
1 3

Theor Appl Genet (2016) 129:431–444
DOI 10.1007/s00122-015-2637-3

ORIGINAL ARTICLE

Choice of models for QTL mapping with multiple families 
and design of the training set for prediction of Fusarium 
resistance traits in maize

Sen Han1 · H. Friedrich Utz1 · Wenxin Liu2 · Tobias A. Schrag1 · Michael Stange1,5 · 
Tobias Würschum3 · Thomas Miedaner3 · Eva Bauer4 · Chris‑Carolin Schön4 · 
Albrecht E. Melchinger1 

Received: 16 September 2015 / Accepted: 9 November 2015 / Published online: 10 December 2015 
© Springer-Verlag Berlin Heidelberg 2015

and effects of alleles at QTL were compared. Model 2 to 
5 performing joint analyses across all families and using 
linkage and/or linkage disequilibrium (LD) information 
identified all and even further QTL than Model 1 (single-
family analyses) and generally explained a higher propor-
tion pG of the genotypic variance for all three traits. QTL 
for DON and GER were mostly family specific, but sev-
eral QTL for DS occurred in multiple families. Many QTL 
displayed large additive effects and most alleles increasing 
resistance originated from a resistant parent. Interactions 
between detected QTL and genetic background (family) 
occurred rarely and were comparatively small. Detailed 
analysis of three fully connected families yielded higher 
pG values for Model 3 or 4 than for Model 2 and 5, irre-
spective of the size NTS of the training set (TS). In conclu-
sion, Model 3 and 4 can be recommended for QTL-based 
prediction with larger families. Including a sufficiently 
large number of full sibs in the TS helped to increase 
QTL-based prediction accuracy (rVS) for various scenarios 
differing in the composition of the TS.

Introduction

Gibberella ear rot (GER) caused by Fusarium gramine-
arum is a major disease of maize (Zea mays L.) in Europe 
and Canada. It reduces the yield and contaminates the 
grain with mycotoxins, in particular with deoxynivalenol 
(DON). Breeding resistant cultivars is the most effective 
approach for combatting the disease due to limited effect 
of agronomic practices and fungicides (Martin et al. 2011). 
For genetic improvement of GER, Martin et al. (2012) rec-
ommended marker-assisted selection, but this presupposes 
accurate estimates of the chromosomal location and effect 
of the underlying quantitative trait loci (QTL).
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Linkage mapping with individual bi-parental families 
derived from divergent parent lines has become routine 
for dissecting the genetic architecture of complex traits in 
crops (Holland 2007), although it has certain drawbacks. (i) 
The mapping population originates from two parent lines 
and, therefore, represents only a small cross section of the 
breeding germplasm (Xu 1998; Liu and Zeng 2000). (ii) 
Mapping results from one family are often not transferable 
to other families (Beavis 1998; Melchinger et  al. 1998), 
because the expression of QTL depends on its presence and 
in addition can be influenced by the genetic background. 
To overcome these limitations, multi-family QTL map-
ping has been proposed to detect QTL jointly from multiple 
bi-parental families (Jansen et al. 2003; Blanc et al. 2006; 
Bink et al. 2012). These populations can be either families 
routinely generated in practical breeding programs (Bar-
dol et  al. 2013) or created using special mating designs, 
e.g., the diallel design (Blanc et al. 2006), nested associa-
tion mapping population (NAM, Yu et  al. 2008) or multi-
parent advanced generation intercross (MAGIC, Huang 
et al. 2015). The main difference between bi-parental and 
multi-family QTL mapping concerns the set of QTL that 
segregate in one versus several populations, which enables 
testing for QTL ×  genetic background interactions in the 
latter case (Blanc et al. 2006). For a given sample size, the 
former approach has generally higher power to detect rare 
QTL with large effects, segregating in only one or a small 
number of families, while the latter approach has higher 
chances to detect common QTL with small effects shared 
by a large number of families (Li et  al. 2011; Ogut et  al. 
2015).

Four main categories of biometrical models have been 
developed for multi-family QTL mapping in plants, which 
differ in their assumptions about the QTL effects: (1) 
effects are specific to each population (e.g., FULL model 
in Jannink and Jansen 2001; disconnected model in Blanc 
et al. 2006), (2) effects of parental alleles are identical over 
populations (e.g., REDUCED model in Jannink and Jansen 
2001; connected model in Blanc et  al. 2006), (3) identi-
cal by descent (IBD) segments shared by parents have the 
same alleles, the effects of which are identically expressed 
in different populations (e.g., HaploMQM− model in 
Jansen et al. 2003; LDLA model in Bardol et al. 2013 and 
Giraud et  al. 2014), (4) identical by state (IBS) segments 
among parents harbor identical alleles with effects consist-
ent across genetic backgrounds (Yu et  al. 2008; LDLA-
1-marker model in Bardol et  al. 2013; Model-B in Wür-
schum et  al. 2012). From category (1) to (4), the number 
of alleles at QTL decreases, resulting in a reduced number 
of parameters to be estimated. Thus, the power of QTL 
detection may increase and estimation error of QTL effects 
may decrease (Rebai and Goffinet 1993, 2000), if a com-
mon set of QTL can be assumed. In experimental studies, 

the performance ranking of these models varied among 
populations of equal size and among traits (Blanc et  al. 
2006; Steinhoff et al. 2011; Bardol et al. 2013; Giraud et al. 
2014). Therefore, further research is warranted to compare 
these models and provide guidance for their choice.

In recent years, genomic prediction of breeding val-
ues of untested genotypes with genome-wide markers has 
received considerable interest by breeders due to a dra-
matic reduction in the costs of genotyping (Meuwissen 
et  al. 2001; Jannink et  al. 2010). One important question 
in genomic prediction, and generally in marker-based pre-
diction, is how to design the training set (TS) for achiev-
ing a high prediction accuracy. Major factors identified are 
the sample size and number of families in the TS and their 
relatedness to the validation set (VS, Riedelsheimer et  al. 
2013; Lehermeier et al. 2014). Multi-family QTL mapping 
offers the possibility to unveil the genetic basis of predic-
tion accuracy in genomic prediction with different compo-
sition of the TS.

In our study, we compared five models of QTL mapping 
with multiple crosses for QTL detection and QTL-based 
performance prediction evaluated with cross-validation. 
Besides additive effects, we investigated digenic epistasis 
and QTL  ×  genetic background interactions. Moreover, 
we examined several scenarios of composition of the TS 
for QTL-based prediction. Our analyses were based on a 
total of 639 doubled-haploid (DH) lines derived from five 
interconnected crosses genotyped with 56 k SNP and 363 
SSR markers and phenotyped for relevant GER resistance 
traits (DON concentration, GER severity) and a phenologi-
cal trait (days to silking) in maize.

Materials and methods

Plant material and field trials

Four flint maize inbred lines developed by the University 
of Hohenheim were used as parents. They represent elite 
breeding materials of Central Europe displaying good com-
bining ability for grain yield in crosses with dent lines. 
Pedigree-based coefficients of coancestry among them 
range between 0.05 and 0.23 (Martin et al. 2011). Regard-
ing resistance against Fusarium graminearum, parent line 
UH006 is highly resistant, UH007 is moderately resistant, 
and UH009 and D152 are highly susceptible (Bolduan et al. 
2009). The four parent lines, herein denoted as R1, R2, S1 
and S2, respectively, were crossed in an incomplete half-
diallel design (Fig. S1) and the F1 crosses were used for 
developing five interconnected families of DH lines rang-
ing in size from 43 to 204 (Table  1). The DH lines were 
developed by applying the in vivo haploid method detailed 
by Prigge and Melchinger (2012).
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All 639 DH lines and their parental lines were tested 
at two locations in Southwest Germany, namely Stuttgart-
Hohenheim (48°43′12″ N, 9°10′48″ E) and Eckartsweier 
(48°31′12″ N, 7°52′12″ E) in 2  years (2008 and 2009). 
In each environment (year ×  location combination), four 
10 × 20 α designs, each with two replicates, were grown 
adjacent to each other as detailed by Martin et al. (2011). 
The experimental units were 3 m single row plots spaced 
0.75 m apart with 20 plants.

Artificial inoculation with an aggressive isolate of F. 
graminearum (IFA66) was conducted as detailed by Bold-
uan et  al. (2009). Briefly, the inoculum (1  ml, 100,000 
conidia) was injected 5–6  days after silk emergence into 
the silk channels of the primary ears of plants at a simi-
lar developmental stage. Six and eight plants per plot were 
inoculated in 2008 and 2009, respectively. At physiological 
maturity, the inoculated ears were manually dehusked and 
visually rated for GER severity from 0 to 100 %. After har-
vest, the ears were dried to a moisture content of approxi-
mately 14 %. DON concentration of each plot was meas-
ured with near-infrared spectroscopy (NIRS) as described 
in detail elsewhere (Martin et  al. 2011; Miedaner et  al. 
2015). Moreover, the number of days to silking (DS) was 
recorded on a plot basis as the number of days from sowing 
to silk emergence of the primary ears in 50 % of the plants.

Phenotypic data analysis

Data for GER severity and DON concentration were trans-
formed using the arcsine square root function and the natu-
ral logarithm function, respectively, to reduce heterogeneity 
of variances and approximate the assumption of a Gauss-
ian distribution. After calculation of adjusted entry means 
in each environment, variance components across environ-
ments and entry-mean based heritabilities (h2) were esti-
mated for each family as detailed by Martin et al. (2011). 
Genotypic correlation coefficients (rg) between traits in 
each family and their standard errors were calculated 

according to Mode and Robinson (1959). Statistical analy-
ses of the phenotypic data were performed with software 
PLABSTAT (Utz 2005).

Marker screening and consensus map construction

The Illumina MaizeSNP50 array comprising 56,110 SNP 
markers (Ganal et al. 2011) was applied for genotyping all 
DH lines and the four parent lines. In each family, polymor-
phic SNP markers were selected, if (i) their physical map 
position was known and (ii) their minor-allele frequency 
and average call frequency exceeded 0.05 and 0.80, respec-
tively. DH lines with more than 5 % heterozygous SNPs or 
an average call rate smaller than 0.80 were excluded from 
further analyses. In addition, the DH lines were genotyped 
by 123 (R1R2), 106 (R1S1), 129 (R1S2), 113 (R2S1) and 
121 (R2S2) polymorphic SSRs as described in detail by 
Martin et al. (2011).

In each family, markers were grouped into 10 linkage 
groups with software MSTmap (Wu et  al. 2008). After-
wards, a consensus map of each linkage group across all 
families was constructed with software Carthagene (de 
Givery et  al. 2005) in the following steps. Step 1: merge 
the dataset of all families with the dsmergen command 
and then combine each pair of strongly correlated mark-
ers (2-point LOD score ≥3) into one locus. Step 2: build a 
framework map with a limited number of markers, but hav-
ing a reliable order (buildfw 10 10 {} 0). Step 3: incorpo-
rate additional markers into the framework map using the 
command buildfw keepThres AddThres {“marker order of 
the framework map”} 0, where the values of keepThres and 
AddThres are high (≥3), but lower than in step 2. Notably, 
questionable markers were removed, if they caused con-
siderable inconsistency in the marker order between the 
genetic and physical map or resulted in an excessive expan-
sion of the linkage group. Step 4: repeat step 3 to add as 
many markers as possible while ensuring a robust marker 
order (keepThres and AddThres ≥3).

Table 1   Family size (N), pedigree-based coefficient of coancestry 
among parent lines (f), family means (X̄), and estimates of genotypic 
variance (σ 2

G), heritability (h2), and genetic correlations (rg) of deox-

ynivalenol concentration (DON), Gibberella ear rot severity (GER), 
and days to silking (DS) for five families of doubled-haploid (DH) 
lines

** Significant at P < 0.01 for all traits and families
+  Absolute value of the estimate of rg exceeds twice its standard error

Family N f X̄ σ 2

G** h2 rg

DON GER DS DON GER DS DON GER DS (DON, GER) (DON, DS) (GER, DS)

R1R2 135 0.23 3.43 39.33 81.48 0.40 102 10.08 0.77 0.77 0.88 0.96+ −0.21+ −0.32+
R1S1 204 0.22 4.84 53.06 79.81 0.25 74 7.26 0.64 0.70 0.87 1.00+ −0.53+ −0.45+
R1S2 161 0.14 4.87 59.4 81.3 0.47 102 7.76 0.80 0.79 0.92 0.98+ −0.39+ −0.40+
R2S1 96 0.19 3.7 42.97 80.99 0.56 131 12.18 0.80 0.82 0.94 0.98+ −0.64+ −0.66+
R2S2 43 0.05 4.64 56.58 81.62 0.44 115 9.21 0.74 0.83 0.89 0.99+ 0.03 0.03
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Clustering of parental alleles at each locus

The alleles of the parent lines at each locus of the consen-
sus map were clustered into ancestral classes based on sim-
ilarity scores between each pair of lines, which were calcu-
lated with a sliding window approach implemented in the 
R package “clusthaplo” (Leroux et al. 2014). Briefly, for a 
locus centered at a window of certain size, the similarity 
score between one pair of lines was computed as weighted 
measure of the number of IBS loci within that window, the 
length of the longest common genome segment of that win-
dow and, if the marker density in that window was low, the 
estimated genome-wide relatedness between the two lines. 
In this study, the first two weights were chosen from an 
exponential and uniform distribution, respectively. After-
wards, a Hidden Markov Model overcoming the threshold 
setting issue was applied to cluster the parental alleles at 
each locus. Clusters were firstly generated based on a set 
of genome-wide 35  k polymorphic SNP markers on the 
physical map, the positions of which were transformed into 
a centiMorgan scale by chromosome-wise ratios calculated 
from the length of the consensus map of each chromosome 
over its physical map length (Huang et al. 2011), and sec-
ondly extracted for the shared markers between the physi-
cal and genetic consensus map.

The window size to be used for clustering was deter-
mined in two steps. First, we investigated the LD decay 
along each chromosome. The LD between each pair of 
markers on each chromosome was calculated as r2 (Hill and 
Robertson 1968) on the basis of 41 flint inbred lines includ-
ing our four parents. The decay of r2 on every chromosome 
was estimated according to Hill and Weir (1988). Second, 
to investigate how sensitive the clustering is with respect to 
the choice of the window size, five different window sizes 
ranging from 5 to 25 cM in steps of 5 cM were examined. 
The clustering results of each chromosome were evaluated 
with respect to (i) the average number of clustered ances-
tor alleles, (ii) the number of cluster changes defined as 
the change of at least one haplotype in the clustering result 
from locus to locus (Leroux et al. 2014), and (iii) the Pear-
son correlation coefficient between the modified Rogers’ 

distance among the four parental lines (Reif et  al. 2005) 
and their clustering-based dissimilarity, calculated as the 
proportion of loci not sharing identical clusters. Finally, 
windows of size 20 and 10 cM were applied for chromo-
some 7 and the other chromosomes, respectively, on the 
basis of our findings and following the recommendation 
of Giraud et al. (2014) to choose as window size twice the 
genetic distance corresponding to r2 = 0.2.

Detection of QTL with main effects and study 
of epistatic effects

Five biometric models, differing in the assumption about 
the number and effects of alleles at a QTL, were utilized to 
detect QTL with additive effects for every trait (Table 2), 
three based on linkage analysis (Model 1–3) and two incor-
porating LD and linkage information (Model 4 and 5). A 
detailed description of these models is given in supplemen-
tary materials.

Calculations for all five models were performed using 
iterative composite interval mapping (iQTLm, Charcos-
set et al. 2000) implemented in the MCQTL_LD software 
(Jourjon et  al. 2005). A genome scan was performed for 
every marker and/or every 2  cM position, using flanking 
markers to infer the genotype at this position as described 
by Haley and Knott (1992), with multiple regression. 
Thresholds for declaring a putative QTL were determined 
by a permutation test using 1000 permutations to limit 
the genome-wise Type I error to 10 % for the joint analy-
sis and 2 % for the single-family analysis to make the two 
comparable according to the Bonferroni correction (Blanc 
et al. 2006). Cofactors were selected by forward selection, 
restricting the distance between two adjacent cofactors 
to be greater than 20 cM. Support intervals of QTL posi-
tions were determined on the basis of 1-LOD unit drop. 
The proportion of genotypic variance (pG) explained by 
each QTL (all QTL) was calculated as pG = R2

adj/h
2 , 

where R2
adj = 1−

RSSfull/dffull
RSSred/dfred

 and RSSfull and RSSred refer 
to the residual sum of squares of the full model including 
the tested QTL (all QTL) and of the reduced model without 
the tested QTL (all QTL), respectively, and dffull and dfred 

Table 2   Overview of the five biometric models used for detecting QTL with additive effects in multiple families

Model Model name QTL set Number of alleles at a QTL Reference(s)

1 Single-family model One per family Two per family Blanc et al. (2006)

2 Disconnected model Joint Two × number of families Blanc et al. (2006)

3 Connected model Joint Number of parents Blanc et al. (2006)

4 Linkage disequilibrium  
and linkage model (LDLA)

Joint Number of clustered ancestral alleles Bardol et al. (2013),  
Giraud et al. (2014)

5 LDLA-1-marker model Joint Number of marker alleles, i.e.,  
two (SNP) or at least two (SSR)

Würschum et al. (2012), 
Giraud et al. (2014)
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refer to the degrees of freedom of the residual error in the 
full and reduced model, respectively (Giraud et  al. 2014). 
Note that in the joint analyses, a family effect was included 
in both the full and reduced models and h2 was calculated 
as the average heritability across all families. QTL detected 
with different models were considered different if their 
1-LOD drop support intervals did not overlap.

QTL detected with Model 3 were further tested for 
digenic epistasis (Model 6) and QTL  ×  genetic back-
ground (family) interaction (Model 7), applying the mod-
els detailed in Blanc et  al. (2006) and our supplementary 
materials. Calculations for Model 6 were conducted with 
the “simple” method implemented in MCQTL_LD soft-
ware (Jourjon et al. 2005). Calculations for Model 7 were 
conducted with a self-made program within the R environ-
ment (R Development Core Team 2008). The Type I error 
of both models was confined to 10  %. Estimates of R2

adj 
and pG were calculated for each significant interaction as 
described above for additive effects, except that the differ-
ence between the full and reduced model refers to the inter-
action term.

Cross‑validation

Two cross-validation schemes, detailed below, were 
applied to (i) evaluate and compare Model 1–5 with two 
sample sizes of the TS and (ii) investigate with the con-
nected model (Model 3), how the composition of the TS 
affects the prediction accuracy for the validation set (VS). 
Briefly, in each cross-validation run, QTL detection, locali-
zation and estimation of genetic effects were conducted in 
the TS and validation of the QTL results was performed in 
the VS as detailed by Utz et al. (2000). A Type I error of 
10  % was applied to all models. Calculations were repli-
cated 200 times with different random samples to obtain 
robust estimates using the R package “cvMCQTL” (Foiada 
et  al. 2015) and our own extensions. To reduce the com-
putation time of cross-validation, highly correlated markers 
from the dense genetic consensus map were removed by 
retaining only one marker per cM, which was polymorphic 
in most of the families compared with other markers within 
that 1 cM bin.

In Scheme  1, the same number of lines was sampled 
randomly without replacement from three completely 
connected families (R1R2, R1S1, and R2S1) to form the 
TS (Fig. S2). The VS was built in the same way from the 
remaining lines. Two TS sizes with NTS = 81 (27 from each 
family) and 180 (60 from each family) and correspond-
ing VS sizes with NVS = 48 (16 from each family, except 
15 for Model 1 in the case of R2S1 due to its small fam-
ily size) and 108 (36 from each family) were employed. To 
enable direct comparison of prediction accuracies of the 
five models, the within-family prediction accuracy rVS was 

calculated for each family of the VS as the Pearson correla-
tion between observed and predicted performance divided 
by the square root of h2. If no QTL was identified in the 
TS, the prediction accuracy was set to zero. The prediction 
accuracy rVS was averaged over all cross-validation runs 
and the corresponding standard deviation was determined. 
Moreover, the frequency of QTL detected in each 20  cM 
bin along the genome was recorded across cross-validation 
runs.

For Scheme  2, seven scenarios using TS of equal size 
composed of DH lines from a maximum of four fami-
lies (R2S2 was excluded due to its small sample size) 
were investigated differing in (i) the number of families 
from which the DH lines were randomly sampled with-
out replacement and (ii) the relatedness between the DH 
lines in the TS and VS ranging from full sib (F) and half 
sib (H) to unrelated (U) lines, ignoring relatedness among 
the four parent lines. The VS always comprised only one 
family. The scenarios were coded by the number of fam-
ilies in the TS and adding letters (F, H, U) reflecting the 
relationship of the genotypes in the TS to the genotypes in 
the VS (Table 3). If the TS included more than one family, 
the same number of DH lines was sampled from each fam-
ily. Note that in all scenarios, both parents of the VS were 
parents of at least one family in the TS so that allele effects 
could be estimated with Model 3. The size of the TS varied 
from 60 to 280 in steps of 20. As with Scheme 1, rVS was 
averaged over all cross-validation runs.

Results

Phenotypic data analysis and consensus map 
construction

R1R2 had the lowest family means (X̄) of DON and GER, 
followed by R2S1 (Table  1). The differences in X̄ of DS 
between families were small. Significant (P < 0.01) geno-
typic variances were observed for all traits in all families, 
with estimates being smallest for R1S1 and largest for 
R2S1. Heritabilities were generally high with an average of 
0.78 for DON and GER and 0.90 for DS, and small differ-
ences among families. Genetic correlations were extremely 
tight between DON and GER (rg ≥ 0.96) and moderately 
negative (−0.66 ≤ rg ≤ −0.21) for DS with DON or GER 
for all families except R2S2.

In total, 17,800 markers passed the quality check and 
were employed to construct the consensus map. It had a 
total length of 1854 cM and 2472 loci made up of 14,421 
markers, out of which strongly correlated markers were 
combined into one locus before determining the marker 
order (Fig. S3). The genetic distance between adjacent 
loci ranged from 0  cM to a maximum of 9.4  cM across 
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all chromosomes. The order of the markers on the physi-
cal map (Schnable et  al. 2009), our consensus genetic 
map, and the SSR-based genetic map reported by Martin 
et al. (2012) showed collinearity across the entire genome 
with minor deviations in a few regions (Fig. S3). Map 
distances differed occasionally between the consensus 
map and the SSR-based genetic map, which had a total 
length of 2060 cM. Some regions on the physical map of 
each chromosome were devoid of markers. For instance, 
a huge segment of 75  Mb on chromosome 3, comprising 
the centromere, was completely lacking any markers, but 
the markers flanking this segment had a genetic map dis-
tance less than 5  cM, indicating extreme suppression of 
recombination.

Choice of window size and clustering of parental alleles

In the set of 41 flint lines used for examining the decay 
in LD between the markers on a chromosome, the thresh-
old r2 = 0.2 was reached at 9.6 cM for chromosome 7 and 
between 3.2  cM and 5.3  cM for the other chromosomes 
(Fig. S4). The average number of ancestral alleles at each 
locus obtained from clustering with five different win-
dow sizes was similar for all chromosomes (Fig. S5). The 
only exception was window size 5 cM, which resulted in a 
higher number of ancestral alleles on chromosome 6 than 
the other window sizes. Concerning the number of cluster 
changes on each chromosome, 5 cM deviated notably from 
the other window sizes. Nevertheless, for all window sizes, 
the correlation coefficients between the modified Rogers’ 
distances among the four parent lines and their clustering-
based dissimilarities were above 0.97 for all chromosomes. 
Therefore, we chose windows of size 20 cM for chromo-
some 7 and 10 cM for the other chromosomes. Clustering 

of the four parental alleles at each locus to ancestral allele 
classes varied across loci and chromosomes (Fig. 1a, b). On 
average, centromeric regions had fewer clustered ancestral 
alleles than telomeric regions. Generally, parent lines with 
a higher coefficient of coancestry shared more often the 
same ancestral allele than others.

Detection of QTL with additive effects and epistatic 
QTL with different models

For DON, one to two QTL with additive effects were 
detected with Model 1 in each family explaining together 
pG  =  14.8–43.9  % of the genotypic variance (Table  4; 
Fig.  1c). The only exception was family R2S2 with the 
smallest sample size (N = 43), where no QTL was identi-
fied. Each QTL was detected in only one family, except one 
QTL on chromosome 2, which was shared between R1R2 
and R2S1 (Table S1). In general, the favorable alleles origi-
nated from the resistant parents R1 and R2 except for one 
QTL on chromosome 1 in family R1S2, where the favora-
ble allele was contributed by the susceptible parent S2. 
Interestingly, this QTL had only pG = 14.8 %, even though 
the sample size in this family was fairly large (N = 161).

Compared with Model 1, the joint analyses (Model 2 
to Model 5) of DON with all five families detected con-
siderably more QTL (8–13) and had higher pG values in 
the simultaneous fit, ranging between 34.4 and 52.9  % 
(Table  4, Fig.  1d). This included all QTL identified with 
Model 1 in all families and several new QTL, e.g., on chro-
mosomes 4, 5, 6, 8, 9 and 10 (Table S1). Model 4 detected 
the largest number of QTL and had the highest pG (52.9 %), 
whereas Model 5 detected besides Model 2 the least num-
ber of QTL with smallest pG (34.4 %) and Model 3 was in 
between. Most of the favorable QTL alleles detected with 

Table 3   Composition of the training set (TS) and validation set (VS, in bold face letters) under seven scenarios and average coefficient of 
coancestry ( f̄ ) between the TS and VS

a  F, H, and U refer to full-sib, half-sib and unrelated DH lines with f = 0.50, 0.25 and 0.00, respectively, ignoring relationships among the four 
parent lines
b  The code inside the brackets refers to the family in the VS and the code(s) outside the bracket(s) refer(s) to family or the union (∪) of families 
in the TS

Scenario No. of families in TS Relatedness of TS to VSa and  f̄ TS population (VS family)b

1F 1 1F f̄  = 0.50 R1R2(R1R2); R1S1(R1S1); R1S2(R1S2); R2S1(R2S1)

2H 2 2H f̄  = 0.25 R1S1∪R2S1(R1R2); R1R2∪R2S1(R1S1); R1R2∪R1S1(R2S1)

3FH 3 1F + 2H f̄  = 0.33 R1R2∪R1S1∪R2S1(R1R2); R1R2∪R1S1∪R2S1(R1S1);
R1R2∪R1S1∪R2S1(R2S1); R1R2∪R1S1∪R1S2(R1R2);
R1R2∪R1S1∪R1S2(R1S1); R1R2∪R1S1∪R1S2(R1S2)

3H 3 3H f̄  = 0.25 R1S1∪R1S2∪R2S1(R1R2); R1R2∪R1S2∪R2S1(R1S1)

3HU 3 2H + U f̄  = 0.17s R1R2∪R1S1∪R1S2(R2S1)

4FH 4 1F + 3H f̄  = 0.31 R1R2∪R1S1∪R1S2∪R2S1(R1R2); R1R2∪R1S1∪R1S2∪R2S1(R1S1)

4FHU 4 1F + 2H + 1U f̄  = 0.25 R1R2∪R1S1∪R1S2∪R2S1(R2S1); R1R2∪R1S1∪R1S2∪R2S1(R1S2)
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Fig. 1   a Number of esti-
mated ancestral alleles and b 
clusters of the four parental 
alleles at each locus along the 
genome obtained with software 
“clusthaplo”. In a the position 
of the centromeres is indicated 
by white darts. In b each 
distinct ancestral allele is given 
a single color when it is shared 
by at least two haplotypes. Note 
that occurrence of the same 
color at two different loci does 
not imply anything about the 
relatedness of the corresponding 
alleles. Genome-wide values 
for −log10 (P value of F test) 
obtained from bi-parental (c) 
and multi-family (d) QTL map-
ping analysis of deoxynivalenol 
concentration (DON). The 
location of QTL is indicated 
above the curves with different 
symbols for the various models. 
The horizontal lines refer to the 
significance thresholds of each 
model

A

B

C

D

Table 4   Number of detected QTL and proportion (pG) of the genotypic variance explained by all QTL in a simultaneous fit applying different 
models for deoxynivalenol concentration (DON), Gibberella ear rot severity (GER), and days to silking (DS)

a  For calculation, see “Materials and methods”
b  Number of different QTL across all families
c  Average of pG values across all families

Model Family N DON GER DS

Number of QTL pG (%)a Number of QTL pG (%) Number of QTL pG (%)

1 R1R2 135 2 43.9 2 48.4 3 49.3

1 R1S1 104 2 22.2 2 23.3 2 23.2

1 R1S2 161 1 14.8 1 18.1 4 39.8

1 R2S1 96 1 30.0 1 20.1 3 61.4

1 R2S2 43 0 0 0 0 0 0

1 Total/average – 5b 22.2c 4 22.0 8 34.7

2 All 639 8 41.2 8 39.9 11 58.3

3 All 639 9 44.0 13 51.5 12 56.3

4 All 639 13 52.9 11 39.5 11 48.3

5 All 639 8 34.4 11 22.1 13 39.6
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Model 3, reducing DON, originated from parent line R1 
with the highest resistance level (Table S2). Interestingly, 
the susceptible parent lines S1 and S2 also contributed 
resistance alleles with sizeable effects at some QTL.

For GER, with the exception of R2S2, one to two QTL 
displaying additive effects were detected with Model 1 
in each family with pG values from the simultaneous fit 
between 18.1 and 48.4  % (Table  4; Fig. S6a). Each QTL 
was detected in only one family except for one QTL on 
chromosome 2 shared between R1R2 and R1S1 (Table S1). 
As expected on the basis of the tight genotypic correlations 
between GER and DON, QTL for GER showed a high 
degree of co-localization and congruency of effects with 
QTL for DON and this applied irrespective of the model 
applied, but the ranking of the Model 3 and 4 in terms of 
the number of QTL detected and pG differed.

For DS, Model 1 detected two to four QTL in all fami-
lies except R2S2, with pG values from the simultaneous fit 
ranging from 23.2 to 61.4 % (Table 4, Fig. S6c). In contrast 
to DON and GER, a large number of QTL identified for DS 
were congruent between two or three families (Table S1). 
For instance, two out of three QTL detected in R1R2 were 
also found in R1S2. For family R2S1, the QTL on chromo-
some 10 for DS and GER co-localized and had pG values of 
52.0 and 20.1 %, respectively. Model 2 to Model 5 detected 
all QTL identified with Model 1 in each family and several 
additional QTL (Table S1, Fig. S6d). Model 2 to Model 5 
detected similar numbers of QTL (11 to 13), but Model 4 
and Model 5 had smaller pG values than Model 2 and 3.

No significant (P  <  0.05) digenic epistasis was found 
for DON with Model 3. For GER, only one pair of QTL 
at position 67.3  cM on chromosome 9 and 62.6  cM on 
chromosome 10 displayed a significant (P < 0.05) interac-
tion with pG =  5.5 %. For DS, significant digenic epista-
sis was detected between the QTL at position 62.6 cM on 

chromosome 2 and the QTL at 71.9  cM on chromosome 
8 with pG  =  4.4  %. With Model 3, several significant 
(P < 0.05) QTL × genetic background (family) interactions 
were found, one for DON, three for GER and six for DS 
(Table S2), but the corresponding pG values were consist-
ently below 2.5 %.

Comparison of QTL mapping models 
via cross‑validation

For Scheme 1 and DON, higher prediction accuracies rVS 
were achieved for NTS =  81 with Model 1 than with the 
joint analysis of Model 2 to 5 in each VS family except 
R1S1 (Fig.  2). For NTS =  180, estimates of rVS from the 
joint analysis increased substantially in each family 
and approached or even exceeded those of Model 1 with 
NTS = 81. For both values of NTS, there existed only minor 
differences between Model 2–5 in terms of rVS within each 
family. Family R1S1, which had the lowest h2 among the 
three families, had generally smaller rVS values than the 
other two families. With Model 1 and NTS =  81, the fre-
quency of QTL detection in cross-validation runs was high 
(>0.4) for certain QTL, which were mostly specific for 
either R1R2 or R2S1, but generally low (<0.15) in R1S1 
(data not shown). Joint analysis with Model 2–5 consist-
ently identified QTL in those regions, where they were also 
detected with Model 1, but with low frequency (<0.15). 
Increasing the sample size to NTS = 180 increased the QTL 
frequencies (>0.3) in the joint analysis considerably and all 
QTL identified by Model 1 with NTS = 81 were detected.

Similar results were observed for GER and DS, except 
that (1) for both traits and NTS = 81, Model 1 had in fam-
ily R1S1 also a slightly higher mean rVS than the joint 
analysis models (Fig. S7); (2) for DS and NTS =  81, the 
detected QTL frequency in cross-validation runs showed 

Fig. 2   Prediction accuracy (rVS) in the validation set (VS indicated 
above each graph) composed of one family for deoxynivalenol con-
centration (DON) obtained by applying different models for single-
family (model 1) and joint family analysis (model 2–5) of three fully 

connected families (R1R2, R1S1, R2S1). The height of black and 
gray columns refer to means across 200 cross-validation runs with 
NTS = 81 and 180 and NVS = 48 and 106, respectively, and the verti-
cal bars show the corresponding standard deviation



439Theor Appl Genet (2016) 129:431–444	

1 3

higher consistency among families than DON and GER 
(data not shown). For NTS = 81, Model 3 or 4 reached gen-
erally the highest mean for rVS among the joint analysis 
models. Both were in most cases superior to Model 2 and 
5 and differences among models were less pronounced for 
NTS = 180.

Effect of training set composition on prediction 
accuracy under different scenarios

The ranking of rVS values for the different scenarios 
remained largely unaffected by the sample size of the TS 
and was almost identical for all traits (Fig. 3; Fig. S8). Pre-
diction accuracies rVS were higher under Scenario 1F than 
under all other scenarios for all VS families except for 
R1S1, where Scenario 3FH performed either equally well 
(DS) or better (DON, GER). In general, rVS values obtained 
for scenarios (1F, 3FH, 4FH, 4FHU), which included dif-
ferent proportions of full sib DH lines in the TS, were 
higher than those without full sibs (2H, 3H, 3HU), irrespec-
tive of NTS. Contrasting scenarios 2H with 3HU and 3FH 
with 4FHU showed that including unrelated lines generally 
reduced rVS values. The increase in rVS with increasing NTS 
was generally highest for scenario 1F up to NTS = 140, but 
the slope of the curves varied among the VS families.

Discussion

Historically, QTL mapping in maize started with bi-paren-
tal populations (Edwards et  al. 1987). Following Lander 
and Botstein (1989), highly diverse parents were gener-
ally chosen to increase the chances of segregation of QTL, 
especially for resistance traits (Schön et  al. 1993). The 
initial euphoria abated after it was recognized that QTL 
effects reported in the early studies were oftentimes highly 
inflated (cf. Schön et al. 2004) due to the so-called Beavis 
(1998) effect (Xu 2003), first described by Utz and Melch-
inger (1994). To obtain unbiased estimates of QTL effects, 
Utz et al. (2000) recommended to use cross-validation for 
separating QTL detection, corresponding to model selec-
tion, from estimation of QTL effects. Further, it was found 
that with small sample size of the mapping population, the 
power of QTL detection for quantitative traits with poly-
genic architecture is low (Schön et al. 2004). Different from 
academia, maize breeders commonly produce DH lines 
from several crosses, including resistant and susceptible 
parents, each family being only of moderate size. The five 
families of DH lines analyzed here are typical for this situ-
ation. The questions to be answered by our study were: (1) 
Should QTL mapping for marker-assisted selection under 
such a setting be conducted separately for each family or 

Fig. 3   Prediction accuracy 
(rVS) of QTL-based prediction 
across 200 cross-validation runs 
for deoxynivalenol concentra-
tion (DON) under different 
scenarios. The validation set 
(VS indicated above each graph) 
is composed of one family and 
the composition of the training 
set (TS) is reflected by the cod-
ing of the scenario: the number 
refers to the number of families 
included in the TS and the 
letter(s) refer(s) to their kinship 
with the VS, where F, H, and 
U denote full-sib, half sib and 
unrelated lines, respectively; for 
details see Table 4. QTL map-
ping was based on model 1 for 
Scenario 1F and on Model 3 for 
the other scenarios
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jointly across all families? (2) Which of the models pro-
posed in the literature for joint analysis across families 
yield highest prediction accuracy of QTL-based prediction 
evaluated by cross-validation? (3) How does composition 
of the TS and its pedigree-relationship(s) to the VS influ-
ence the prediction accuracy?

Consensus map construction and recombination 
landscape

Multi-family QTL mapping requires a joint linkage map for 
all families included in the analysis. Construction of a con-
sensus map can be complicated, if families differ largely in 
their recombination rate or even in the linear order of mark-
ers, but this is very unlikely with the interconnected fami-
lies produced from related parents. Therefore, we applied 
dsmergen command in Carthagene to estimate one single 
recombination rate for all families and obtain consensus 
distance over families. Since SNP markers have only two 
alleles, each of these marker loci can segregate only in a sub-
set of families of a connected design. However, owing to the 
high marker density provided by the MaizeSNP50 array, we 
found plenty of tightly linked markers segregating in differ-
ent families, which enabled construction of a consensus map.

The total length of our consensus map (1854 cM) agreed 
well with the map lengths reported by Bauer et al. (2013) 
for families R1R2, R1S1 and R1S2, which ranged between 
1655 and 1893  cM. Further, the linear order of markers 
on our consensus map was in excellent harmony with the 
high-density linkage map presented by Ganal et al. (2011) 
for the flint cross F2 ×  F252, but their map length was 
expanded due to four generations of intermating. Compari-
son of the consensus map and the physical map revealed 
strong recombination suppression in the centromeric 
regions of all chromosomes, most notably on chromosome 
3, where a segment of 75 Mb had a map distance of 5 cM 
compared to a ratio of 0.07 cM per Mb averaged over the 
maize genome. Suppression of recombination in pericen-
tromeric regions is in agreement with the results reported 
by Bauer et al. (2013) for European maize germplasm and 
Rodgers-Melnick et  al. (2015) for US and Chinese maize 
germplasm.

While the consensus map should be constructed with 
great care, its influence on QTL mapping with multiple 
families depends primarily on the map density. If a high 
marker density is available as in our study, the recombina-
tion break points in the meiosis of the parental gamete of 
each DH line can be determined with high accuracy. Hence, 
in a genome scan with a high-density map, the genotype of 
the putative QTL employed for QTL mapping in the regres-
sion approach can be inferred with high fidelity from the 
observable genotype at tightly linked markers provided the 
population size is sufficiently large (Peleman et al. 2005).

Clustering parental alleles at each locus

Choice of the window size is critical for computing the 
similarity score between pairs of lines in “clusthaplo” (Ler-
oux et  al. 2014). Following Giraud et  al. (2014), we ini-
tially chose a window size of 20 cM for chromosome 7 and 
10  cM for all other chromosomes, based on the decay of 
LD for the same set of markers using representative lines 
from the same breeding pool as the four parent lines. To be 
on the safe side, we also varied the window size from 5 to 
20 cM and observed for clustering with 5 cM a much larger 
average number of ancestral alleles and number of cluster 
changes. This is because under this setting, IBD segments 
greater than 5 cM are broken into pieces, which can lead to 
incorrect estimation of similarity score for loci at both ends 
of the haplotype. Chromosome 7 had the smallest average 
number of clustered ancestral alleles in agreement with 
its slow decay of LD. Centromeric regions had on aver-
age fewer clustered ancestral alleles than telomeric regions 
(Fig. 1a, b) in accordance with the different recombination 
rates along the genome mentioned above. These results dif-
fer from those of Giraud et al. (2014) who detected on aver-
age more ancestral alleles in the centromeric than in the 
telomeric regions, most likely because (i) we used a much 
higher marker density for clustering and (ii) the parent lines 
in our study were more closely related to each other, which 
facilitated accurate detection of IBD segments. Altogether, 
the number of ancestral alleles obtained from “clusthaplo” 
varied along the chromosomes and this resulted in differ-
ent numbers of parameters in the LDLA model (Model 4), 
which caused an erratic pattern in the curves of the –log (P 
values) in Figs. 1d; S6b and S6d.

Detection of QTL with additive effects and epistatic 
QTL based on all five families

All families except R2S2 had been separately analyzed for 
QTL for GER and DON with low-density maps compris-
ing between 106 and 129 SSR markers (Martin et al. 2011, 
2012). We identified with Model 1 only a subset of the QTL 
detected previously, because different from these authors, 
we applied a more stringent significance level (α = 2 % vs. 
15 %) in permutation tests to protect against a high global 
Type I error rate in multiple tests with several families. The 
QTL detected by us were always adjacent to the flanking 
markers reported previously, but their exact position was 
shifted primarily as a result of the change in the genetic 
map caused by the higher marker density.

In agreement with Blanc et  al. (2006) and Ogut et  al. 
(2015), the QTL detected by Model 1 in each family gen-
erally showed little congruency across families, suggest-
ing that each family comprised a unique set of segregating 
QTL. The only congruent QTL for DON was found for 
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families R1R2 and R2S1 on chromosome 2, explaining a 
high percentage of the genotypic variance (pG = 20.3 and 
30.0  %, respectively), and the favorable allele originated 
in both families from the common parent R2. This is in 
accordance with the findings of Blanc et  al. (2006) that 
congruent QTL among families often have large effects and 
originate from a common parent. In contrast, several QTL 
for DS detected with Model 1 were consistent across two 
or three families, suggesting that the level of congruency 
of QTL across families depends strongly on the trait. While 
most QTL for all three traits were family specific, we 
detected with Model 3 only few significant QTL × genetic 
background (family) interactions. Either the family sizes 
in our study were too small to warrant sufficient power for 
detecting this type of epistasis, or epistatic effects are small 
for the investigated traits. Results from studies with the US 
NAM panel with 200 recombinant inbred lines from each 
of 25 families on flowering date (Buckler et al. 2009) and a 
genome-wide association mapping study of Fusarium ver-
ticillioides with 1687 lines from the USDA gene bank (Zila 
et al. 2013) support the latter explanation.

For all traits, Model 2 detected all the QTL identified 
with Model 1 and additional QTL even though both models 
assume that allele effects of QTL are nested within fami-
lies. Thus, joint analysis of several families with Model 2 
can benefit from more replicates of QTL genotypes, which 
leads to a higher power of QTL detection, especially if 
common QTL are shared between families. This finding is 
somewhat different from the results by Blanc et al. (2006), 
where the QTL detected with these two models displayed 
greater discrepancies. This may be due to different genetic 
architecture of the traits and/or the higher marker density in 
our study which increased the power of QTL detection for 
both models. Model 3 detected more QTL than Model 2 for 
DON and GER. This is in line with Blanc et al. (2006) and 
can be explained by (i) a smaller number of parameters to 
be estimated in Model 3 than in Model 2, which leads to a 
higher power of QTL detection (Rebai and Goffinet 2000), 
and (ii) the low importance of epistasis observed for these 
traits. Contrary to expectation, Model 4 did not outperform 
the other joint analysis models for GER and DS. This may 
be attributable to the small number of parents in our study 
so that the gain in power for Model 4, expected from reduc-
ing the number of parameters by clustering the parental 
alleles, was limited. This is different from the study of Bar-
dol et al. (2013), which involved more parents so that clus-
tering the parental alleles resulted in a substantial reduction 
of the parameters in the model. Although the number of 
QTL detected for GER and DS was not smallest for Model 
5, it yielded the lowest values of pG for all three traits. This 
implies that either some of the QTL detected by Model 5 
were false positives or estimates of the allele effects at the 
detected QTL were inaccurate, as expected if the numbers 

of alleles at QTL exceed those at adjacent markers. The lat-
ter explanation is consistent with Lu et al. (2012) and Bar-
dol et  al. (2013), who observed that multi-allelic models 
capture a greater proportion of the genetic variance than bi-
allelic models.

Comparison of models via cross‑validation

For marker-assisted selection, breeders are interested in 
the prediction accuracy of genotypes on the basis of the 
detected QTL. To warrant a fair comparison of the differ-
ent models for QTL detection, unbiased estimates of the 
prediction accuracy were determined by cross-validation 
using Scheme 1 with the following features: (i) Three com-
pletely interconnected families (R1R2, R1S1, and R2S1) 
were analyzed so that every pair of parental alleles could be 
contrasted with greatest power (Wu and Jannink 2004). (ii) 
The same number of DH lines was sampled from each fam-
ily for composition of the TS and VS so that each family 
contributed equally to QTL detection, estimation of param-
eters and prediction. (iii) All models were compared with 
the same sample size for the TS (NTS = 81 or 180) and VS 
(NVS = 48 or 108). (iv) The same Type I error of 10 % was 
applied for all models.

In contrast to Ogut et  al. (2015), who found that joint 
analysis generally had higher prediction abilities than 
single-family analysis, our results showed that predic-
tion accuracies rVS for individual families determined 
with cross-validation were for most traits and families 
with NTS  =  81 lower for the joint analysis models than 
for Model 1 (Fig.  2; Fig. S7). Obviously, the superior-
ity of Model 1 for small sample sizes depends strongly 
on the genetic architecture of the trait across all families. 
If specific QTL with large effects prevail in each family, 
as applies to DON and GER, the power of detecting these 
QTL is lower for Model 2–5 than for Model 1, because 
only a subset of genotypes (one-third under Scheme 1) will 
segregate in the TS used by these models. In contrast, if a 
QTL with a small effect segregates in one family, but has 
a large effect in the other families, joint analysis will most 
likely detect this QTL and using it for prediction can help 
to increase rVS. If the number of DH lines from each family 
in the TS is larger so that NTS = 180 for the joint analysis, 
then Model 3 reached generally similar values for rVS as 
Model 1 for NTS =  81. Thus, the superiority of Model 1 
over Model 3 seems to be strongly dependent on the num-
ber of individuals from the family to be predicted that are 
included in the TS besides the genetic architecture of the 
trait and the congruency of QTL across families.

Depending on the trait, Ogut et al. (2015) reported gen-
erally poor consistency of the QTL detected by Model 1 
and 2. We found that QTL detected by Model 1 with high 
frequency were all identified by the joint analysis models 
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with low (NTS = 81) or high (NTS = 180) frequencies (data 
not shown). Furthermore, for Scheme  1 and NTS  =  81, 
Model 2 generally had lower rVS than Model 3 and Model 
4 (Fig.  2; Fig. S7). Although the difference was not very 
big, this finding still suggests that Model 2 is most likely 
not the best choice in the experiments involving families 
of small size (N ≤ 27). Moreover, since Model 2 assumes 
QTL effects are specific to families (Table  2), full sibs 
must be included in the TS to estimate the QTL effects in 
the TS and predict other full sibs in the VS. This feature 
imposes considerable restrictions on possible composi-
tion of the TS, and, therefore, makes Model 2 less attrac-
tive than Model 3 and 4. For Scheme 1 and NTS = 180, no 
substantial differences in rVS among the four joint analysis 
models were observed for all traits, contrary to the find-
ings on pG based on the full data set (Table 4). This could 
be explained by the composition of the TS with different 
sampling of genotypes from the individual families and dif-
ferent assumptions about the number of QTL alleles. For 
all traits, Model 5 generally reached for NTS = 81 slightly 
lower rVS values than Model 3 and Model 4. This finding is 
consistent with that of pG for the full data set. Thus, Model 
5 most likely explains a smaller proportion of the genotypic 
variance than the other models allowing for multi-allelic 
QTL, even though it had a similar power of QTL detec-
tion, as reflected by the number detected QTL (Table 4). In 
conclusion, multi-family QTL analysis is superior to sin-
gle-family analysis only if each family is represented by an 
adequate sample size (generally >60) in the TS and com-
mon QTL do exist. Model 3 or 4 exceeded Model 2 and 
5, when evaluated with cross-validation, but differences 
among these models were generally small.

It must be noted that the pG values presented in Table 4 
are mostly likely inflated, because they were determined 
without cross-validation. To obtain an idea about the 
upward bias and its dependency on the model, we deter-
mined for Scheme 1 in addition to the pG values for the VS, 
which correspond to the square of the rVS values, also the 
pG values for the TS, using the same method as described 
for the full data set. Compared to the TS, the pG values 
in the VS averaged for Model 2–5 only about 45  % for 
NTS = 81 and about 70 % for NTS = 180 (data not shown). 
Moreover, the relative size of the upward bias in the pG 
values of the TS [(pG in TS/pG in VS) – 1] was almost the 
same for Model 2–5 so that choice of the best model could 
be determined from analyses of the full data set without 
cross-validation.

Design of the training set for QTL‑based prediction

Riedelsheimer et al. (2013) examined the prediction accu-
racy rVS for genomic prediction with GBLUP using the 
same five families and the phenotypic and genotypic data 

(excluding SSR markers) as used in this study. Regarding 
the composition of the TS, they found that rVS was high-
est for scenario 1F and much lower for scenarios 2H and 
3H with a further minor reduction for 3HU. We found in 
most cases the same ranking for these scenarios (Fig.  3; 
Fig. S8). Scenarios (1F, 3FH, 4FH, 4FHU), where the TS 
included various proportions of full sibs to the genotypes 
in the VS, had generally higher rVS in our study than sce-
narios (2H, 3H, 3HU) with only half sibs or with half sibs 
and unrelated lines. This is in agreement with experimen-
tal result on genomic prediction with full-sib and half-
sib families by Lehermeier et  al. (2014) and Foiada et  al. 
(2015). Moreover, rVS increased in most cases linearly with 
increasing NTS and the slope was generally steeper for the 
scenarios with full sibs in the TS. Thus, the average kinship 
f̄  between the TS and VS was the main factor determining 
rVS for a given sample size. The only exception was family 
R1S1, where rVS for DON and GER was higher for sce-
nario 3FH with f̄  = 0.33 than for 1F with f̄  = 0.50. Pos-
sible explanations, why prediction including full sibs in the 
TS generally achieved higher accuracy than all other sce-
narios, could be that related families share more QTL than 
less related ones. These QTL could be rare QTL, which 
segregate and have significant effects in only one or a lim-
ited number of families as observed in our study for DON 
and GER. The number of families included in the TS hardly 
affected rVS, once both parents of the VP were parents of 
at least one population in the TS. However, the kinship 
between the TS and VS seems less influential, when both 
related and less related families comprise a large number 
of common QTL, as demonstrated for R1R2 for DS, where 
rVS was similar for all scenarios (Fig. S8b). In addition, we 
found that the number of QTL and the size of QTL effects 
for all traits depended strongly on the family. The deviation 
observed for R1S1 can be explained by the observation that 
R1S1 comprised both rare and common QTL for all the 
three traits, and the average kinship f̄  between the TS and 
VS did not accurately reflect the resemblance at the QTL 
for scenarios 3FH and 1F. Altogether, our results suggest 
a major influence of f̄  on rVS, but the association seems to 
depend on the trait. While kinship measurements between 
genotypes, either based on pedigree or genome-wide mark-
ers, basically estimate the genome-wide resemblance, they 
may fail to reflect the specific resemblance with respect 
to the QTL influencing the trait of interest (Würschum 
and Kraft 2015). Nevertheless, identical linkage phases 
between marker and QTL may be more persistent between 
related materials than less related ones, as discussed by 
Riedelsheimer et al. (2013) and supported by our analysis 
of ancestral alleles with “clusthaplo”.

In conclusion, our results strongly emphasize to apply 
QTL-based prediction only, if the TS includes at least 
60 genotypes being full sibs to the VS. If no full sibs are 
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available, both parents of the VS should be included as 
parents in half-sib families in the TS. Inclusion of unre-
lated DH lines seems of questionable value. Without a suf-
ficient number of full sibs in the TS, the risk of having a 
very low prediction accuracy is high even with the most 
advanced methods of multi-family QTL mapping. Thus, 
breeders are advised to ascertain a high degree of con-
nectedness among the families, which they want to use for 
QTL-based prediction in marker-assisted selection or for 
genomic selection.
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