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loci (QTL), for resistance to ECB stalk damage in Euro-
pean elite maize. Three connected biparental populations, 
comprising 590 doubled haploid (DH) lines, were geno-
typed with high-density single nucleotide polymorphism 
markers and phenotyped under artificial and natural infesta-
tion in 2011. A subset of 195 DH lines was evaluated in the 
following year as lines per se and as testcrosses. Resistance 
was evaluated based on stalk damage ratings, the number 
of feeding tunnels in the stalk and tunnel length. We per-
formed individual- and joint-population QTL analyses and 
compared the cross-validated predictive abilities of the 
QTL models with genomic best linear unbiased prediction 
(GBLUP). For all traits, the GBLUP model consistently 
outperformed the QTL model despite the detection of QTL 
with sizeable effects. For stalk damage rating, GBLUP’s 
predictive ability exceeded at times 0.70. Model training 
based on DH line per se performance was efficient in pre-
dicting stalk breakage in testcrosses. We conclude that the 
efficiency of MAS for ECB stalk damage resistance can 
be increased considerably when progressing from a QTL-
based towards a genome-wide approach. With the availabil-
ity of native ECB resistance in elite European maize germ-
plasm, our results open up avenues for the implementation 
of an integrated genome-based selection approach for the 
simultaneous improvement of yield, maturity and ECB 
resistance.

Introduction

Marker-assisted selection (MAS) has been implemented 
widely in breeding for mono- or oligogenic resistance traits 
and has the potential to play an even more important role 
in the future. However, to date, the genetic improvement of 
many important polygenic resistance traits through MAS 
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has posed significant challenges (Miedaner and Korzun 
2012). Despite a large number of published quantitative 
trait loci (QTL) mapping studies focusing on quantitative 
resistance traits, very few reports demonstrate the success-
ful application of QTL-based MAS in a practical breeding 
programme (St. Clair 2010). Among the few successful 
examples are the improvement of resistance to the soybean 
cyst nematode (Heterodera glycines Ichinohe) in soybean 
(Glycine max L.) and the improvement of Fusarium head 
blight resistance in wheat (Triticum aestivum L.), caused 
mainly by Fusarium graminearum (Schwabe) (Cahill and 
Schmidt 2004; Anderson et al. 2008; Bernardo 2008). Both 
diseases have high economic impacts, and in both cases, it 
was possible to identify QTL with effects sufficiently large 
and stable to be exploited routinely for MAS in different 
genetic backgrounds.

For the genetic improvement of native resistance to stalk 
damage caused by the European corn borer (ECB) Ostrinia 
nubilalis (Hübner) in maize (Zea mays L.), MAS has also 
been considered a promising approach. The ECB is a major 
insect pest of maize, causing up to 30 % yield losses in some 
cases (Meissle et al. 2010). ECB larvae feed on young leaves 
during the early growth of maize and start tunnelling within 
the stalks and ears before the flowering stage. Under current 
Central European climatic conditions, damage is caused pri-
marily by ECB stalk tunnelling after flowering, which results 
in damage to stalk vascular tissue and direct harvest loss 
through stalk breakage (Melchinger et  al. 1998). Consider-
ing that rising average temperatures are expected to increase 
ECB pressure in the future (Trnka et al. 2007), varieties with 
improved resistance to ECB stalk damage would be a sig-
nificant contribution to securing maize yield productivity in 
Central Europe. The native genotypic variation for resist-
ance to ECB stalk damage has been described as polygenic 
(Schön et  al. 1993; Krakowsky et  al. 2002). Several QTL 
mapping studies have been carried out, mainly in the USA 
(Schön et  al. 1993; Cardinal et  al. 2001; Jampatong et  al. 
2002; Krakowsky et al. 2007; Orsini et al. 2012) and in Cen-
tral Europe (Bohn et  al. 2000; Papst et  al. 2001, 2004). A 
few of these studies reported QTL with sizeable effects that 
should be promising for MAS. Flint-Garcia et al. (2003), for 
instance, compared QTL-based marker-assisted selection 
with phenotypic recurrent selection and confirmed the poten-
tial of MAS in improving ECB resistance. However, to our 
knowledge, the routine implementation of this approach in 
practical breeding programmes is limited.

Recent advances in marker genotyping technologies, 
coupled with new and powerful statistical methods, have 
allowed the development of MAS towards genome-wide 
selection (Meuwissen et  al. 2001). This approach differs 
from traditional QTL-based MAS in its ability to exploit 
information provided by dense genome-wide single nucle-
otide polymorphism (SNP) markers, which are used to 

predict the total genetic value of genotypes (genome-wide 
prediction, GP). Statistical methods making use of infor-
mation from all available SNP markers are able to cover a 
large number of small genetic effects and should be suitable 
for highly polygenic traits (de los Campos et al. 2013). In 
addition, GP has been shown to capture adequately large-
effect QTL and additionally cover the remaining genome-
wide effects in a single statistical model (Wimmer et  al. 
2013). Due to the quantitative nature of resistance to ECB 
stalk damage, we hypothesise that a genome-wide approach 
should be more effective than a QTL-based approach with 
respect to predicting genotypic values. First studies of GP 
applied to polygenic disease resistance traits in plants are 
encouraging. For example, Technow et al. (2013) reported 
GP accuracies of up to 0.70 for Northern corn leaf blight 
(Exserohilum turcicum Pass.) resistance in maize, while 
Rutkoski et  al. (2012) evaluated the prospects of GP for 
Fusarium head blight resistance in North American wheat, 
concluding that germplasm from different origins could be 
used to train accurate prediction models. Thus, it seems 
that GP can also be applied successfully to traits possessing 
large-effect QTL already exploited in traditional MAS.

The first—and main—objective of our study was to 
evaluate the potential of GP relative to QTL-based MAS in 
improving resistance to ECB stalk damage in Central Euro-
pean elite maize material. We used established resistance 
traits to assess different components of resistance to ECB 
stalk damage. Stalk tunnelling by ECB was evaluated based 
on the number of feeding tunnels in the stalk and tunnel 
length (Cardinal et al. 2001; Flint-Garcia et al. 2003; Kra-
kowsky et al. 2007; Ordas et al. 2010; Tefera et al. 2011), 
while a stalk damage rating score was used to assess the 
tolerance of plants to stalk breakage under ECB pressure 
(Hudon and Chiang 1991; Kreps et  al. 1998; Melchinger 
et al. 1998; Bohn et al. 2000; Papst et al. 2004; Orsini et al. 
2012). We used three connected doubled haploid (DH) 
maize populations and conducted individual- and joint-
population QTL mapping as well as GP analyses of ECB 
resistance traits. A direct comparison of the cross-validated 
predictive abilities of QTL and genome-wide prediction 
models was performed. Further objectives were to evalu-
ate the predictive performance of GP models for ECB stalk 
damage in: (i) predictions across biparental populations 
and (ii) predictions of testcross performance based on GP 
models trained at the line per se level.

Materials and methods

Plant material

Four elite early maturing inbred lines, originating from 
the Central European dent heterotic pool, were used as the 
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parents of the DH populations. Three inbred lines selected 
for resistance to ECB stalk damage in observation trials 
under high ECB pressure (R1, R2 and R3) were crossed to 
the same susceptible line (S1) for the development of three 
connected populations: Pop1 (R1 × S1), Pop2 (R2 × S1) 
and Pop3 (R3  ×  S1), comprising 85, 243 and 262 DH 
lines, respectively. DH lines were developed using in vivo 
haploid induction technology (Röber et al. 2005). The suc-
cess of DH line production varied for the three popula-
tions, thereby leading to differences in sample size. In the 
2011/2012 winter nursery, testcrosses were produced with a 
subset of DH lines by crossing each DH line with an ECB-
susceptible flint tester. All genetic material was proprietary 
and supplied by KWS SAAT AG, Einbeck, Germany.

Field experiments

Field trials were conducted during 2011 and 2012 at two 
locations in Southern Germany under artificial ECB infes-
tation conditions and under natural infestation conditions at 
four locations characterised by high ECB pressure in Ger-
many, France and Italy (see Supplementary Table S1 for 
detailed information on the field environments). In 2011, the 
three populations were evaluated for agronomic and stalk 
damage traits as DH lines per se. Based on these results, bidi-
rectional selection was performed, where 25 % resistant and 
10 % susceptible DH lines were selected from each popula-
tion under the side condition of similar flowering time. In 
2012, the selected 31 (Pop1), 85 (Pop2) and 91 (Pop3) DH 
lines were evaluated as lines per se and as testcrosses in sepa-
rate trials at each location. Parental lines or their testcrosses 
were included as duplicate entries in the respective trials. All 
experiments were sown in single-row plots of 20 plants in a 
40 × 15 alpha-lattice design, with two replications in 2011, 
and a 31 ×  7 alpha-lattice design, with two replications in 
2012. One exception was the trial at Ferrara (Italy) in 2012, 
which was sown in four replications in order to exploit the 
extreme level of natural ECB pressure typical for this site.

Artificial ECB infestation

In the two artificially infested locations, ECB was applied 
at three time points over one- to two-week intervals. At 
each time point, approximately 20 neonate larvae were 
placed in the whorl or leaf collar of ten plants per plot. 
The first infestation date was synchronised with the occur-
rence of natural ECB moth flight. The last infestation was 
carried out shortly before or during flowering time. ECB 
egg masses, obtained from the entomology unit of Dr. P. 
Aupinel, INRA Le Magneraud, France, were incubated 
for 2–3  days at 80  % relative humidity and temperatures 
between 15 and 30  °C, depending on the developmen-
tal stage at delivery time. A few hours after hatching, the 

larvae were mixed in corncob grit and applied to plants 
using specific volume dispensers (Mihm 1983).

Evaluation of traits

Days to anthesis (ANT) was recorded as the number 
of days between sowing and the date when 50  % of the 
plants in a plot had visible anthers. ANT was scored in 
three locations for both years (Supplementary Table S1) 
at two- to three-day intervals during the flowering period. 
Stalk damage rating (SDR) was used to evaluate the tol-
erance of plants to stalk breakage under ECB pressure. 
SDR is based on a 1–9 rating scale adapted according to 
Hudon and Chiang (1991), where the extremes are one for 
intact plants and nine for breakages below the ear. Scoring 
was performed on a plot basis. At all locations, SDR was 
assessed before harvest (from the end of August in Italy 
to mid-October in Germany). After the final SDR scoring, 
resistance to ECB stalk tunnelling was evaluated in the two 
artificially infested locations by recording the number of 
feeding tunnels in the stalk (NT) and the cumulative tunnel 
length in centimetres (TL). To score NT and TL, the stalks 
of five infested plants per plot were split from the bottom to 
the eighth internode above the ground. For both traits, plot 
averages were calculated across the five plants.

Marker analysis and linkage maps

DH populations (N = 590) and their parents were genotyped 
with 4,790 single nucleotide polymorphism (SNP) markers, 
distributed evenly across the genome, using a custom Illu-
mina Infinium SNP array (Illumina Inc., San Diego Califor-
nia, USA). The SNPs represented a subsample of the Illu-
mina MaizeSNP50 BeadChip (Ganal et  al. 2011) and their 
physical positions on the genome were assigned based on the 
B73 RefGen_v2 sequence (Schnable et al. 2009). Out of the 
4,790 original SNP markers, a subset of high-quality SNPs, 
polymorphic in at least one of the populations, was selected 
according to the following criteria: (i) a call rate higher than 
0.90, (ii) a minor allele frequency higher than 0.05 and (iii) 
less than 10  % missing values. After these selection steps, 
2,411 SNPs were available across the three populations for 
further analysis. DH lines with more than 20  % missing 
data in these 2,411 SNPs (4, 29 and 36 DH lines in Pop1, 
Pop2 and Pop3, respectively) were discarded, thereby leav-
ing a total of N  =  521 DH lines for further analysis. For 
each marker and population, deviations from the expected 
segregation ratio were tested with a Chi-square test using 
the sequentially rejective Holm–Bonferroni method (Holm 
1979). The marker-based genetic distance between the four 
parental lines was calculated using the Rogers’ distance 
(Rogers 1972). For the investigation of patterns in varia-
tions at the molecular level, among and within populations, 
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a principal component analysis (PCA) on marker data was 
performed in R (R Development Core Team 2013). Linkage 
maps were constructed individually for each population by 
using a maximum likelihood mapping approach and Hal-
dane’s mapping function (Haldane 1919). To allow for the 
construction of a genetic consensus map across the three 
populations, we identified clusters of SNP markers colocalis-
ing in each of the three individual genetic maps. For each of 
these clusters, only one marker that was polymorphic in all 
populations was retained. The consensus map was calculated 
using 1,034 SNPs, which were polymorphic in at least one 
of the three populations. All linkage maps were constructed 
with JoinMap version 4.1 software (Van Ooijen 2006).

Statistical analyses of phenotypic data

Analyses of variance in individual environments were 
performed using PLABSTAT version 3A software (Utz 
2011). Outlying observations were identified by means of 
residual diagnostic plots in R. The analysis across locations 
and within years was based on the following linear mixed 
model implemented in the ASReml-R software package 
(Butler et al. 2009):

yijkm = μ + gi + lj + glij + rkj + bmkj + eijkm

yijkm trait observation
μ overall mean
gi random effect of genotype i
lj fixed effect of location j
glij random interaction effect of genotype i with location j
rkj random effect of replication k nested within location j
bmkj �random effect of incomplete block m nested within 

replication k nested within location j
eijkm random residual error.

Variance components were estimated within the three 
populations by introducing a categorical variable into the 
model assigning DH lines to their respective population. 
Heritabilities (h2) on a progeny mean basis were calculated 
according to Hallauer and Miranda (1981). To extract the 
best linear unbiased estimates (BLUEs) for each genotype 
and trait, the above model was fitted with genotype as fixed 
effect. BLUEs averaged across locations represented the 
phenotypic input data for QTL and the genomic prediction 
analyses. Components of covariance between traits, which 
were evaluated in the same experimental unit, were esti-
mated by expanding the above model to a bivariate model. 
Covariance components between DH lines per se and test-
crosses were estimated using a two-stage analysis. This 
approach was necessary, since DH lines per se and their 
corresponding testcrosses were evaluated in separate trials. 
BLUEs were first calculated for individual locations and 

then used in a bivariate model across locations. Genotypic 
correlations were calculated according to Mode and Rob-
inson (1959). Approximate standard errors of heritability 
and genotypic correlations were calculated by applying the 
delta method as suggested by Holland et al. (2003). Pear-
son’s phenotypic correlations between traits and between 
DH line per se and testcross performance were calculated 
based on BLUEs averaged across the locations.

QTL mapping

QTL analyses were carried out for each trait, using pheno-
typic data from the unselected DH populations evaluated in 
2011 (N = 521). Analyses based on the genetic consensus 
map were performed both within the individual biparen-
tal populations and combined across all three populations 
(hereafter referred to as joint-population QTL analyses), 
using the MCQTL software package (Jourjon et al. 2005). 
We used forward stepwise regression along with the iQTLm 
method (Charcosset et  al. 2001). For each trait and popu-
lation (including the joint-population scenario), empiri-
cal LOD thresholds at the 0.05 genome-wide significance 
level were assessed from 1,000 permutations, according 
to Churchill and Doerge (1994). LOD support intervals 
of QTL positions were defined as the map distance in cM 
spanning an LOD drop of one unit on each side of the LOD 
peak. QTL were defined as colocalising if their respective 
LOD support intervals overlapped. A connected additive 
QTL model was implemented in the joint-population analy-
sis, and in our specific case, the connected model estimated 
four allelic effects at each QTL (the effects of R1, R2, R3 
and S1 parental alleles) in which the effect of the common 
parent S1 was assumed to be the same in all three popula-
tions. The total proportion of variance explained by the 
model (R2), as well as the proportion of variance explained 
by individual QTL, was calculated according to Mangin 
et al. (2010).

Genome‑wide prediction

All polymorphic SNP markers meeting quality criteria 
(N  =  2,411) were used in the genome-wide prediction of 
ECB resistance traits and ANT. Marker genotypes were 
coded 0 or 2 according to the number of copies of the minor 
allele, and missing marker genotypes were imputed using the 
BEAGLE software package (Browning and Browning 2009). 
A genomic best linear unbiased prediction (GBLUP) model 
was used to predict the genetic values of DH lines. The real-
ised relationship matrix between the DH lines of the three 
populations was computed based on marker data according 
to the method proposed by Habier et al. (2007). All analy-
ses were performed using the genomic prediction framework 
provided by the synbreed R package (Wimmer et al. 2012).
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Cross‑validation for QTL and genome‑wide prediction 
models

A graphical representation of the different cross-validation 
(CV) scenarios used in this study is given in Supplementary 
Fig. S1. The prediction performances of QTL-based and GP 
models were compared in a joint-population framework and 
also within individual biparental populations based on the 
unselected DH lines (N = 521) phenotyped in 2011 (hereaf-
ter referred to as joint-population and within-population pre-
diction scenarios, respectively). For both QTL and GP analy-
ses, we performed fivefold CV. The data set was split into 
five subsets: four subsets comprising 80 % of the DH lines 
built the estimation set (ES) and were used for model train-
ing, whereas the remaining subset (20 % of DH lines) consti-
tuted the test set (TS). The process was replicated ten times 
with varying allocations of DH lines to the five CV subsets. 
For joint-population prediction, sampling was performed by 
taking population information into account. Out of 521 DH 
lines, 81 (15 %), 214 (41 %) and 226 (43 %) belonged to 
Pop1, Pop2 and Pop3, respectively. These proportions were 
maintained in each of the five CV subsets. Each ES com-
prised DH lines from all three populations, while each TS 
was subdivided into three separate TSs comprising only DH 
lines from Pop1, Pop2 and Pop3, respectively. For each of 
the five CV subsets, the predictive performance of the two 
models was evaluated once for the combined TS across pop-
ulations and additionally for the three population-specific 
TSs. In contrast, for within-population prediction, the ES 
and TS were constructed through the random sampling of 
DH lines within biparental populations.

Identical allocation of DH lines to CV subsets was 
used for both the QTL and the GP approaches across all 
CV replications. For the QTL model, predictions of DH 
lines in the TS were based on the sum of additive effects 
of all significant QTL detected in the ES, whereas GBLUP 
predictions were based on the effects of all polymorphic 
SNP markers estimated in the ES. Given that no built-in 
option for CV has so far been available with the MCQTL 
program (B. Mangin, personal communication), we devel-
oped a new R package called cvMCQTL that performs this 
task by running a CV loop on the QTL mapping routine 
of MCQTL. Furthermore, cvMCQTL runs in combination 
with the synbreed R package and is available for download 
from the supplementary material in this manuscript. We 
also combined information obtained from QTL analyses 
with GBLUP. Markers closest to each of the QTL detected 
in each ES were fitted as fixed effects in GBLUP. For the 
joint-population prediction scenario, fixed marker effects 
were modelled in GBLUP in the same way as they were 
modelled in the QTL analysis, i.e. by assuming four dif-
ferent allelic effects for the four parental lines. Predicted 
values in the TS were calculated as the sum of the fixed 

effects at the QTL and the remaining random genome-wide 
marker effects estimated within this GBLUP framework.

Predictive abilities of the different models were calcu-
lated as Pearson’s correlation coefficients between pre-
dicted and observed trait values in each TS. An overall 
mean predictive ability with standard deviation was calcu-
lated according to Luan et al. (2009).

GP was evaluated in additional CV scenarios: (i) pre-
diction across biparental populations (hereafter referred 
to as across-population prediction) and (ii) prediction of 
ECB stalk damage resistance of testcrosses using models 
trained on DH line per se performance (hereafter referred 
to as testcross prediction). In across-population predic-
tion, the ES comprised either an individual population or 
a merged data set of two populations, whereas the remain-
ing population(s) represented the TS. Because of the prede-
fined ES and TS structure, the replication of different CV 
subsets was not possible. Instead, a bootstrapping approach 
with 1,000 replications and sampling with replacement in 
the TS was implemented, in order to obtain the uncertainty 
measures of predictive abilities.

For testcross prediction, the model was trained using 
data from DH lines per se (N = 521). The following phe-
notypes were used: (i) only 2011 DH lines per se data, (ii) 
data from (i) plus 2012 data for the resistant fraction of 
DH lines per se and (iii) data from (i) plus 2012 data for 
the resistant and susceptible fractions of DH lines per se 
(Supplementary Fig. S1). Two-year observations were fit-
ted as replicated phenotypes in GBLUP including a fixed 
year effect. Given that only a selected subset of DH lines 
was evaluated as testcrosses, the CV procedure was slightly 
modified. In each of the ten CV replications, we obtained 
a predicted genetic value for N =  195 selected DH lines 
evaluated as testcrosses. Out of these 195 lines, N =  137 
belonged to the resistant and N  =  58 to the susceptible 
fractions, respectively. Predictive abilities were calculated 
separately for the resistant and susceptible fractions by cor-
relating the N = 137 and N = 58 predicted values against 
phenotypic observations of their corresponding testcrosses, 
respectively. The mean predictive ability and its standard 
deviation were calculated based on the ten CV replications.

Results

Marker analysis and genetic maps

The overall number of polymorphic SNP markers across 
populations was 2,411, and 365 of these SNPs were pol-
ymorphic in all three populations. Pop2 had the highest 
number of polymorphic SNPs (1,660), followed by Pop3 
(1,340) and Pop1 (977). The polymorphic SNPs of Pop2 
were well distributed across the genome, while Pop1 
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lacked polymorphism on chromosome 8. The parent R2 
displayed the highest genetic distance to the other three 
parental lines (Supplementary Table S2), thereby explain-
ing the higher degree of polymorphism in Pop2. The PCA 
clearly separated the populations into three distinct clusters 
(Supplementary Fig. S2). In a small fraction of Pop3 DH 
lines, we found SNPs segregating in the progeny that were 
monomorphic in the parents. These SNPs were removed 
from linkage mapping and the QTL analyses. Further-
more, approximately 40 % of the 1,340 polymorphic SNPs 
in Pop3 showed significant segregation distortion at the 
Holm–Bonferroni adjusted 0.05 significance level. In total, 
133 markers displaying a heavily distorted segregation 
ratio were removed from the linkage analysis of Pop3, thus 
leaving 930 mapped markers for QTL analysis. It cannot be 
excluded that during the process of DH line production for 
Pop3, cross-pollination may have occurred at an unknown 
rate. However, the PCA using all 1,340 polymorphic SNPs 
indicated neither any apparent substructure within Pop3 nor 
the presence of outlying genotypes (Supplementary Fig. 
S2). The order of markers along the genetic map of Pop3 
was consistent with the reference physical map and the 
Pop1 and Pop2 genetic maps. The consensus map across 
all three populations included 1,034 informative SNPs and 
displayed a total length of 1,787 cM over the ten chromo-
somes (Supplementary Fig. S3).

Quantitative genetic analysis

Due to climatic conditions, the overall severity of ECB 
damage was higher in 2012 than in 2011, as shown by the 
mean trait values (Table 1). Because of substantially taller 
plants and an overall higher centre of gravity, testcrosses 
tend to break more often below the ear compared to inbred 
lines per se, thus leading to higher average SDR scores 
in the testcrosses compared to the inbred lines per se. For 
TL and NT, testcross means were significantly lower than 
for their corresponding inbred lines evaluated in the same 
year. Differences between population means for SDR were 
not significant in 2011, while significant differences were 
observed in 2012, particularly between Pop1 and Pop3. 
Similar results were observed for the other traits, but in 
most cases, population mean differences were small. Sig-
nificant genetic variance was observed for all traits in 2011, 
with the exception of TL in Pop1 (Table 1). The selected 
genotypes evaluated in 2012 showed significant genetic 
variance for all combinations of SDR and ANT, while for 
TL and NT significant genetic variance was only observed 
in half of the population-trait combinations. When com-
pared across populations, heritabilities were similar for 
Pop2 and Pop3 but Pop1 often showed lower heritability 
estimates (Table 1). Heritabilities were medium to high for 
SDR across six locations and low to medium for TL and 

NT across two locations. Heritability for ANT was high 
in the unselected populations (2011) and decreased in the 
selected DH lines per se in 2012. This was expected due to 
the selection for similar flowering time. However, genetic 
variance and heritability for ANT were unexpectedly high 
in the selected testcrosses of Pop2. An extended version 
of Table  1, including estimates of genotype  ×  location 
and residual error variances, is provided in Supplementary 
Table S3.

Bidirectional selection for ECB stalk damage traits 
was performed based on results from the 2011 field trials. 
Selection was based primarily on SDR under the side con-
dition of similar flowering time, and with TL and NT serv-
ing as supporting criteria for DH lines showing more inter-
mediate SDR values. Figure 1 shows the adjusted means of 
the selected DH lines per se and their testcrosses evaluated 
in 2012 for SDR. In the DH lines per se (Fig.  1a), there 
was a clear difference in the mean SDR of the 147 DH 
lines selected for low SDR and the 60 DH lines selected 
for high SDR in 2011. The difference was still significant 
but less pronounced in testcrosses (Fig. 1b). The means of 
the two selected fractions differed significantly also for TL 
and NT at the DH line per se level, but not at the testcross 
level (data not shown). The mean SDRs of resistant par-
ents R1, R2 and R3 were significantly lower than the mean 
SDR of susceptible parent S1 in both DH lines per se and 
testcrosses, with the sole exception of the R1 testcross. As 
expected, flowering time distribution was found to be simi-
lar for both the resistant and susceptible genotypes in both 
DH lines per se and testcrosses, although the means of the 
two fractions were significantly different in the testcrosses 
(Supplementary Fig. S4). This difference was driven 
mainly by the testcrosses of Pop2. Indeed, the testcross of 
parent R2 flowered significantly later than the testcrosses 
of the other parents, which was in contrast to the flowering 
time of the respective parental lines per se (Supplementary 
Fig. S4).

Genotypic correlations between resistance traits were 
high for unselected DH lines per se (Table  2). In test-
crosses, correlations between SDR and stalk tunnelling 
traits were not significant or low due to low heritabilities. 
Medium to high negative genotypic correlations between 
ANT and the stalk damage traits were observed in 2011. 
As expected, these correlations were considerably lower in 
2012 after selection for reduced variation in ANT. The gen-
otypic correlation between DH lines per se and testcrosses 
was high for SDR (Fig. 1c).

QTL mapping

The results of the joint-population QTL analyses, based on 
the unselected DH lines per se evaluated in 2011 (N = 521), 
are presented in Table  3. Eight, ten, four and nine QTL 
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were identified for traits SDR, TL, NT and ANT, respec-
tively. R2 values for individual QTL varied between 0.04 
and 0.21, while total R2 values representing the proportion 
of phenotypic variance explained by the model fitting all 

detected QTL simultaneously ranged between 0.25 for NT 
and 0.47 for SDR and ANT. The QTL for SDR on chro-
mosomes 3 and 5 colocalised with QTL for both TL and 
NT. The SDR QTL on chromosome 2 colocalised with a 
TL QTL. All other QTL for trait TL did not colocalise with 
SDR. Additive allelic effects contributed by parents R1, 
R2, R3 and S1, estimated from a connected QTL model, 
were small to moderate for all traits (Table 3). As expected, 
at most QTL, the alleles contributing to lower trait values 
originated from the resistant parents, and few QTL were 
detected where the resistance allele was contributed by the 
common susceptible parent S1. One of these was the QTL 
for SDR on chromosome 8, which had a negative effect 
sign for the S1 parental allele. This QTL was found in a 
similar region to the QTL for TL on chromosome 8, which 
also showed a negative effect sign for the S1 allele.

Figure 2 illustrates a comparison between QTL that were 
detected for SDR and the trait ANT in the joint-population 
analysis. Four QTL for SDR colocalised with ANT QTL. 
The negative genetic correlation between SDR and ANT 
observed in the quantitative genetic analysis was partially 
reflected in the QTL results as opposite signs of allelic 
effects at the colocalising QTL between the two traits.

Predictive abilities of QTL‑based and genome‑wide 
prediction models

The prediction performance of QTL-based and GBLUP 
models was compared using fivefold CV. Table  4 pre-
sents mean predictive abilities of the two approaches from 
within-population and joint-population prediction scenar-
ios. Mean predictive abilities of GBLUP were consistently 
higher than the corresponding mean predictive abilities of 
the QTL-based model. Figure 3 shows this comparison by 
means of scatterplots of each of the 50 individual joint-
population predictive ability values calculated from com-
bined test sets across the three populations. For all traits, 
the predictive ability of GBLUP was higher in every sin-
gle test set of the CV scheme. We observed correlations 
of r  =  0.40 to r  =  0.56 between the predictive abilities 
obtained from the two different approaches. In general, 
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Fig. 1   Distributions of the adjusted means of stalk damage rating 
(SDR) for the selected DH lines per se (a) and their corresponding 
testcrosses (b) evaluated in 2012 across six locations, and scatterplot 
of the correlation between DH lines per se and testcrosses for SDR 
(c) with phenotypic (rP, ** significant at p < 0.01) and genotypic (rG, 
++  coefficient exceeds twice its standard error) correlation coef-
ficients. Genotypes from the resistant and susceptible fractions are 
represented by grey and black colour, respectively. Arrows show the 
means of the parental lines R1, R2, R3 and S1. The least significant 
difference (LSD) at the 5  % probability level and the means of the 
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the graphs. Significance of difference between M.res. and M.sus. is 
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population-trait combinations that showed higher GBLUP 
predictive abilities were characterised by higher predictive 
abilities of the QTL model, and vice versa (Table 4). The 
higher heritabilities of SDR and ANT, when compared to 
TL and NT, generally resulted in higher predictive abili-
ties of both the GBLUP and QTL models. High GBLUP 
predictive abilities of approximately 0.70 were observed 
for SDR and ANT in all populations, and Pop3 showed 
the highest predictive ability of GBLUP for all traits and 
in both prediction scenarios. The highest mean predictive 
ability of the QTL model was observed for the joint-pop-
ulation prediction of the ANT trait in Pop1. In this specific 
case, the QTL-based model was able to predict almost as 
accurately as its GBLUP counterpart.

The small Pop1 population benefitted more from joint-
population prediction than the two larger Pop2 and Pop3 
populations (Table  4). Joint-population predictive abili-
ties in Pop2 and Pop3 were in several cases similar to or 
only marginally higher than the corresponding values from 
within-population prediction. For the QTL-based predic-
tion of SDR in Pop2 and NT in Pop3, within-population 
predictive abilities were higher than joint-population pre-
dictive abilities. Fitting the QTL detected in each ES as 
fixed effects in GBLUP slightly decreased prediction 

performance for SDR in both the within and joint-popula-
tion prediction scenarios (Supplementary Table S4).

Across‑population prediction and testcross prediction

For the trait SDR, results from across-population prediction 
scenarios are summarised in Table 5. Mean predictive abili-
ties ranged between 0.36 and 0.61 and, as expected, were 
in general significantly lower compared to predictive abili-
ties observed in the within- and joint-population prediction 
scenarios. Variations in across-population prediction perfor-
mance reflected the varying degree of relatedness between 
the three resistant parental lines—as seen in Supplemen-
tary Table S2. Training the model with DH lines from Pop1 
resulted in significantly higher prediction accuracy for the 
DH lines of the more related Pop3 than for the DH lines 
from Pop2. Using DH lines from Pop1, in addition to lines 
from Pop2 for model training when predicting the genotypic 
values of lines from Pop3, increased predictive ability from 
0.53 to 0.61 (Table 5). In contrast, when predicting the SDR 
of lines from Pop2, the addition of genotypes from Pop1 did 
not increase the predictive ability that was already achieved 
with DH lines from Pop3. However, Pop2 was able to pre-
dict the other two populations with good accuracy despite 
being the least related family. Across-population prediction 
was also performed by keeping the sample size of all three 
populations constant (Table  5, scenario B), i.e. through a 
random reduction of the sample size of Pop2 and Pop3 to 
match the size of the smaller Pop1 (N = 81) in the respec-
tive ES and TS. Mean predictive abilities were very similar 
to the corresponding values obtained when using Pop2 and 
Pop3 with their respective original sample size.

Moderate predictive abilities between 0.43 and 0.44 
were achieved in the testcross prediction of SDR (Table 6). 
The three scenarios did not differ significantly in their pre-
dictive abilities. Thus, training the model by adding pheno-
typic information on the selected DH lines per se evaluated 
in 2012 did not increase the prediction performance of the 
testcrosses. In Table 6, we report predictive abilities based 
on the resistant fraction of the selected lines. When corre-
lations between predicted genotypic and observed pheno-
typic values were calculated using all selected lines, i.e. the 
resistant and the susceptible fractions, predictive abilities 
increased to approximately 0.50.

Discussion

The potential of genome‑wide prediction for ECB  
resistance improvement

The genetic improvement of native resistance to ECB 
stalk damage in maize is a challenging task (Flint-Garcia 

Table 2   Phenotypic (above diagonal) and genotypic (below diago-
nal) correlation coefficients between the traits stalk damage rat-
ing (SDR), tunnel length (TL), number of tunnels (NT) and days to 
anthesis (ANT). Estimates are given for DH lines per se evaluated 
in 2011 as well as for selected DH lines per se and their testcrosses 
evaluated in 2012

ns not significant
a,b  Phenotypic correlation significant at the 0.05 and 0.01 probability 
level, respectively
c,d  Genotypic correlation exceeds once or twice its standard error, 
respectively

SDR TL NT ANT

2011 unselected populations: DH lines per se (N = 590)

SDR 0.42b 0.41b −0.38b

TL 0.73d 0.85b −0.40b

NT 0.71d 0.94d −0.48b

ANT −0.50d −0.67d −0.73d

2012 selected populations: DH lines per se (N = 207)

SDR 0.41b 0.36b −0.20b

TL 0.63d 0.65b −0.24b

NT 0.59d 0.69d −0.23b

ANT −0.34d −0.35d −0.38d

2012 selected populations: testcrosses (N = 207)

SDR 0.16a 0.21b −0.15a

TL −0.17 0.77b 0.03 ns

NT 0.51c 0.80d −0.05 ns

ANT −0.31c 0.03 −0.11
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et  al. 2003). Screening under natural infestation becomes 
increasingly difficult due to mandatory crop rotation and 
increased chemical ECB control in many European regions 
affected by the pest. Moreover, natural infestation is often 
unreliable, as not every season offers climatic conditions 
suitable for effective resistance screening, even at locations 
with high ECB pressure. Thus, ECB resistance breeding 

requires cost- and labour-intensive artificial infestation to 
guarantee a high and homogeneous level of infestation in at 
least a subset of testing locations.

In this study, we evaluated the potential of genome-
wide prediction for improving resistance to ECB stalk 
damage in Central European elite maize. Intermediate-to-
high prediction accuracies were obtained for all resistance 

Table 3   Chromosome (Chr.), position (Pos.), LOD support inter-
val (LOD S.I.), LOD score at the QTL position, proportion of vari-
ance explained (R2) and additive effects of QTL alleles derived from 
parents R1, R2, R3 and S1 detected in the joint analysis across the 

three unselected populations (N = 521) evaluated as DH lines per se 
in 2011 for the traits stalk damage rating (SDR), tunnel length (TL), 
number of tunnels (NT) and days to anthesis (ANT)

For each trait, the proportion of phenotypic variance explained by the model fitting all detected QTL simultaneously is given as bold values 
above the R2 values of the individual QTL

Chr. Pos. (cM) LOD S.I. (cM) LOD score R2 Additive effects

R1 R2 R3 S1

SDR (1–9 score) 0.47

1 32 (9–85) 4.66 0.04 −0.01 −0.15 0.13 0.03

2 17 (13–49) 6.75 0.06 −0.03 −0.08 0.04 0.07

2 98 (97–100) 15.90 0.13 0.00 −0.03 −0.08 0.11

3 67 (65–68) 27.72 0.21 −0.06 −0.04 −0.05 0.15

5 105 (103–110) 9.59 0.08 0.03 −0.02 −0.08 0.07

6 100 (92–106) 6.24 0.05 −0.05 −0.02 −0.01 0.08

8 62 (61–66) 18.68 0.15 0.00 0.15 −0.04 −0.11

10 103 (95–108) 5.38 0.05 0.10 −0.02 −0.10 0.02

TL (cm) 0.37

2 100 (44–128) 4.35 0.04 0.00 −0.22 −0.28 0.50

3 69 (68–70) 7.71 0.07 −0.48 0.20 −0.46 0.75

3 135 (133–146) 5.17 0.05 0.40 −0.81 0.03 0.38

4 14 (1–25) 4.34 0.04 0.60 −0.27 0.22 −0.55

4 164 (159–166) 6.14 0.05 1.35 −0.35 −1.00 0.00

5 70 (63–71) 5.33 0.05 −0.42 −0.13 −0.12 0.67

5 110 (106–129) 8.40 0.07 0.87 −0.31 −1.00 0.44

8 36 (32–41) 4.64 0.04 0.00 0.53 0.01 −0.54

9 103 (100–113) 5.45 0.05 −0.10 −0.67 0.27 0.50

10 126 (123–136) 4.83 0.04 −0.05 0.11 −0.57 0.51

NT (count) 0.25

3 70 (68–73) 11.71 0.10 −0.05 −0.03 −0.05 0.12

4 120 (105–163) 4.97 0.04 0.03 −0.03 −0.07 0.07

5 65 (61–67) 6.47 0.06 −0.05 −0.08 0.03 0.09

5 121 (115–150) 9.76 0.08 0.13 0.00 −0.19 0.06

ANT (days) 0.47

1 206 (204–210) 7.84 0.07 −0.26 −0.25 0.12 0.39

2 17 (13–74) 4.76 0.04 0.37 −0.15 0.12 −0.34

2 225 (195–229) 5.26 0.05 −0.02 0.64 −0.68 0.06

3 65 (62–68) 9.12 0.08 −0.22 0.26 0.44 −0.48

3 91 (89–96) 10.91 0.09 1.14 −1.06 0.05 −0.13

5 87 (83–97) 6.20 0.05 −0.02 0.10 0.27 −0.35

5 126 (122–159) 6.81 0.06 0.21 −0.02 0.24 −0.43

8 58 (57–64) 9.79 0.08 0.00 −0.69 0.58 0.11

10 69 (64–77) 5.14 0.05 −0.17 0.16 0.30 −0.29
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traits at the DH line per se level, and for SDR at the test-
cross level. In general, GP accuracies were comparable 
to or even higher than those reported by Technow et  al. 
(2013), for Northern corn leaf blight resistance in maize, 
and by Rutkoski et  al. (2012), for Fusarium head blight 
resistance in wheat. Our results demonstrate that GP can 
be an effective strategy for increasing genetic gain for 
ECB stalk damage resistance per unit time by predicting 
the performance of unphenotyped individuals based on 
their DNA profile.

Comparison of the QTL‑based and genome‑wide 
approaches

Resistance breeding strategies based on QTL mapping 
results can be applied successfully for traits influenced by 
at least one or a few QTL with major effects (Miedaner and 
Korzun 2012). A QTL-based approach allows the identi-
fication and characterisation of specific resistance alleles 
and their directed introgression and/or pyramidisation into 

elite genetic backgrounds. Targeted combinations of alleles 
influencing different, even negatively correlated, traits (e.g. 
ECB resistance and flowering time) may be feasible with a 
QTL approach, and especially when resistance alleles orig-
inate from non-adapted genetic sources, the introgression 
of individual genomic regions into elite material might be 
advantageous over genome-wide approaches.

The multi-parental design of the three large and con-
nected populations used in this study provided a suitable 
framework for QTL mapping. Thus, several QTL with 
sizeable effects could be identified for all traits. However, 
as has been shown previously, QTL effects are optimisti-
cally biased due to model selection, unless they are derived 
from an independent validation sample (Schön et  al. 
2004). Therefore, we developed a cross-validation R rou-
tine for MCQTL to obtain unbiased estimates of the pro-
portion of variance explained by the multi-parental QTL 
mapping approach. After bias correction, statistical mod-
els fitting putative QTL identified for the three resistance 
traits explained only a small proportion of the respective 

Fig. 2   LOD profiles of the 
joint-population QTL analy-
sis based on DH lines per se 
evaluated in 2011 (N = 521) for 
the traits stalk damage rating 
(SDR, continuous line) and 
days to anthesis (ANT, dashed 
line). The arrows indicate the 
positions of the detected QTL in 
the final model. Horizontal lines 
attached above each arrow indi-
cate the LOD support interval of 
the QTL position
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Table 4   Mean predictive abilities (±  standard deviation) obtained 
from cross-validation of the QTL-based and GBLUP models for the 
traits stalk damage rating (SDR), tunnel length (TL), number of tun-
nels (NT) and days to anthesis (ANT) evaluated in 2011. For within-

population prediction (within) and joint-population prediction (joint), 
predictive abilities calculated based on separate test sets for each pop-
ulation are reported for Pop1, Pop2 and Pop3

–, no QTL identified

Population Entries 
(no.)

Pred. 
model

SDR TL NT ANT

Within Joint Within Joint Within Joint Within Joint

Pop1 81 QTL 0.45 ± 0.05 0.56 ± 0.06 – 0.07 ± 0.10 – 0.12 ± 0.10 0.60 ± 0.05 0.68 ± 0.05

GBLUP 0.64 ± 0.03 0.70 ± 0.03 0.15 ± 0.08 0.31 ± 0.06 0.25 ± 0.08 0.37 ± 0.04 0.67 ± 0.04 0.70 ± 0.05

Pop2 214 QTL 0.52 ± 0.03 0.50 ± 0.05 0.22 ± 0.04 0.26 ± 0.03 0.20 ± 0.05 0.30 ± 0.05 0.42 ± 0.06 0.50 ± 0.03

GBLUP 0.68 ± 0.01 0.69 ± 0.01 0.43 ± 0.02 0.48 ± 0.02 0.47 ± 0.01 0.52 ± 0.01 0.66 ± 0.01 0.66 ± 0.02

Pop3 226 QTL 0.57 ± 0.02 0.58 ± 0.02 0.39 ± 0.03 0.42 ± 0.03 0.51 ± 0.03 0.49 ± 0.03 0.48 ± 0.02 0.50 ± 0.02

GBLUP 0.72 ± 0.01 0.73 ± 0.02 0.60 ± 0.03 0.61 ± 0.01 0.65 ± 0.02 0.65 ± 0.02 0.72 ± 0.02 0.71 ± 0.02



886	 Theor Appl Genet (2015) 128:875–891

1 3

phenotypic variance (<30 %), thus corroborating the poly-
genic nature of resistance to ECB stalk damage reported in 
previous studies (Schön et al. 1993; Melchinger et al. 1998; 
Krakowsky et  al. 2002; Papst et  al. 2004) and suggesting 
that for the marker-based improvement of ECB resistance, 
a genome-wide approach might be more promising.

This conclusion was confirmed by results achieved 
through the GBLUP analysis. Predictive abilities obtained 
with GBLUP in the joint-population scenario were, on 
average, 31 % higher for SDR and even 62 % for TL than 
those that could be obtained using QTL-based prediction. 
Moreover, in a comparison across 50 CV test sets, pre-
dictive abilities obtained with GBLUP surpassed those 
obtained with the QTL-based approach without exception. 

A similar comparison of GBLUP and QTL-based pre-
dictions was carried out by Peiffer et  al. (2013) for stalk 
strength in maize, by using nearly 5,000 inbred lines. As 
in our study, the authors reported cross-validated predictive 
abilities of GBLUP that were consistently higher than those 
of QTL models.

Several factors contribute to the differences in predic-
tion performance between the QTL-based and the GBLUP 
approaches. For one, the genetic architecture of the trait 
under study has a strong influence on the relative efficiency 
of the two methods. For highly polygenic traits, it is dif-
ficult to achieve accurate estimates of both QTL positions 
and effects, as model selection becomes a challenge when 
the contribution of individual genes to quantitative trait 
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Fig. 3   Comparison of the predictive abilities of QTL-based and 
GBLUP models from the joint-population prediction scenario calcu-
lated based on combined test sets across the three populations. Pre-
dictive abilities from each test set of QTL-based cross-validation are 
plotted against predictive abilities from the corresponding test set of 

GBLUP cross-validation. Plots are shown for all four traits based on 
unselected DH lines per se evaluated in 2011. Pearson’s correlation 
coefficients (r) between the plotted predictive abilities are given (**, 
correlation significant at p < 0.01)
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variation is small. Nonetheless, even with large-effect QTL, 
it can be difficult to select a set of markers that maximises 
prediction accuracy, if the population exhibits long-range 
linkage disequilibrium and low trait heritability (Wimmer 
et al. 2013). Here, the relatively large LOD support inter-
vals of QTL positions, and the more pronounced superior-
ity of GBLUP over the QTL-based approach for the two 
traits with lower trait heritability (TL and NT), point in this 
direction.

We also investigated the potential of an integrated QTL–
GP approach, by considering that a few QTL with sizeable 
effects were detected particularly for the trait SDR (e.g. 
QTL on chromosomes 2 and 3 with R2 > 0.10 and >0.20, 
respectively). Zhao et al. (2014) showed that an integrated 
approach can be effective if the two sources of information 
complement each other. In their study on predicting head-
ing time and plant height across unrelated wheat geno-
types, prediction accuracy could be increased significantly 

by exploiting information on well-characterised functional 
mutations. However, our results showed that with sufficient 
marker coverage, the standard GBLUP model captured the 
QTL effects adequately, and accounting for QTL informa-
tion in the GBLUP model did not increase predictive abili-
ties. A further recent study by Zhang et al. (2014) proposed 
a method for increasing genome-based prediction accu-
racy by systematically exploiting the wealth of published 
QTL information (as SNP markers detected in either QTL 
mapping or genome-wide association studies) through 
integration into the GBLUP genomic relationship matrix. 
It remains to be seen whether this could also be a valid 
approach to predicting ECB resistance in maize.

In summary, we conclude that our results encourage 
the application of a whole-genome-based approach over a 
QTL-based approach for the marker-assisted improvement 
of ECB stalk damage resistance in elite maize. Implemen-
tation of GP in practice should be facilitated if sources of 
resistance are recombined with elite material in earlier 
selection cycles, as was the case in this study, to allow for 
the simultaneous genome-based prediction of resistance 
and other agronomically important traits.

Joint‑, within‑ and across‑population prediction

For Pop2 and Pop3, the predictive abilities of within-popu-
lation prediction were almost as high as or even higher than 
those obtained from joint-population prediction despite the 
substantially smaller sample sizes of the respective ES. One 
explanation for this finding could be that at least partially 
different resistance alleles segregate in the three popula-
tions, a notion which is supported by results from the QTL 
analysis. Among the larger QTL identified for SDR, one of 
the QTL on chromosome 2 and the QTL on chromosome 8 
mainly segregated in Pop2, whereas Pop3 provided major 
allelic effects at the second QTL on chromosome 2 and 
the QTL on chromosome 5 (data not shown). Only the two 
QTL on chromosomes 3 and 6 were detected in all three 
populations, and the effects were congruent in sign for the 
three resistant parents.

The across-population prediction scenario also sup-
ported the hypothesis concerning different resistance 
alleles. Prediction accuracies that could be obtained across 
populations were in good agreement with the level of 
relatedness among the parental lines. Resistant parents 
R1 and R3 showed higher pairwise molecular genetic 
similarity with each other than each of them with R2, and 
consequently, the mutual predictive abilities of Pop1 and 
Pop3 were substantially higher than their respective pre-
dictive abilities for DH lines derived from Pop2. Interest-
ingly, predictive abilities in the across-population predic-
tion involving Pop2 differed significantly for reciprocal 
scenarios. Substantially higher predictive abilities could 

Table 5   Predictive abilities (± standard deviation) from across-pop-
ulation prediction with the three biparental populations Pop1, Pop2 
and Pop3. Predictive abilities are based on the trait stalk damage 
rating evaluated in unselected DH lines per se in 2011. Numbers in 
brackets represent the number of genotypes included in the respective 
estimation and test sets under scenario A (prediction across complete 
populations). Predictive abilities under scenario B (prediction across 
populations of equal size) were obtained by reducing the size of Pop2 
and Pop3 to the size of Pop1 (N = 81) in both estimation and test set

Estimation set (ES) Test set (TS) Scenario A Scenario B

Pop1 (81) Pop2 (214) 0.36 ± 0.06 0.38 ± 0.10

Pop1 (81) Pop3 (226) 0.57 ± 0.04 0.56 ± 0.07

Pop2 (214) Pop1 (81) 0.50 ± 0.07 0.51 ± 0.08

Pop2 (214) Pop3 (226) 0.53 ± 0.04 0.51 ± 0.08

Pop3 (226) Pop1 (81) 0.59 ± 0.08 0.55 ± 0.08

Pop3 (226) Pop2 (214) 0.42 ± 0.06 0.39 ± 0.10

Pop2 + Pop1 (295) Pop3 (226) 0.61 ± 0.04 –

Pop3 + Pop1 (307) Pop2 (214) 0.40 ± 0.06 –

Table 6   Mean predictive abilities (±  standard deviation) of the 
GBLUP model for testcross prediction of the trait stalk damage rat-
ing. The model was trained using the same number of genotypes 
but varying the number of replicated phenotypic observations across 
years (A–C). Predictive abilities are given for the resistant fraction of 
testcrosses

Estimation set (ES) Test set (TS) Predictive ability

(A) DH lines per se 2011 Testcrosses 2012 0.43 ± 0.02

(B) DH lines per se 2011 + 
 res. fract. 2012

Testcrosses 2012 0.44 ± 0.02

(C) DH lines per se 2011 +  
both fract. 2012

Testcrosses 2012 0.43 ± 0.02
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be obtained when Pop2 constituted the ES and Pop1 and 
Pop3 the TS, compared to when either Pop1 or Pop3—
or both—constituted the ES and Pop2 the TS. This effect 
remained significant when the sample size of the estima-
tion sets was kept constant. We hypothesise that due to the 
higher genetic distance of R2 to the susceptible line S1, a 
higher number of predictive haplotypes could be formed in 
Pop2 compared to Pop1 and Pop3, thus leading to a higher 
effective sample size and higher predictive power of Pop2. 
Additionally, a QTL on chromosome 8 was mainly segre-
gating in Pop2 and displayed sizable effects for SDR. The 
smaller effects at this QTL in Pop1 and Pop3 may have 
contributed to significant losses in prediction accuracy for 
lines from Pop2. Given that this locus colocalised with an 
important QTL for ANT, it is possible that SDR in Pop2 is 
more strongly influenced by flowering time as compared to 
Pop1 and Pop3.

Our results indicate that the choice of population 
employed in model training can significantly affect predic-
tive abilities. As a result, parental lines should be chosen to 
maximise the effective sample size of a training population, 
especially when breeding schemes allow for only a few 
recombination events. If different sources of resistance are 
available for a given trait, model training can be performed 
in multi-parental populations, thereby ensuring predictive 
power across a diverse spectrum of resistance alleles and 
genetic backgrounds.

Testcross prediction

The genotypic correlation between line per se and test-
cross performance is an important parameter for optimis-
ing hybrid breeding programmes (Mihaljevic et al. 2005). 
Selection based on line per se performance may be advan-
tageous due to the larger additive genetic variance that can 
be exploited in inbred lines and the accelerated phenotypic 
evaluation (Miedaner et  al. 2014). Given that the correla-
tion between predicted and observed values was calculated 
for the selected fraction of resistant DH lines only, and as 
prediction was performed across different years, predictive 
abilities were high, exceeding 0.43 for SDR in all scenar-
ios. These results are also reflected in the high genotypic 
correlation between DH lines per se and testcrosses evalu-
ated for SDR in 2012 (Fig. 1) and the absence of significant 
genotype  ×  year interaction variance (data not shown). 
The non-significant genotype  ×  year interaction variance 
also explains why the three testcross prediction scenarios 
yielded almost identical results, i.e. including additional 
data from selected DH lines per se evaluated in 2012 in 
model training did not lead to a significant increase in pre-
dictive abilities for testcrosses. In contrast to SDR, the pre-
dictive abilities of testcross prediction were low for stalk 
tunnelling traits TL and NT (data not shown) due to the 

low heritabilities observed for these traits at the testcross 
level (Table  1). The artificial infestation of testcrosses 
might have been less effective than for the inbred lines per 
se, because its success could be related significantly to the 
developmental stage of the plants during the first days of 
larval establishment. We accounted for differences in plant 
development by conducting artificial infestation for test-
crosses one week earlier than for the inbred lines. In spite 
of this measure, we may not have obtained a sufficient level 
of ECB pressure to allow for an effective evaluation of 
stalk tunnelling traits at the testcross level.

In summary, our results demonstrate that, for improve-
ments in ECB stalk breakage tolerance in testcrosses, it is 
promising to use GP models trained on DH lines per se 
phenotyped in one season at multiple locations. Consider-
ing the promising results obtained for TL and NT with DH 
lines per se, the potential of GP for improving ECB stalk 
tunnelling resistance at the testcross level deserves further 
investigation.

Resistance traits and flowering time

In contrast to the tight genetic correlation of 0.94 between 
TL and NT, genetic correlations between tunnelling traits 
and SDR in the DH lines per se were intermediate, thus 
indicating that SDR might have been affected by factors 
other than ECB feeding. Environmental factors unrelated 
to ECB damage may affect SDR, although their impact 
should be low in lodging-tolerant elite maize materials 
screened under severe ECB pressure. It remains to be seen 
whether training GP models based on SDR will be effec-
tive for the long-term improvement of ECB stalk damage 
resistance or whether a multi-trait approach including SDR 
and tunnelling traits needs to be implemented. TL and NT 
phenotyping is extremely resource intensive; however, pre-
diction accuracies obtained for the two traits at the DH line 
per se level were of a similar order as observed for SDR 
given that both traits had substantially lower heritabilities. 
The higher heritability of SDR was at least to some extent a 
consequence of the fact that SDR could be scored in all six 
field environments in both years. Thus, a genome-based, 
multi-trait approach should be considered for the simul-
taneous genetic improvement of the different components 
contributing to resistance to ECB stalk damage in maize.

High negative genetic correlations were observed 
between resistance traits and ANT in the unselected pop-
ulations. These correlations were reflected at the genetic 
level by common positions of QTL, showing in some cases 
opposite signs of additive effects. This was most evident 
for an SDR/ANT colocalising QTL on chromosome 8 (bin 
8.05) with a physical LOD support interval including the 
well-characterised flowering time vgt1 locus (Salvi et  al. 
2007; Ducrocq et al. 2008). It is possible that this and other 
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loci affecting ANT have an influence on ECB stalk dam-
age traits. This correlation has been reported in early phe-
notyping research (Russell et al. 1974; Jarvis and Guthrie 
1980; Hudon and Chiang 1991) as well as in QTL mapping 
studies (Bohn et  al. 2000, Krakowsky et  al. 2004). Given 
that early maturity is an important breeding goal in Central 
Europe, a negatively correlated selection response of matu-
rity and resistance is not desired. However, results from the 
evaluation of the selected DH lines per se in 2012 demon-
strated that it is possible to maintain genetic variation for 
resistance traits while considerably reducing variation in 
flowering time. Thus, improving resistance traits and matu-
rity simultaneously by constructing a genome-based selec-
tion index should be a viable option in resistance breeding.

Conclusions

Marker-assisted selection can be effective for improv-
ing resistance to ECB stalk damage in maize. Our results 
demonstrate that the efficiency of MAS can be increased 
considerably when progressing from a QTL-based towards 
a genome-wide prediction approach. Because of the cost- 
and time-consuming phenotyping of ECB resistance traits, 
GP can be a meaningful strategy for increasing genetic gain 
per unit time, by predicting the performance of unpheno-
typed individuals based on their DNA profile. The potential 
of GP for improving stalk breakage tolerance (SDR) was 
demonstrated at both the DH line per se and testcross lev-
els. Improvements of stalk feeding resistance (TL and NT) 
were shown at the DH line per se level. Recombining prog-
eny from the three populations evaluated herein may fur-
ther increase the overall level of resistance due to different 
resistance alleles segregating. With the availability of native 
resistance to ECB stalk damage in elite maize germplasm 
adapted to Central European conditions, our results may 
open up avenues for implementing an integrated genome-
based selection approach for the simultaneous improve-
ment of yield, maturity and ECB resistance.
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