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the phenotypes of each translocation type, enabled us to 
physically map agronomic traits to specific A. cristatum 6P 
chromosome arms or segments. Our results indicated that 
A. cristatum chromosome 6P played an important role in 
regulating fertile tiller number, and that positive and nega-
tive regulators of fertile tiller number existed on the A. 
cristatum chromosome arm 6PS and 6PL, respectively. By 
exploring the relationship between fertile tiller number and 
A. cristatum chromosome segment, this study presented a 
number of feasible approaches for creation, analysis, and 
utilization of wheat-alien chromosome translocation lines 
in genetic improvement of wheat.

Introduction

Wheat (Triticum aestivum L., 2n = 6x = 42, genomes 
AABBDD) is one of the most important crops worldwide. 
A major challenge in modern agriculture is to breed elite 
wheat varieties with enhanced agronomic traits to meet the 
growing demands for food. However, common wheat exhib-
its a relatively narrow range of genetic variation, which has 
become a bottleneck for yield improvement (Dubcovsky 
and Dvorak 2007; Haudry et al. 2007; Reif et al. 2005). To 
broaden the genetic basis of common wheat, its wild rela-
tives harboring superior agronomic traits have often been 
used in wheat breeding (Wang 2011). The tribe Triticeae 
contains around 400 species and 25 genera, conferring 
ample genetic diversity for wheat improvement (Mujeeb-
Kazi et al. 2013). To date, more than 100 alien genes/QTLs 
conferring superior traits have been transferred into culti-
vated wheat (Bao et al. 2009; Cao et al. 2011; Faris et al. 
2008; Friebe et al. 1990, 1996a; Fu et al. 2012; He et al. 
2009; Hua et al. 2009; Jiang et al. 1994; Kang et al. 2011; 
Luo et al. 2009; Monneveux et al. 2003; Sharma et al. 1995; 
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Singh et al. 1998; Wang et al. 2011). Producing wheat-alien 
species translocation lines and elucidating their genetic con-
stitutions are key steps for effective transfer of desirable 
genes into common wheat (Chen et al. 1995, 2005; Friebe 
et al. 1992, 1996a; Gill et al. 2011; Klindworth et al. 2012; 
Larkin et al. 1995; Larson et al. 2012; Niu et al. 2011, 2014; 
Qi et al. 2011; Singh et al. 1998; Wang and Zhang 1996; Yu 
et al. 2009). Some translocation lines, especially 1BL·1RS, 
6VS·6AL, and 7DL·7Ag have played important roles in 
wheat improvement. A 1BL·1RS translocation line was 
widely used in bread wheat-breeding programs throughout 
the world due to the presence of powdery mildew resistance 
gene Pm8 and rust resistance genes Sr31, Lr26, and Yr9 
in 1RS (Hsam and Zeller 1997; Lukaszewski 2000; Mago 
et al. 2002; Singh et al. 1998). A 6VS·6AL translocation 
line (Chen et al. 1995, 2005) has been widely used through-
out the world (Duan et al. 1998; Liu et al. 1999; Qi et al. 
1995). The 7DL·7Ag translocation lines produced from 
Lophopyrum elongatum were reported to be valuable res-
ervoirs of desirable genes conferring resistance to leaf rust, 
salinity, and waterlogging (Deal et al. 1999; Ma et al. 2000; 
McDonald et al. 2001; Niu et al. 2014).

Agropyron cristatum (L.) Gaertn (2n = 4x = 28; 
genomes PPPP) is a perennial wheatgrass that possesses 
many desirable traits such as enhanced fertile tiller number, 
high grain number per spike, and resistance to numerous 
diseases (Dewey 1984; Dong et al. 1992). It has long been 
considered a useful genetic resource for wheat improve-
ment. The F1 hybrids were successfully obtained between 
common wheat cv. Fukuhokomugi (Fukuho) and A. cris-
tatum accession Z559, followed by backcrossing with 
Fukuho for several generations (Li et al. 1995, 1998b; Li 
and Dong 1991, 1993). A series of disomic addition lines 
was obtained, and the 6P disomic addition line 4844-12 
was one of them. This addition line had significantly higher 
grain number per spike and floret number per spikelet, as 
well as enhanced resistance to powdery mildew, compared 
to its wheat parent (Han et al. 2014; Li et al. 1997, 1998a, 
b; Luan et al. 2010; Wu et al. 2006). These results indi-
cated the existence of desirable genes on the A. cristatum 
6P chromosome. To produce germplasm useful in wheat-
breeding programs, wheat-A. cristatum 6P translocation 
lines were then produced by both gametocidal chromo-
somes and ionizing radiation (Luan et al. 2010). WAT31-
13 (M2 generation), produced from irradiated hybrid seeds 
(wheat-A. cristatum addition line/Gaocheng 8901), is a 
5A-6P reciprocal translocation line with 44 chromosomes. 
Although it displays superior agronomic traits, it is geneti-
cally unstable (Luan et al. 2010).

To further localize these desirable genes on the A. cris-
tatum 6P chromosome and acquire translocation materials 
with genetic stability, strict self-pollination was carried out 
over further generations of WAT31-13. Forty-three stable 

translocation lines in the M8 generation were selected. Sur-
prisingly, most of them contained 6P translocation chromo-
some segments that were different from those in WAT31-
13, although the various elite agronomic traits were 
retained. In this study, we not only examined the genomic 
constitutions of the 43 translocation lines by GISH and 
FISH, but also ascribed superior agronomic traits (espe-
cially the high fertile tiller number) to specific A. cristatum 
6P chromosomal segments.

Materials and methods

Materials

WAT31-13 is a 5A-6P reciprocal translocation line 
(2n = 44) produced from irradiated hybrid seeds using 
the wheat-A. cristatum 6P disomic addition line 4844-12 
as the female parent and common wheat Gaocheng 8901 
(2n = 6x = 42, genomes AABBDD) as the male parent 
(Luan et al. 2010). In this study, 43 stable M8 transloca-
tion lines were obtained from the progenies of WAT31-
13. Wheat-A. cristatum 6P disomic addition line 4844-12, 
common wheat Gaocheng 8901, and Fukuho were used 
as contrasting parents in this study. Wheat-A. cristatum 
6P disomic addition line 4844-12 and translocation line 
WAT31-13 were originally produced in our laboratory. 
Seeds of Gaocheng 8901 and Fukuho were provided by the 
Institute of Crop Sciences, Chinese Academy of Agricul-
tural Sciences.

GISH and FISH analysis

Genomic in situ hybridization (GISH) and dual-color fluo-
rescence in situ hybridization (FISH) were carried out as 
previously described (Han et al. 2003). Genomic DNA 
was isolated using the CTAB method (Allen et al. 2006). 
A. cristatum genomic DNA (labeled with Dig-Nick-Trans-
lation Mix) and Fukuho genomic DNA were used as probe 
and blocker, respectively. Wheat and A. cristatum chromo-
somes were pseudo-colored as blue and red, respectively. 
Dual-color FISH was performed using pAs1 and pHvG39 
plasmid DNAs as probes in all translocation subtypes, 
while probes CRW (centromeric retrotransposon of wheat) 
and pAcCR1 (centromeric retrotransposon of A. cristatum) 
were applied to analyze the centromere of the arm trans-
location chromosome (TrA) in the Subtype II. Probe pAs1 
from Aegilops tauschii preferentially hybridizes to most 
D-genome chromosomes, and the probe pHvG39 could 
hybridize with A, B, and D genome chromosomes (Ped-
ersen and Langridge 1997). Probe CRW was identified 
from a Triticum boeoticum library and closely associated 
with the centromeres (Liu et al. 2008). The A. cristatum 
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centromere-specific probe pAcCR1 was developed using 
the wheat-A. cristatum 6PS ditelosomic lines in our labo-
ratory. To develop the probe pAcCR1, microdissection and 
degenerate oligonucleotide-primed PCR (DOP-PCR) were 
conducted as previously described (Vega et al. 1994). All 
cytological images were taken under a Nikon Eclipse E600 
fluorescence microscope and captured with a CCD camera.

Translocation breakpoint analyses

To determine the translocation breakpoints, a total of 25 
wheat SSR markers physically or genetically mapped on 
wheat chromosome 5A were chosen (Somers et al. 2004; 
Sourdille et al. 2004). Common wheat ‘Chinese Spring’ 
(CS) nulli-tetrasomic lines (N5AT5B and N5AT5D), CS 
ditelosomic lines (Dt5AL and Dt5AS), and CS 5AL dele-
tion lines (5AS10-0.98-1.00, 5AS3-0.75-0.98, 5AS1-0.40-
0.75, C-5AS1-0.40, C-5AL12-0.35, 5AL12-0.35-0.57, 
5AL10-0.57-0.78, 5AL17-0.78-0.87, and 5AL23-0.87-
1.00) were applied to verify the chromosomal localization 
of wheat SSR markers. Nine A. cristatum-specific mark-
ers developed from EST sequences of A. cristatum mRNA 
transcriptome and seven A. cristatum-specific markers 
(For3-G02, For5-E08, For22-B10, For15-D06, For8-G11, 
For14-B02, and For22-E03) obtained from Luan et al. 
(2010) were chosen to distinguish different chromosomal 
regions of A. cristatum chromosome 6P. All wheat SSR 
primers were obtained from the Graingenes website (http://
wheat.pw.usda.gov/ggpages/maps.shtml).

Evaluation of agronomic traits

Evaluation of traits was conducted in a field trial in Bei-
jing with three replications in each of 2 years (2012 and 
2013). For each replication, 20 grains of each line were 
evenly planted in 2.0 m rows, spaced 0.3 m apart. All the 
translocation lines were evaluated for a number of agro-
nomic traits, including fertile tiller number, grain number 
per spike, spikelet number per spike, kernel number per 
spikelet, and thousand-kernel weight. Traits were measured 

on ten plants randomly selected from each line of each 
translocation subtype. Statistical analyses were conducted 
using the Statistical Analysis System version 9.2 (SAS 
Institute Inc., Cary, NC, USA), and the t-test was used to 
test the difference of the agronomic traits between each of 
the translocation subtypes and two common wheat parents 
(Gaocheng 8901 and Fukuho).

Results

Distinct translocation types were identified in the progenies 
of WAT31-13

We previously reported that the 5A-6P reciprocal transloca-
tion-addition line WAT31-13 (2n = 44) (M2 generation) har-
bored a number of superior agronomic traits but displayed 
genetic instability (Luan et al. 2010). By strict self-pollina-
tion by spike bagging for six generations, 43 translocation 
lines were acquired at the M8 generation. GISH was carried 
out at each generation to determine the genetic constitutions 
of individual plants. Plants that lost the A. cristatum chromo-
some segments were excluded from further investigation. 
Because plants at the M8 generation were all identical in 
genetic constitution relative to the M6 and M7 generations, 
we concluded that these 43 M8 lines were genetically sta-
ble. GISH indicated that there were three types of transloca-
tion chromosomes in these various lines (Table 1), with each 
line harboring a single or combinations of three translocation 
types (Table 2). As shown in Table 1, the small translocation 
chromosome (TrS) contained a small segment of A. cris-
tatum chromosome (shown in red) of approximately 60 % 
of the distal portion of one chromosome arm, whereas the 
remainder of the chromosome including the centromere was 
from wheat (shown in blue). In contrast, the large transloca-
tion chromosome (TrL) contained a small segment of wheat 
chromosome (shown in blue) at the end of one arm with the 
rest of the chromosome from A. cristatum (shown in red). 
The arm translocation chromosome (TrA) seemed to include 
only the translocated arm found in the TrL type. 

Table 1  Three types of 
translocation chromosomes 
identified from 43 wheat-A. 
cristatum translocation lines

Types of translocation 
chromosome

Description
Model of translocation 

chromosome

TrS Small translocation chromosome

TrL Large translocation chromosome

TrA Arm translocation chromosome

http://wheat.pw.usda.gov/ggpages/maps.shtml
http://wheat.pw.usda.gov/ggpages/maps.shtml
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According to the translocation chromosomes they har-
bored, these 43 translocation lines were categorized into 
seven translocation subtypes (Table 2; Fig. 1). In Subtype 
I, there were 42 wheat chromosomes as well as one pair 
of TrSs and one pair of TrLs (Fig. 1a; Table 2). Subtype 
II contained 42 wheat chromosomes, a pair of TrSs and a 
pair of TrAs (Fig. 1b; Table 2). Subtype III contained 42 
wheat chromosomes and a pair of TrLs (Fig. 1c; Table 2). 
Subtype IV contained 42 wheat chromosomes and a pair of 
TrSs (Fig. 1d; Table 2). In Subtype V, there were 40 wheat 
chromosomes and a pair of TrSs (Fig. 1e; Table 2). Both 
Subtype VI and VII possessed 42 chromosomes in total, 
consisting of all wheat chromosomes except one chromo-
some 5A but add one TrS and TrL, respectively (Fig. 1f, g; 
Table 2). In Subtype II, we hypothesized that TrA might 
have derived from TrL by misdivision at the centromere. 
If this was the case, the centromere of TrA should come 
from A. cristatum rather than wheat. Indeed, the wheat 
centromere-specific probe CRW successfully stained all 
chromosome centromeres except for those of the TrAs, but 
the A. cristatum centromere-specific probe pAcCR1 stained 
only the TrA centromeres (Fig. 2). These results supported 
our assumption that TrA was a telocentric derivative of TrL.

Translocation occurred between the wheat chromosome 5A 
and A. cristatum chromosome 6P

To further determine the identity of the wheat chromo-
somes involved in the translocation, dual-color FISH was 
performed on each of the seven translocation subtypes 

using pAs1 and pHvG39 probes, which were used to dis-
tinguish all 21 pairs of wheat chromosomes. As shown in 
Fig. 3, A. cristatum 6P chromosome segments were trans-
located onto wheat chromosome 5A in all seven subtypes. 
In the TrSs that were present in Subtype I, II, IV, V, and VI, 
A. cristatum 6P chromosome segments were translocated 
onto wheat chromosome arm 5AL, replacing 60 % of the 
distal portion of 5AL. In the TrLs that were present in Sub-
type I, III, and VII, A. cristatum 6P chromosome segments 
replaced wheat chromosome 5AS and a 40 % portion of 
5AL proximal to the centromere.

Identification of the breakpoint in the Subtype V 
translocation line

To pinpoint the location of the breakpoint in the TrS and TrL 
translocation chromosomes, Subtype V was the only sub-
type that could be used, since it lacked an intact wheat chro-
mosome 5A. Twenty-five wheat SSR markers physically 
mapped on wheat chromosome 5A were chosen to ana-
lyze the breakpoint in Subtype V. CS nulli-tetrasomic lines 
(N5AT5B and N5AT5D), CS ditelosomic lines (Dt5AL and 
Dt5AS), and CS 5AL deletion lines were used to confirm 
the physical locations of these markers. As shown in Fig. 4a, 
seven and 18 markers were located to the wheat chromo-
some arms 5AS and 5AL, respectively. Among them, five 
markers (Xgwm186, XbarcM158, XbarcM135, Xbarc155, 
and Xbarc186) were located in bin C-5AL12-0.35, four 
markers (Xbarc40, XksuM56, Xbarc1, and XksuM5) in bin 
5AL12-0.35-0.57, three markers (Xcfa2163, Xgwm617, 

Table 2  Seven subtypes of translocations categorized from 43 wheat-A. cristatum translocation lines

Subtype
Translocation

type
Chromosome constitution 2n

Chromosomal
constitution

No. of lines

Subtype TrS +TrL 44 40W+2(TrS)+2(TrL) 4

Subtype TrS +TrA 44 40W+2(TrS)+2(TrA) 30

Subtype TrL 44 40W+2(5A)+2(TrL) 3

Subtype TrS 44 40W+2(5A)+2(TrS) 1

Subtype TrS 42 40W+2(TrS) 1

Subtype TrS 42 40W+1(5A)+1(TrS) 2

Subtype TrL 42 40W+1(5A)+1(TrL) 2

WAT31-13 44 40W+2(5A)+1(TrS)+1(TrL) 1

Chromosomes or chromosomal segments painted in blue and red belong to wheat and A. cristatum, respectively 
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and Xgwm666) in bin 5AL10-0.57-0.78, three markers 
(Xwmc110, Xcfa2155, and Xgpw1086) in bin 5AL17-
0.78-0.87, and three markers (Xgpw2120, Xgpw2136, and 
Xgpw2172) in bin 5AL23-0.87-1.00. PCR results showed 
that only SSR markers in the 5AS and bin C-5AL12-0.35 
were amplified in Subtype V, but SSR markers from other 
bins were not. Xbarc40 and XksuM56 were present in Sub-
type V, but Xbarc1 and XksuM5 were absent (Fig. 5a), indi-
cating that the translocation breakpoint occurred on wheat 
chromosome arm 5AL and the breakpoint was located in 
bin 5AL12-0.35-0.57. All 25 wheat SSR markers were pre-
sent in the other six subtypes, suggesting that at least one 
intact 5A chromosome or combinations of one intact 5A 
chromosome was present in these subtypes.

To determine which arm of A. cristatum chromosome 
6P was present in these translocation lines, seven EST 

makers specific for A. cristatum chromosome arm 6PL or 
6PS were used. Three markers (For3-G02, For5-E08 and 
For22-B10) on chromosome 6PS were absent in subtype 
V, whereas four markers (For15-D06, For8-G11, For14-
B02, and For22-E03) on the A. cristatum chromosome 6PL 
were present in Subtype V (Figs. 4b, 5b). Besides, another 
nine A. cristatum-specific EST markers were examined. 
Three markers (Agc3413, Agc7155, and Agc9322) on A. 
cristatum chromosome arm 6PS, two markers (Agc6900 
and Agc34162) in bin C-6PL-0.32, and Agc12567 in bin 
6PL-0.32-0.69 were absent in Subtype V, whereas Agc8937 
in bin 6PL-0.32-0.69 and two markers (Agc4543 and 
Agc24535) in the bin 6PL-0.69-1.00 were present in Sub-
type V (Fig. 5b). The results indicated that the transloca-
tion breakpoint occurred on A. cristatum chromosome arm 
6PL and the breakpoint was located in bin 6PL-0.32-0.69. 

Subtype Subtype Subtype Subtype

a          b                   c d

Subtype Subtype Subtype

e          f                    g

Fig. 1  GISH discrimination of seven subtypes of wheat-A. cristatum 
translocation lines. a Subtype I contained 22 pairs of chromosomes 
including 20 pairs of wheat chromosomes, one pair of TrSs and one 
pair of TrLs. b Subtype II consisted of 20 pairs of wheat chromo-
somes, one pair of TrSs and one pair of TrAs. c, d Both Subtype III 
and Subtype IV consisted of 44 chromosomes including 42 wheat 
chromosomes, but including one pair of TrLs and one pair of TrSs, 

respectively. e Subtype V possessed 42 chromosomes consisting of 40 
wheat chromosomes and one pair of TrSs. f, g Both Subtype VI and 
Subtype VII possessed 42 chromosomes in total, but harbored one 
TrS and one TrL, respectively. Arrows indicate wheat-A. cristatum 
translocation chromosomes. Chromosomes or chromosomal segments 
painted in blue and red belong to wheat and A. cristatum, respectively 
(color figure online)
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A. cristatum chromosome segments including partial 6PL-
0.32-0.69 and whole 6PL-0.69-1.00 were translocated onto 
wheat chromosome arm 5AL, so the constitution of the 
translocation chromosome in Subtype V could be described 
as T5AS·5AL-6PL (Table 2). Similarly, TrS and TrL could 
also be described as T5AS·5AL-6PL and T5AL-6PL·6PS, 
respectively, while TrA could be designated as T5AL-6PL 
(Table 2).

Evaluation of agronomic traits in all seven subtypes

Each of these 43 translocation lines was evaluated for five 
agronomic traits, including fertile tiller number, grain num-
ber per spike, spikelet number per spike, kernel number per 
spikelet, and thousand-kernel weight. Trait observations 
over 2 years were very similar showing that year-by-year 
environmental effects were insignificant. We also observed 
the lines from the same translocation subtype always dis-
played similar phenotypes, indicating that the genetic con-
stitution was the major factor controlling these phenotypes. 
Phenotypes for each subtype were calculated using phe-
notypic data from all lines within the particular subtypes 
(Table 3; Fig. 6).

Among all the seven subtypes, Subtype V was the only 
subtype exhibiting inferior agronomic traits including lower 
fertile tiller number, grain number, spikelet number per spike, 
kernel number per spikelet, and thousand-kernel weight. Sub-
type V displayed speltoid spike morphology, and occurred 
at a very low frequency (only one line). This was probably 
because Subtype V was the only translocation subtype defi-
cient in a large portion of wheat chromosome arm 5AL. Our 
results suggested that the distal end of wheat chromosome 
arm 5AL was essential for normal plant growth and overall 

fitness and cannot be fully compensated by the A. cristatum 
chromosome arm 6PL. We compared the agronomic traits 
among the other six subtypes and their contrast parents. Grain 
number per spike in Subtype I, VI, and VII were higher than 
those of two common wheat parents (Gaocheng 8901 and 
Fukuho), but lower than that of A. cristatum 6P disomic addi-
tion line 4844-12. Kernel number per spikelet in all six sub-
types were similar to those of two common wheat parents 
(Gaocheng 8901 and Fukuho), but significantly lower than 
that of A. cristatum 6P disomic addition line 4844-12. This 
was also the case for spikelet number per spike. For thousand-
kernel weight, no significant difference was observed among 
the six subtypes as well as two common wheat parents and A. 
cristatum 6P disomic addition line 4844-12.

Among all traits analyzed, fertile tiller number showed 
the highest variance. The translocation lines with TrL (Sub-
type I, III, and VII produced multiple fertile tiller number, 
which was much higher than those of their two common 
wheat parents. However, translocation lines without TrL but 
with TrS (Subtype II, IV, V and VI) displayed reduced fertile 
tiller number. According to the FISH patterns, TrL included 
A. cristatum chromosome arm 6PS, chromosome segment 
6PL-0.32, and partial 6PL-0.32-0.69, whereas TrS included 
A. cristatum chromosome segments 6PL-0.69-1.00 and par-
tial 6PL-0.32-0.69. These results indicated that there were 
positive and negative regulators of fertile tiller number on A. 
cristatum chromosome 6PS and 6PL, respectively. But when 
the positive and negative regulators of the fertile tiller num-
ber both existed on the same chromosome, as in the case of 
the A. cristatum 6P disomic addition line 4844-12, the fertile 
tiller number was not significantly different from those of 
two common wheat parents, probably because positive and 
negative effects regulators neutralized each other.

a               b

Fig. 2  Identification of the centromere of TrA in Subtype II using the 
CRW and pAcCR1 probes. a Green signals appeared on all 21 pairs of 
chromosomes except one pair of TrAs when the probe CRW (centro-
meric retrotransposon of wheat) was used; b Green signals are pre-

sent on one pair of TrAs with the probe pAcCR1 (centromeric retro-
transposon of A. cristatum). Chromosomes in blue and red are wheat 
and A. cristatum chromosomes, respectively. Arrows indicate the TrA 
chromosomes in Subtype II (color figure online)
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Fig. 3  FISH identification of seven subtypes of wheat-A. cristatum 
translocation lines using pHvG39 and pAs1 as probes. Images on the 
right of each panel show FISH results, and those on the left showed 
corresponding GISH patterns. Chromosomes in blue and red are 
wheat and A. cristatum chromosomes in the GISH patterns, respec-
tively; whereas pHvG39 and pAs1 signals were pseudo-colored as 

green and red in the FISH patterns, respectively. a–g, FISH patterns 
of Subtype I (a), Subtype II (b), Subtype III (c), Subtype IV (d), 
Subtype V (e), Subtype VI (f), and Subtype VII (g). Note that A. cris-
tatum 6P chromosome segments were translocated to wheat chromo-
some 5A in all seven subtypes. Arrows indicate wheat-A. cristatum 
translocation chromosomes (color figure online)
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Discussion

Stabilization of the genetic constitution of translocation 
lines can be achieved spontaneously

Alien genetic resources are important for improving agro-
nomic traits in wheat. Ionizing radiation treatment of alien 
addition lines, substitution lines, and translocation lines 
carrying desirable genes is one method to induce chromo-
some translocation (Chen et al. 1996; Friebe et al. 1996b; 
Sears and Gustafson 1993; Zhang et al. 2012). In our study, 
all the translocation lines were identified from the proge-
nies of WAT31-13, which came from an irradiated hybrid. 
The translocation lines were classified into seven subtypes 
(I–VII), containing three translocation chromosome types 
(TrS, TrL, and TrA). TrS and TrL, but not TrA, were pre-
sent in WAT31-13, indicating that TrA was a new chromo-
some type which occurred spontaneously. Cytobiological 
evidences indicated that TrA was derived from TrL as a 
consequence of a chromosome breakage at the centromere 
causing loss of the chromosome arm 6PS but retention of 
the A. cristatum centromere. Such chromosomal breakage 
happened at a high frequency, since the number of Sub-
type II individuals (30 lines) was much higher than that 
of Subtype I (4 lines). The exact biological mechanism of 

such high frequency of chromosome breakage is currently 
unknown, but TrA was probably more genetically stable 
than TrL. Similar spontaneous chromosomal rearrange-
ments have also been reported in wheat-Haynaldia villosa 
and wheat-Leymus racemosus translocation lines (Cao 
et al. 2009; Wang et al. 2010).

Non-homoeologous translocations between chromosome 
5A and 4A in hexaploid wheat are well known (Devos et al. 
1995), and translocations involving 4L/5L also exist in 
several other species within the tribe Triticeae (King et al. 
1994). In our study, all translocations occurred between 
wheat chromosome arm 5AL and A. cristatum chromo-
some arm 6PL. Among all the translocation subtypes, Sub-
type V was the only translocation subtype that exhibited 
inferior agronomic traits, and also occurred at a very low 
frequency. This was probably caused by a low overall fit-
ness of the resulting translocation line due to incomplete 
compensation of the missing segments of chromosome arm 
5AL. Indeed, chromosome arm 5AL contains important 
genes such as gene Q controlling free-threshing and square 
spike morphology, Vrn-A1 determining winter/spring 
growth-habit, and Fr1 conferring frost-resistance (Galiba 
et al. 1995; Sarma et al. 1998; Sutka et al. 1999). Gene Q 
was reported to locate in bin 5AL23-0.87-1.00 of chromo-
some arm 5AL, and its location is indicated on the physical 
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Fig. 4  Physical map of wheat chromosome 5A and A. cristatum 
chromosome 6P. The map on the left is wheat chromosome 5A con-
sisting of nine deletion bins, and wheat SSR markers are shown on 
the corresponding regions. The map on the right is A. cristatum chro-
mosome 6P, including 6PS, C-6PL-0.32, 6PL-0.32-0.69, and 6PL-

0.69-1.00 chromosomal segments, and A. cristatum-specific mark-
ers are shown on the corresponding regions. Fraction breakpoints on 
chromosomes 5A and 6P are indicated as dashed lines; The location 
of gene Q is indicated by the arrow according to the previous reports 
(Galiba et al. 1995; Sutka et al. 1999)
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map of the wheat chromosome arm 5A (Fig. 4a). Consist-
ent with their lack of gene Q, Subtype V plants displayed 
speltoid spike morphology, as well as lower seed-set and 
thousand-kernel weight. Similar phenotypes were observed 
in the progenies of the cultivar Biscay, which lacks chro-
mosomes 5A carrying Q gene (Forster et al. 2013). There-
fore, our results indicated that the distal end of wheat chro-
mosome arm 5AL is essential for normal plant growth and 
overall fitness, and could not be fully compensated by the 
A. cristatum chromosome arm 6PL.

The probe pAcCR1 is sufficient to distinguish the A. 
cristatum and wheat centromere

The plant centromeres are mainly composed of vari-
ous types of repetitive DNA elements, including transpo-
sons, retrotransposons, and telomere-like repeats, most of 
which are species- or genome-specific (Galasso et al. 1995; 
Iwabuchi et al. 1991). Thus, centromeric DNA is often a 
perfect target to distinguish chromosomes of different 
species (Jiang et al. 2003). A number of repetitive DNA 
elements were found in wheat centromeres (Cheng and 
Murata 2003; Kishii et al. 2001; Ito et al. 2004; Zhang et al. 

2004), upon which the wheat centromere-specific probe 
CRW was developed (Liu et al. 2008). In this study, we 
developed the probe pAcCR1 by a combination of micro-
dissection and DOP-PCR methods. The probe pAcCR1 
specifically hybridizes with A. cristatum centromeres, and 
could not hybridize with wheat centromeres. The probe 
pAcCR1 could not hybridize with centromeres from sev-
eral other genomes including genome H, E, R, St, and U 
(unpublished data).

The translocation lines developed in this study could 
be used to mechanistically explore the A. cristatum 
chromosome segments controlling fertile tiller number

Tillering is a key component of yield for most cereals such 
as wheat, rice, and barley (Sakamoto and Matsuoka 2004; 
Sreenivasulu and Schnurbusch 2012). While the molecu-
lar mechanism of tillering has been extensively studied 
in dicots and a few monocots (Aguilar-Martinez et al. 
2007; Kebrom et al. 2013; Li et al. 2003; Minakuchi et al. 
2010; Schmitz et al. 2002; Wang and Li 2008), it has not 
been fully explained in wheat, probably due to the lack 
of genetic materials suitable for dissecting the genetic 
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Fig. 5  PCR amplification patterns of wheat SSR markers and A. cris-
tatum-specific markers. a Wheat SSR markers Ksum5 and Ksum56 
were shown in bin 5AL12-0.35-0.57 by CS nulli-tetrasomic lines, CS 
ditelosomic lines, and CS 5AL deletion lines. b A. cristatum-specific 
markers Agc3413, Agc12567, and Agc8937 located in different bins 
of A. cristatum 6P chromosome were present or absent in some sub-
types. Arrows indicate specific bands from wheat (a) and A. cristatum 

(b), respectively. Lanes in a: 1 CS, 2 N5AT5B, 3 N5AT5D, 4 DT5AS, 
5 DT5AL, 6 5AL23-0.87-1.00, 7 5AL17-0.78-0.87, 8 5AL10-0.57-
0.78, 9 5AL12-0.35-0.57, 10 C-5AL12-0.35, 11 Subtype V. Lanes in 
b: 1 Z559, 2 4844-12, 3 Gaocheng 8901, 4 Fukuho, 5 Subtype I, 6 
Subtype II, 7 Subtype III, 8 Subtype IV, 9 Subtype V, I0 Subtype VI, 
11 Subtype VII
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architecture of tillering. A number of quantitative trait loci 
(QTLs) for tiller number have been identified (Huang et al. 
2004; Kato et al. 2000; Kim et al. 1993; Li et al. 2002; Nar-
asimhamoorthy et al. 2006; Naruoka et al. 2011; Snape 
et al. 1985), but the underlying genes have not been cloned. 
In those studies, a large number of QTLs with minor effects 
were identified, indicating that tillering is a complex trait 
coordinately controlled by many loci.

To successfully clone QTLs, the parents used to con-
struct the cloning population have to be carefully chosen, 
since QTLs with large effects can only be revealed when 
alleles from the parents have dramatic effects on tillering. 
Few cases have been reported where large-effect QTLs 
controlling tillering have been fine-mapped in wheat, the 
most prominent example was the tiller inhibition gene 
(tin1) detected in the uniculm wheat mutant Line 492 and 
located on the wheat chromosome arm 1AS (Spielmeyer 
and Richards 2004). Other examples included tin2 and tin3 
(Kuraparthy et al. 2007; Peng et al. 1998). The ftin (fertile 
tiller inhibition) gene was located on wheat chromosome 
arm 1AS in Pubing 3558 in our previous report (Zhang 
et al. 2013). The translocation lines reported here have dra-
matic differences in fertile tiller number, so there should 
exist gene(s) controlling fertile tiller number. In this study, 
we determined that the A. cristatum chromosome arm 6PS 

and 6PL have positive and negative effects on fertile tiller 
number, respectively. However, the underlying genes con-
trolling fertile tiller number cannot be cloned from these 
materials using a traditional map-based cloning approach. 
To overcome this hurdle, the A. cristatum 6P chromosome 
segments can first be reduced to smaller segments and 
transferred into a known elite cultivated wheat background, 
and then the strategy employed in the cloning of Pm21 can 
be used (Cao et al. 2011).

Some translocation lines showed potential applications 
for breeding high-yielding wheat

Wheat cultivars can be classified into large-spike and multi-
spike types. Compared to large-spike types, multi-spike 
type cultivars are considered to be more stable in agro-
nomic performance, and it is easier to achieve higher yields 
per unit field area (Deng et al. 2011). This effect becomes 
more pronounced when wheat plants are confronted with 
environmental stresses such as drought and salinity (Reyn-
olds et al. 2007; Tian et al. 2006a, b). In this study, all 
translocation subtypes except Subtype V showed higher 
grain number per spike, thus they are potentially useful 
for breeding wheat lines with large spikes. However, what 
attracted our attention more were the subtypes with high 

Table 3  The agronomic traits of seven translocation subtypes and their parents in year 2012 and 2013

*, ** Significantly different from the two common parents (Gaocheng 8901 and Fukuho) at the probability levels of P = 0.05 and P = 0.01, 
respectively (t test)

Materials Year Fertile tiller  
numbers

Grain number  
per spike

Kernel number  
per spikelet

Spikelet number  
per spike

Thousand-kernel 
weight (g)

Subtype I 2012 18.4 ± 2.4** 71.6 ± 9.4** 4.9 ± 0.7 22.7 ± 1.5 32.2 ± 1.7

2013 20.9 ± 3.6** 71.9 ± 4.8** 4.7 ± 0.4 22.9 ± 0.9 32.5 ± 3.6

Subtype II 2012 2.1 ± 0.7** 67.5 ± 8.5 4.8 ± 0.6 22.6 ± 1.8 31.1 ± 1.8

2013 2.9 ± 1.5** 66.8 ± 12.9 4.8 ± 0.9 22.8 ± 1.4 30.6 ± 4.4

Subtype III 2012 19.4 ± 2.4** 69.2 ± 8.2 4.6 ± 0.6 22.3 ± 1.5 31.2 ± 2.3

2013 20.5 ± 2.8** 67.6 ± 11.7 4.7 ± 0.8 22.1 ± 0.8 31.5 ± 1.9

Subtype IV 2012 2.1 ± 0.8** 68.2 ± 11.9 4.6 ± 0.9 21.7 ± 2.2 36.1 ± 4.9

2013 2.8 ± 1.3** 69.8 ± 12.7 4.9 ± 1.2 21.8 ± 1.4 36.2 ± 4.1

Subtype V 2012 2.4 ± 0.9** 27.9 ± 4.8** 2.4 ± 0.5** 19.8 ± 1.4 24.9 ± 2.5**

2013 3.1 ± 1.3** 22.2 ± 5.3** 1.6 ± 0.9** 19.1 ± 1.3 22.0 ± 2.3**

Subtype VI 2012 2.2 ± 0.9** 73.6 ± 8.9** 5.1 ± 0.7 22.2 ± 1.7 31.9 ± 2.1

2013 3.2 ± 1.4** 80.1 ± 9.8** 5.2 ± 0.8 22.6 ± 1.5 32.5 ± 2.4

Subtype VII 2012 18.9 ± 2.7** 68.5 ± 7.3* 4.9 ± 0.5 21.8 ± 1.4 32.1 ± 1.3

2013 20.6 ± 2.2** 71.1 ± 6.0** 4.6 ± 0.5 22.1 ± 1.4 32.7 ± 2.4

4844-12 2012 10.7 ± 1.5 112.3 ± 9.1** 6.1 ± 0.7** 24.1 ± 1.1** 31.9 ± 1.4

2013 11.2 ± 1.4 117.7 ± 6.8** 6.3 ± 0.5** 24.1 ± 1.2** 32.5 ± 1.7

Gaocheng 8901 2012 10.9 ± 2.3 56.1 ± 4.9 4.4 ± 0.5 21.6 ± 1.4 32.1 ± 1.3

2013 11.1 ± 1.6 57.9 ± 5.9 4.5 ± 0.5 21.4 ± 0.9 32.8 ± 1.6

Fukuho 2012 11.1 ± 2.2 53.4 ± 4.8 4.2 ± 0.6 20.5 ± 1.5 31.5 ± 1.5

2013 11.3 ± 1.5 54.3 ± 5.8 4.3 ± 0.5 19.7 ± 1.3 31.9 ± 1.3
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numbers of fertile tiller, such as Subtype I, III, and VII, 
which also showed potential applications for breeding of 
multi-spike types. Although these subtypes showed poten-
tial applications for breeding high-yielding wheat, it would 
be a challenge to introduce the desirable genes conferring 
multiple fertile tiller number from A. cristatum chromo-
some arm 6PS into common wheat without the introduced 
segments also conferring deleterious effects. To overcome 
this problem, chromosome translocation induced by ioniz-
ing radiation or Ph1-deficient genetic stocks can be used.

The Ph1 system is advantageous in that it can signifi-
cantly promote the frequency of homoeologous chromo-
some pairing and recombination, thereby producing geneti-
cally compensating translocations (Qi et al. 2008; Niu 
et al. 2011). However, homoeologous recombination is 
affected by the structurally rearranged segments of alien 
chromosomes, the genetic relationship between wheat and 
its related species as well as the genetic distance between 
the target gene and the centromere (Qi et al. 2007; Monte 
et al. 1993; Nasuda et al. 1998). In our previous research, 

wheat-A. cristatum 6P disomic addition lines displayed 
obvious chromosome rearrangements (Han et al. 2014). 
Therefore, ionizing radiation might be the preferred choice 
in our case. Ionizing radiation treatment can cause alien 
chromosome breakage at different positions, and then the 
alien chromosome will be transferred onto different regions 
of wheat chromosomes, as exemplified in Chen et al. 
(2013). Therefore, it is possible that the desirable genes 
conferring multiple fertile tiller number from A. cristatum 
chromosome arm 6PS would be transferred onto other 
chromosomes rather than wheat chromosome 5A during 
further cycles of ionizing radiation.

In conclusion, by studying the chromosomal constitu-
tion, behavior, and agronomic traits of wheat-A. cristatum 
translocation lines, we pinpointed the chromosomal seg-
ments of A. cristatum 6P positively and negatively regulat-
ing fertile tiller number in wheat, respectively. Our work 
not only laid the foundation for further research on wheat 
tillering, but also provided the starting materials for high-
yield wheat breeding.

Subtype Subtype SubtypeSubtypeSubtype

Subtype Subtype 4844-12 Gaocheng 8901 Fukuho

a   b                  c d                       e

f g h i                   j

Fig. 6  Plant morphology of seven subtypes and their parents. Plant morphologies of Subtype I (a), II (b), III (c), IV (d), V (e), VI (f), VII (g), 
wheat-A. cristatum addition line disomic 4844-12 (h), Gaocheng 8901 (i) and Fukuho (j) were shown
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