2005; Havey 
2013). Albini and Jones (1988) assessed the locations of 
chiasmata along onion chromosomes and observed that 
regions near the centromeres experience significantly less 
recombination relative to the middle and distal regions, 
consistent with observations from other plants (Tanks-
ley et  al. 1992; Werner et  al. 1992; Sherman and Stack 
1995; Künzel et  al. 2000; Haupt et  al. 2001; Anderson 
et  al. 2003). Less recombination near the centromere of 
onion chromosome 2 indicates that tightly linked mark-
ers (Table 1) in this region may be physically distant from 
each other and Ms. This does not diminish the usefulness of 
these molecular markers to predict genotypes at Ms; how-
ever, it does indicate that eventual map-based cloning of 
Ms may be arduous. As the cost of DNA sequencing con-
tinues to decline, the nuclear genome of onion will eventu-
ally be sequenced and assembled. Nevertheless, identifica-
tion of candidates for the Ms locus may be difficult because 
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flanking markers may not locate onto a single contig. A 
more fruitful approach to clone Ms may be transcriptome 
sequencing of well-characterized genetic stocks (such as S 
MsMs, N MsMs, and N msms), evaluating for gene-expres-
sion differences among these male-fertile onions.
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