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variation for grain number/m2. The locus for YLD in chro-
mosome 6A also explained 6 % of the variation in grain 
weight. Loci significantly associated with maturity were 
identified in chromosomes 2B, 3B, 4B, 4D, and 6A and for 
plant height in 1A and 6A. Loci were also detected for can-
opy temperature at grain filling (2D, 4D, 6A), chlorophyll 
index at grain filling (3B and 6A), biomass (3D and 6A) 
and harvest index (1D, 1B, and 3B) that explained 5–10 % 
variation. These markers will be further validated.

Abbreviations
GWAS  Genome-wide association study
SNP  Single nucleotide polymorphism
LD  Linkage disequilibrium

Introduction

Wheat is among the most important food crops and is one 
of the most traded commodities in the world markets (Cur-
tis and Halford 2014). Genetic gains in the yields of spring 
wheat in favorable environments averaged 0.6 % annu-
ally between 1995 and 2010, based on data from hundreds 
of testing sites world wide mainly through conventional 
breeding (Sharma et al. 2012). However, to meet predicted 
global demand, gains in yield of ~2 % annually, a cumu-
lative increase of 50 % in ~20 years, are required (Lopes 
et al. 2012b)—a target that would take some 70 years to 
reach, at a 0.6 % yearly rate of genetic gain. Clearly there 
is a need to complement conventional breeding approaches 
with molecular approaches and a better understanding of 
the genetic basis of yield is a pre-requisite for this.

Genome-wide association studies (GWAS) and quantita-
tive trait loci (QTL) mapping are the two main approaches 
followed to dissect the genetic bases of complex traits 
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(Risch and Merikangas 1996). In wheat, the traditional 
QTL mapping approach might locate genomic regions with 
low resolution that are limited to the bi-parental population 
under study. As a complement to QTL mapping, GWAS 
offers a high-resolution, cost-effective way for gene discov-
ery and molecular marker identification. Bi-parental popu-
lations typically are formed for specific traits, whereas in 
GWAS, populations are phenotyped for different traits and 
genotyped once, according to the genetic diversity of the 
traits in the population (Zhu et al. 2008).

Genome-wide association mapping studies for spring 
wheat are limited; candidate gene approaches are more 
common (Chao et al. 2010; Edae et al. 2013). GWAS 
in wheat is a challenge due the crop’s large genome, 
incomplete genome sequence, and polyploidy, which 
makes it difficult to assign the markers to individual 
(A, B, and D) genomes (Sukumaran and Yu 2014). 
There are a few number of studies that used associa-
tion mapping to dissect genetic bases of traits in winter 
wheat (Breseghello and Sorrells 2006; Chao et al. 2010; 
Poland et al. 2011; Yu et al. 2011; Würschum et al. 
2013).

For GWAS, CIMMYT developed a wheat association 
mapping initiative (WAMI) population that is controlled 
for phenology and plant height (PH) (Lopes et al. 2012a). 
Candidate gene association mapping was carried out in 
this population for drought tolerance using five candi-
date genes (DREA1A, ERA-1B, ERA-1D, 1-FEH-A, and 
1-FEH-B) (Edae et al. 2013). The value of the population 
was initially tested by association analysis with known 
genes like Vrn- A1, Vrn-B1, Vrn-D1, Rht-B1, and Rht-D1 
in chromosomes 5A, 5B, 5D, 4B, and 4D, respectively, 
allowing the location of associated functional markers 
(Lopes et al. 2014). An association mapping study using 
1,863 DArT markers was used to identify markers for 
yield and yield components phenotyped under contrasting 
moisture regimes in USmid-west (Edae et al. 2014). In the 
present study we used 18,704 high-density, polymorphic 
SNPs from the 90K Illumina iSelect SNP array (Wang 
et al. 2014) to identify molecular markers associated with 
yield and related traits, with the ultimate aim of facilitating 
molecular breeding and the strategic combination of traits 
in spring wheat.

Materials and methods

Plant material

The WAMI population is a genetically diverse collec-
tion comprising 287 high-yielding, advanced elite lines of 
spring wheat. It represents 25 years of research at CIM-
MYT and was carefully assembled to avoid the confound-
ing effects of phenology and PH in GWAS (Lopes et al. 
2012a).

Phenotyping

The WAMI population was evaluated over 4 years (2010–
13) under optimal management at the CIMMYT experi-
ment station near Ciudad Obregón, Sonora State, in North-
west Mexico (27.20°N, 109.54°W, 38 masl). This site is 
a temperate high-radiation environment with adequate 
irrigation. The trials were timely sown with full irrigation 
applied through gravity flood-irrigation. In addition, four 
auxiliary gravity flood-irrigations were also given at regu-
lar intervals. Details of date of planting and weather data 
are shown in Table 1. Phenotypic measurements included 
grain yield/m2 (YLD), thousand kernel weight (TKW), 
grain number/m2 (GNO) (estimated from YLD and TKW), 
plant height (PH), days to heading (DTH), days to anthesis 
(DTA), days to maturity (DTM), chlorophyll index (SPAD) 
at vegetative stage (SPADvg), SPAD at the grain filling 
stage (SPADLLg), canopy temperature at vegetative stage 
(CTvg), canopy temperature at grain-filling (CTLLg), nor-
malized difference vegetation index (NDVI) at vegetative 
stage (NDVIvg) and at the grain filling stage (NDVILLg), 
peduncle length (PL), biomass at harvest (BM), and harvest 
index (HI). For details on measurements and time of meas-
urements please see the manual “Physiological breeding II: 
a field guide to wheat phenotyping” (Pask et al. 2012).

Genotyping and SNP calling

Seeds of all lines were obtained from the CIMMYT genetic 
resources program and genomic DNA was extracted from 
five bulked leaves using a CTAB procedure (Saghai-Maroof 
et al. 1984) modified as shown in CIMMYT laboratory 

Table 1  Weather data of the experimental site during the crop season in Cd. Obregón, Mexico from 2010 to 2013

MaxT maximum temperature, MinT minimum temperature, MaxT >35 °C number of days where MaxT was above 35 °C

Years Planting date Seeding emergence Average MaxT Average MinT MaxT > 35 °C Total rainfall (cm)

2009–2010 20-November-2009 28-November-2009 27.60 10.40 19 42.00

2010–2011 12-November-2010 21-November-2010 28.39 8.60 22 2.00

2011–2012 23-November-2011 30-November-2011 27.94 8.70 23 24.00

2012–2013 21-November-2012 02-December-2012 28.28 9.87 20 7.00



355Theor Appl Genet (2015) 128:353–363 

1 3

protocols (Dreisigacker et al. 2013). DNA was sent for SNP 
genotyping to the USDA-ARS Small Grain Genotyping 
Center, Fargo (http://wheat.pw.usda.gov/GenotypingLabs) 
for use in the Illumina iSelect 90K SNP Assay (Wang 
et al. 2014), following the manufacturer’s protocol. SNP 
allele clustering and genotype calling was performed with 
Genome Studio software v2011.1. The default clustering 
algorithm implemented in genome studio was first used to 
identify assays that produced three distinct clusters corre-
sponding to the AA, AB, and BB genotypes expected for 
bi-allelic SNPs. Manual curation was performed for assays 
that produced compressed SNP allele clusters and could 
not be discriminated using the default algorithm. The accu-
racy for SNP clustering was validated visually.

Linkage disequilibrium, population structure, and trait 
analysis

Linkage disequilibrium (LD) among markers was calcu-
lated using the full matrix and sliding window options in 
TASSEL using 18,704 markers, for each chromosome and 
for the A, B, and D genomes. For LD calculation, only 
markers with known position and with a minor allele fre-
quency >5 % were used. Pair-wise LD was measured using 
the squared allele-frequency correlations r2, according to 
Weir (1996). The percentage of marker pairs below and 
above the critical LD was determined for each chromosome 
and LD decay was also compared. These results were also 
compared with Edae et al. (2014) and Lopes et al. (2014).

Population structure of the WAMI population was 
assessed with 887 SNP markers positioned at least 5 cM 
apart in the genome selected based on LD decay analysis. 
Population structure analysis using structure (Pritchard 
et al. 2000), principal component analysis (PCA) (Pear-
son 1901), and neighbor joining (NJ) tree analysis (Saitou 
and Nei 1987) in the Powermarker (Liu and Muse 2005) 
were additionally carried out and compared with Edae 
et al. (2014) and Lopes et al. (2014). The structure program 
was run ten times for each subpopulation (k) value, rang-
ing from 1 to 15, using the admixture model with 20,000 
replicates for burn-in and 5,000 replicates during analysis. 
Kinship was calculated with SPAGeDi 1.3 (Loiselle et al. 
1995; Hardy and Vekemans 2002). We also analyzed trait 
differences among the lines based on 1B/1R translocations 
that formed major subgroups.

Phenotypic analysis

Analysis of variance and estimates of repeatability 
were calculated using the proc mixed procedure in SAS 
9.1 software (SAS Institute 2000). The experimen-
tal design (i.e., alpha lattice) was adjusted considering 

environments, replicates within environments, incom-
plete blocks within environments, replications, geno-
types, and genotype-by-environment interactions (G × E) 
as random effects. Adjusted means were calculated for 
each trait by combining data from four environments 
and, as relevant for specific traits, using DTH and PH as 
covariates. Repeatability estimates were calculated in a 
method similar to that for heritability estimates, using the 
formula:

where r2 is the repeatability estimate, σ2G is the genetic 
variance, σ2G × E is the genotype-by-environmental vari-
ance, and σ2E is the residual variance, r is the number of 
replications, and l is the number of environments.

Genome-wide association analysis

A dataset including 285 lines was obtained after combining 
phenotypic (287) and genotypic data (285). Genome-wide 
scans in TASSEL 4.0 (Bradbury et al. 2007) using 18,704 
markers with known positions were conducted using 
population structure (Q2–Q6) as the fixed component and 
K matrix (kinship matrix) as the random component after 
model testing. We compared different models in SAS for 
GWAS to select the best model for detecting marker–trait 
associations (MTA) following previously recommended 
procedures for unified mixed model association mapping 
(Yu et al. 2006; Zhu et al. 2008). Model comparison was 
done in SAS using the bayesian information criteria (BIC) 
to select the best model for testing marker trait associa-
tions. Simple model, population structure as a cofactor (Q) 
(Pritchard et al. 2000), K matrix as random term in the 
mixed model, model involving population structure and 
familial relatedness (Q + K) (Yu et al. 2006), and princi-
pal components (PCs) from principal component analysis 
(PCA) and PCs + K were tested. Results from TASSEL 
were further verified in SAS applying unified mixed model 
analysis (Yu et al. 2006). We also tested markers for yield 
by using DTH and PH as covariates in TASSEL and in esti-
mating LS means for yield. The threshold for defining a 
marker to be significant was taken at 10−04, considering the 
number of markers and the deviation of the observed F test 
statistics from the expected F test distribution (Sukumaran 
et al. 2012). For traits YLD, TKW, GNO, CTvg, CTLLg, 
SPADvg, SPADLLg, NDIVvg, and NDVIllg, DTH was 
used as a covariate in TASSEL due to the phenotypic cor-
relation with phenology traits. GAPIT was also run with 
the model selection option to check the consistency of the 
results (Lipka et al. 2012).
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Results

General performance of the 287 lines

Weather conditions, date of planting and emergence, 
minimum and maximum temperatures, and rainfall were 
recorded (Table 1). Planting was always in November 
and environmental conditions were not drastically differ-
ent across years. Analysis of variance was conducted and 
minimum, mean, maximum, variance parameters, and 
repeatability estimates of all the traits studied were esti-
mated (Table 2). Except for SPAD and CT at vegetative 
stage, all traits were significantly different among geno-
types and showed medium-to-high repeatability. The phe-
notypic ranges for DTH, DTA, and DTM were 13, 13, and 
10 days, respectively. Even with a narrow range these traits 
exhibited higher repeatability estimates. TKW (0.92), had 
the highest repeatability estimate, followed by PH (0.89), 
PL (0.84), and DTH (0.81). The lowest repeatability was 
for BM (0.09). YLD of this population varied from 4.7 to 
8.2 ton/ha and TKW from 34.3 to 53.4 g/1,000 kernels. 
PH showed a range of 28 cm. SPADvg, SPADLLg, CTvg, 
CTLLg, NDVIvg, and NDVILLg showed low-to-medium 
repeatability.

Bi-plots showing the genetic correlations between dif-
ferent traits were plotted (Fig. 1). YLD was positively cor-
related with BM, HI, GNO, DTM, NDVILLg, and SPAD. 
YLD was negatively correlated with CT and PH. TKW 
and GNO were correlated with DTH and DTA. Pearson 

Table 2  Descriptive statistics and variance parameters estimated for YLD and yield components studied on 287 lines wheat association map-
ping initiative (WAMI) population grown in Mexico from 2009–2010 to 2012–2013

a Two-year data

σ2G genotypic variance, σ2 G × E genotype × environment variance, σ2 E residual variance, YLD grain yield, TKW thousand kernel weight, 
GNO grain number/m2, HED days to heading, ANT days to anthesis, MAT days to maturity, PH plant height, SPADLLG SPAD meter reading at 
grain filling, SPADvg SPAD reading at vegetative state, CTvg canopy temperature at vegetative stage, CTLLg canopy temperature at grain filling 
stage NDVIvg normalized differential vegetative index at vegetative stage, NDVILLg NDVI at grain filling stage, PL peduncle length, BM bio-
mass, HI harvest index

Trait Descriptive statistics Variance parameters

Min Mean Max σ2 G σ2 (G × E) σ2 E Repeatability

YLD (ton/ha) 4.73 6.79 8.20 0.15 0.11 0.54 0.62

TKW (g) 34.25 42.50 53.40 12.95 1.09 7.08 0.92

GNO 10,890.00 16,139.96 20,827 1,994,636.00 595,889.00 4,005,415.00 0.75

Heda (days) 75.71 82.01 88.82 5.65 1.72 1.99 0.81

Ant (days) 82.58 87.92 95.12 4.20 1.56 5.35 0.75

Mat (days) 125.87 130.35 135.37 1.99 0.63 5.62 0.70

PH (cm) 89.65 103.35 118.55 27.75 2.29 22.83 0.89

SPADLLg 38.29 44.95 50.37 2.62 0.04 4.22 0.55

SPADvg 39.50 43.82 48.43 0.0817 – 4.4302 –

CTvg 21.66 23.10 24.17 0.0002 0.0349 0.6541 –

CTLLg 23.57 24.60 25.56 0.0202 0.0494 0.3226 0.22

NDVIvg 0.30 0.41 0.51 0.0003 0.0009 0.0022 0.23

NDVILLg 0.32 0.44 0.52 0.0007 0.0005 0.0010 0.59

PLa (cm) 27.16 35.49 44.11 8.68 1.0224 4.3677 0.84

BMa 13.18 17.26 21.36 0.11 0.0123 4.3857 0.09

HIa 0.36 0.44 0.49 0.0002 0.0001 0.0009 0.40

Fig. 1  Bi-plot of the genetic correlation matrix for the traits studied 
in the wheat association mapping initiative population grown under 
irrigation at Ciudad Obregón, Mexico (2010–2013)
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correlation coefficients were calculated for all the trait 
combinations (Supplementary Table 1). GNO (0.56) and 
BM (0.53) showed the highest correlation with YLD, fol-
lowed by HI (0.35). TKW was negatively correlated with 
GNO (−0.70), but positively correlated with PL (0.48). PL 
and PH were positively correlated (0.63). NDVILLg was 
highly correlated with DTM (0.46).

Molecular markers and genetic map

A total of 21,871 (26.8 %) assays showed three distinct 
clusters corresponding to the AA, AB, and BB genotypes 
expected for a biallelic SNP. Of the remaining assays 
with poorer cluster separation, manual clustering was 
applied. Overall, 36,133 (44.2 %) of the 81,587 func-
tional iSelect bead chip assays visually revealed poly-
morphism among the WAMI population. We were able 
to locate 28,614 (35.1 %) of the SNPs on the published 
genetic map (Wang et al. 2014). The total length of the 
map was 3,662.67 cM. The number of markers, map 
length and derived marker density for each chromosome 
are shown in Supplementary Table 2. Chromosome 4D 
had the lowest number of markers (186) and chromosome 
1B had the highest number of markers (2,456). The map 

length was shortest for chromosome 4B (119) and long-
est for chromosomes 7A and 7D (241). Marker density 
was lowest for chromosome 6D, with an average spac-
ing of 0.49 cM, and highest for 1B and 6B, with aver-
age marker spacing of 0.07 cM. The B genome had the 
highest number of markers (13,243), followed by the A 
genome (10,064) and D genome (3,507). Marker density 
was also highest in the B genome (1 SNP per 0.08 cM), 
followed by the A genome (1 SNP per 0.12 cM) and the 
D genome (1 SNP per 0.37 cM).

Linkage disequilibrium, population structure, and trait 
analysis

We found the highest LD in the D genome. LD decayed 
below r2 = 0.02 at about 5 cM in the D genome and at 
about 2 cM in the A and B genomes. A comparison of 
marker pairs with r2 > 0.02 for all chromosomes indicated 
that 1A (46 %), 2D (39 %), and 1B (25 %) had the highest 
percentage of markers in LD. The fewest marker pairs in 
LD with r2 > 0.02 were on 7D (6 %), 7A (7 %), and 5A 
(7 %). The D genome had the highest percentage of mark-
ers in LD (18 %) followed by the A (16 %) and B genomes 
(13 %).

Fig. 2  Trait analysis of the WAMI population based on the 1B/1R 
translocation and indicating differences between the subpopulations 
comprising lines with and without the translocation: a NJ tree indicat-

ing the subpopulations; lines in red are with 1B.1R translocation and 
all others are without 1B.1R translocation b differences in the traits 
between the subpopulations
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Population structure analysis using 887 randomly 
selected SNPs through structure, PCA, and NJ tree analysis 
indicated that the WAMI population could be divided into 
two major subpopulations, based the presence or absence 
of 1B/1R translocations. Clustering according to pedigree 
included advanced lines derived from diverse, globally 
important CIMMYT parents and cultivars such as ‘Weebil’, 
‘Pastor’, and ‘BAV92’. Out of 287 lines with genotypic 
data, 112 lines have 1B/1R translocations in their genomes. 
The 1B/1R translocation lines showed higher YLD, TKW, 
and PH, but lower GNO, DTH, DTA, DTM, and HI than 
lines without the translocation (Fig. 2).

Marker–trait associations (MTAs)

Thirty-one significant marker–trait associations were 
detected using 18,704 SNPs, after removing alleles with 
MAF < 5 % from the 26,814 SNP data set. A significance 
threshold level of 10−04 was deemed suitable, considering 
the deviation of the observed test statistics [−log10 (p)] val-
ues from the expected test statistics values in the Q–Q plots 
(Sukumaran et al. 2012). Testing was done to select the best 
model for each trait for marker–trait associations (MTAs). 
The p values using the simple model and the best model for 
each trait were reported. Significant markers for the traits 
are shown in Table 3. Manhattan plots of the GWAS results 
are also shown in Figs. 3 and 4 and in Supplementary Fig-
ures 1, 2, and 3.

For YLD, we detected MTAs in chromosomes 3B, 5A, 
5B, and 6A. PC2 as the fixed term was the best model for 
YLD. Markers individually explained 8–11 % of the vari-
ation in the trait, and together explained 29 % of the vari-
ation in YLD, based on multiple regression analysis. We 
detected MTAs for TKW on 5A and 6A, using PC2 + K 
as the best model. The marker RFL_Contig4632_1512 on 
6A was 1 cM away from the marker for YLD on 6A. The 
marker for grain number on 5A was at 98 cM and close to 
the marker detected for TKW on 5A at 98 cM. PC2 + K in 
the mixed model framework was the best model for testing 
markers for GNO (Fig. 3).

We used PC2 + K model for DTA and DTH, thereby 
detecting a major region in 5A at 90 cM associated with 
these traits. The marker explained 7 and 14 % of the vari-
ation for DTA and DTH, respectively. For DTM, MTAs 
were detected on 2B, 3B, 4B, 4D, and 6A that explained 
16 % of the variation in the traits. For PH, markers were 
detected on 1A and 6A that explained 20 % of trait varia-
tion, based on multiple regression analysis (Fig. 4).

MTAs were also detected for SPADLLg (3B and 6A), 
CTLLg (6A, PVE based on multiple regression = 18 %), 
NDVIvg (4D and 5B), NDVILLg (1B and 6B) that 
explained 6–7 % of the variation in the traits. MTAs for PL 
(1B and 3A), BM (3D and 6A, PVE = 12 %), and HI (1B, 

1D, and 3B, PVE = 12 %) were also detected (Supplemen-
tary Figures 1, 2, and 3).

We detected the largest number of MTAs in chromo-
some 6A at the 71–85 cM interval, a pleotropic region 
for YLD, TKW, GNO, PH, SPADLLg, CTLLg, and BM. 
Markers detected on 5A were also related to several traits 
in this population. The markers detected were further veri-
fied for allele substitution effect and presented in Supple-
mentary Figures 4 and 5.

Discussion

Trait associations, linkage disequilibrium, population 
structure, and trait analysis

YLD was positively correlated with TKW, BM, HI, PL, and 
SPAD readings, as previously reported (Dodig et al. 2012; 
Lopes et al. 2012c), and negatively correlated with canopy 
temperature (Jackson et al. 1977; Rashid et al. 1999; Saint 
Pierre et al. 2010) and NDVI at vegetative stage. Our results 
on LD using the 18,704 SNP markers were similar to the 
earlier results from the 9K SNP data (Lopes et al. 2014) and 
DArT markers (Edae et al. 2014), including finding LD to be 
greatest in the D genome. Our LD decay rate is about 5 cM 
for the D genome, which is comparable to that (~6.8 cM) 
found by Edae et al. (2013). The reason for the high D 
genome LD may be the introduction of synthetic and new 
haplotypes in the WAMI population and also due to the evo-
lutionary history of wheat D genome (Edae et al. 2014; Lopes 
et al. 2014). This indicates that fewer markers are needed for 
GWAS in the D genome than for the A and B genomes.

We also reached a similar conclusion about population 
structure using 887 SNPs markers from the 90K SNP data. 
Structure, PCA, and NJ tree analysis indicated the pres-
ence of two subpopulations in this WAMI panel based on 
the 1B/1R rye translocation (Edae et al. 2014; Lopes et al. 
2014). 1B/1R translocation lines had higher YLD, TKW, 
and early DTH, DTA, and DTM in this WAMI population. 
Rye-derived wheat cultivars have the short arm of the 1R 
rye chromosome substituted for the 1B wheat chromosome. 
This translocation has improved resistance to stem rust, 
leaf rust, and stripe rust (Dhaliwal et al. 1987; Pena et al. 
1990; Wieser et al. 2000).

Earlier studies on the effects of the 1B/1R translocation 
lines had reported that 1B/1R lines had higher root-and 
shoot dry weight under drought treatments and an increased 
root/shoot ratio (Hoffmann 2008). In addition, research has 
shown increased efficiencies of light conversion, particu-
larly in wheat varieties with the 1B/1R chromosome trans-
location, hence total crop weights are increased (Sylvester-
Bradley et al. 2002). The 1B/1R translocation has been used 
intensively in wheat breeding but less at CIMMYT in recent 
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times, due to its negative effect on quality-sticky dough 
(Malik et al. 2013). The IB/IR translocation donated by a 
seri parent in the seri/babax recombinant inbred population 
was also associated with reduced yield under drought and 
high temperatures (Pinto et al. 2010; Lopes et al. 2014). 
Screening for the 1B/1R translocation in other germplasm 
might help in breeding for early flowering, high-yielding 
lines, but it depends considerably on the genetic background 
and traits associated with bread-making quality.

Most WAMI genotypes have been crossed extensively 
to produce elite lines that were used in CIMMYT breeding 

programs (Lopes et al. 2012a) and resulting in a popula-
tion with lines related to each other. An earlier paper had 
reported seven WAMI subpopulations using a small num-
ber of DArT markers (Edae et al. 2014). Lopes et al. (2014) 
used SNP markers to assess WAMI population structure 
and concluded similar to our study. Principal component 
analysis using 9,000 GBS markers gave consistent results 
supported by 1B/1R translocation information (unpub-
lished results).

In GWAS there are two ways to account for confound-
ing population structure: (1) statistically accounting for 

Table 3  Summary of GWAS results

Chr chromosome, YLD grain yield, TKW thousand kernel weight, GNO grain number/m2, HED days to heading, ANT days to anthesis, MAT 
days to maturity, PH plant height, SPADLLG SPAD meter reading at grain filling, SPADvg SPAD reading at vegetative state, CTvg canopy 
temperature at vegetative stage, CTLLg canopy temperature at grain filling stage, NDVIvg normalized differential vegetative index at vegetative 
stage, NDVILLg NDVI at grain filling stage, PL peduncle length, BM biomass, HI harvest index

Trait Marker Chr. Position Alleles Simple model  
P value

Best model  
P value

Marker R2

YLD wsnp_Ex_rep_c69664_68618163 3B 71 25 (C)/254 (T) 7.48E–11 6.49E−09 0.11

Kukri_c2700_1137 6A 85 94 (C)/187 (T) 2.41E−06 1.74E−06 0.07

Kukri_c14877_303 6A 79 86 (C)/196 (T) 2.41E−08 9.48E−08 0.09

BS00064336_51 5A 115 23 (A)/261 (G) 4.45E−08 1.79E−07 0.09

Excalibur_c13408_280 5B 129 94 (T)/178 (C) 2.02E−10 8.18E−07 0.08

TKW BobWhite_c14689_172 5A 98 134 (T)/139 (C) 1.34E−11 1.56E−06 0.09

RFL_Contig4632_1512 6A 78 44 (A)/232 (G) 3.59E−09 6.67E−06 0.08

GNO Ku_c21235_676 5A 98 126 (T)/137 (C) 1.22E−05 5.23E−06 0.08

Heading Kukri_c9411_676 5A 90 53 (C)/226 (T) 5.12E−19 3.68E−09 0.14

Anthesis Kukri_c9411_676 5A 90 25 (C)/254 (T) 3.46E−06 1.97E−05 0.07

Maturity Kukri_rep_c112440_422 3B 82 108 (G)/162 (A) 2.82E−05 2.83E−05 0.06

BobWhite_c30930_192 6A 71 119 (C)/166 (T) 4.98E−05 4.98E−05 0.05

wsnp_Ex_rep_c107564_91144523 4D 70 58 (T)/219 (C) 6.31E−05 6.31E−05 0.05

Kukri_c10869_489 2B 145 112 (C)/169 (T) 7.97E−05 7.97E−05 0.05

BS00034371_51 4B 76 53 (C)/189 (T) 7.29E−05 7.29E−05 0.06

PH wsnp_Ex_c1427_2736441 1A 70 42 (A)/227 (G) 6.45E−11 1.58E−05 0.07

IAAV7384 6A 80 69 (T)/191 (G) 9.95E−03 6.27E−05 0.06

SPADLLg Kukri_c48750_1372 3B 61 50 (C)/228 (T) 5.11E−03 2.61E−05 0.06

wsnp_Ex_c11348_18326787 6A 85 39 (A)/240 (C) 8.20E−04 3.11E−05 0.06

CTLLg RAC875_rep_c114561_587 6A 74 119 (G)/156 (A) 3.77E−07 2.84E−05 0.07

NDVIvg wsnp_CAP7_c2086_1018815 5B 43 42 (G)/231 (A) 1.57E−05 2.56E−05 0.06

Tdurum_contig60051_169 4D 128 89 (C)/183 (T) 2.28E−06 7.13E−05 0.05

NDVILLg GENE-4086_876 6B 73 95 (G)/181 (A) 5.87E−05 1.40E−05 0.07

BS00011973_51 1B 76 90 (G)/191 (T) 1.08E−04 2.70E−05 0.06

PL Tdurum_contig70304_781 1B 70 84 (G)/184 (A) 1.41E−07 1.46E−04 0.05

BS00039498_51 3A 122 24 (A)/254 (G) 1.70E−04 2.21E−05 0.06

BM D_F5MV3MU01DWT7N_151 3D 148 6 (T)/278 (C) 1.12E−06 1.12E−06 0.08

BS00072903_51 6A 85 92 (A)/189 (G) 3.47E−05 3.48E−05 0.05

HI Kukri_c67675_174 1D 167 111 (T)/157 (C) 8.78E−08 6.58E−06 0.07

BobWhite_c20073_443 1B 148 109 (G)/160 (A) 2.05E−06 3.53E−05 0.06

BS00079989_51 3B 14 33 (C)/245 (T) 5.92E−04 6.88E−05 0.05



360 Theor Appl Genet (2015) 128:353–363

1 3

population structure effects and (2) carefully selecting the 
association mapping panel to reduce the range of phenol-
ogy. In our study, this population was carefully selected to 
avoid the confounding effects and at the same time, unified 
mixed model approach (Yu et al. 2006) with model test-
ing for each trait was followed to statistically reduce the 
confounding effects in association mapping. Blindly using 
the Q + K model in GWAS has resulted in over-correct-
ing for population structure and, thus, false positives (Yu 
et al. 2006). DTA and PH were also used as covariates in 
marker–trait detection in TASSEL, when appropriate and 
also in estimation of LS means. We did not detect any 
marker for YLD and yield components confounded with 
DTH. However, markers for YLD and PH are present in the 
6A pleiotropic region.

Marker–trait associations

For YLD, MTA were observed in chromosomes 3B, 5A, 
5B, and 6A using DTH and PH as covariates separately 
and in combination. The marker in chromosome 6A is at 

a pleiotropic region affecting YLD, TKW, SPADLLg, PH, 
and CTLLg. Earlier studies have reported a QTL for YLD 
in short arm of chromosome 6A in winter wheat (Snape 
et al. 2007) and spring wheat (Lopes et al. 2014).

In addition to the markers on 6A, a pleiotropic locus for 
YLD, TKW, and GNO was identified in chromosome 5A at 
98 cM. We identified this locus significantly associated with 
GNO and TKW with and without DTH as cofactor. The 
marker on 5A was close to the DTH marker detected in 5A at 
90 cM, but the significant marker for each trait was different. 
GNO was correlated with DTH, DTA, and DTM so we used 
DTH as a covariate to detect markers for GNO and TKW.

Another region significantly associated with YLD in 5B 
is a multi-trait region significant for yield and yield com-
ponents in spring wheat (Edae et al. 2014). Our marker 
was 20 cM away from the marker reported by this previ-
ous study. Pinto et al. (2010) also reported a robust QTL 
for YLD in chromosomes 3B and 5B. Lopes et al. (2014) 
identified SNP markers in chromosomes 3B and 5A for 
YLD that were most consistent across heat and drought 
environments.

Fig. 3  GWAS results using 18,704 SNPs markers in WAMI for yield traits based on least square means of the combined data from 2010 to 
2013. The blue horizontal line indicates threshold of significance
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We identified MTA for DTH in chromosome 5A. The 
locus associated with DTA was also associated with DTH 
indicating pleiotropic effect of the gene. An earlier blind 
association analysis of this population has shown the posi-
tion of Vrn gene in the 5A chromosome (Lopes et al. 2014). 
Candidate gene association mapping using the functional 
gene Vrn-1A indicated that it is associated with DTH and 
DTA. There were several SNPs significant for DTH and 
DTA at 90 cM in chromosome 5A indicating that the same 
region determines DTA and DTH.

Several MTAs were detected for grain maturity in chromo-
somes 2B, 3B, 4B, 4D, and 6A. Earlier studies have reported 
QTLs for maturity in chromosomes 2B and 4D in a bi-
parental population (Pinto et al. 2010). Markers for PH were 
detected in chromosomes 1A and 6A in this study. The locus 
on 6A was associated with YLD and was consistently detected 
under drought, heat, and irrigated conditions (Edae et al. 2014; 
Lopes et al. 2014). As was found in the present study, Edae 
et al. (2014) did not report any Rht gene related to PH in this 
WAMI population. From the genetic and phenotypic correla-
tion analysis PH was not correlated with YLD, indicating that 
the loci on 6A have pleiotropic effects on several traits.

MTAs for CTLLg were detected in chromosomes 2D, 
5A, and 6A and the MTA on 6A was associated with YLD. 
Mason et al. (2013) detected QTL for canopy temperature 
depression in chromosomes 3BL and 5DL that were inde-
pendent of phenology QTL. Pinto et al. (2010) detected 
QTLs for canopy temperature in chromosomes 1A, 1B, 1D, 
2B, 3B, 4A, 5A, 5B, and 7A. Use of these MTAs to select 
for lower canopy temperature might help in higher yields 
(Reynolds et al. 1998; Cossani and Reynolds 2012). The 
SPADLLg marker in chromosome 3B was 10 cM close to 
the yield loci detected in our study. The other locus on 6A 
at 85 cM was pleotropic for YLD and SPADLLg. Two loci 
in total were detected for NVDI in chromosomes 1B, 4D, 
5B, and 6B. Pinto et al. (2010) identified markers for NDVI 
in chromosomes 1B, 4D, 5B, and 6B, the one on 5B being 
a pleotropic loci. For peduncle length loci were detected 
in chromosomes 1B and 3A, and PH was used as a covari-
ate to reduce the confounding effect of PH on PL. Earlier 
studies have shown co-localization of PL QTLs with PH 
(Heidari et al. 2012). BM markers were detected on 3D 
and 6A. Earlier studies have shown the pleiotropic effect 
of QTLs for BM and YLD (Mason et al. 2013). Three loci 

Fig. 4  GWAS results using 18,704 SNPs markers in WAMI for days to heading, anthesis, and maturity (2010–2013)
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in chromosomes 1B, 1D, and 3B were detected for HI in 
this study. We did not find earlier studies detecting the 
similar regions in spring wheat but studies have detected 
yield QTLs in chromosomes 1B, 1D, and 3B, and that HI 
was correlated with YLD (Pinto et al. 2010). In an earlier 
GWAS with DArT markers in this population, markers 
for HI were detected in chromosomes 5AL and 5B under 
drought conditions (Edae et al. 2014).

Conclusions

Association mapping is a powerful tool to identify molec-
ular markers for physiological and agronomic traits in 
wheat. Through GWAS we identified pleotropic loci in 
spring wheat associated with YLD, TKW, PH, and physi-
ological measurements. The 1B/1R rye translocation and 
line pedigrees significantly determined the structure of the 
WAMI population. Some traits varied in values among the 
two subpopulations (that is, the one containing lines with 
the 1B/1R translocation and the one containing lines with-
out). Thirty-one significant loci were detected for YLD and 
related traits in this population. The loci on 5A and 6A will 
be further validated for use in breeding programs.
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