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between markers and environmental covariates (ECs). 
However, when genotypic and environmental information 
is high dimensional, modeling all possible interactions 
explicitly becomes infeasible. In this article we show how 
to model interactions between high-dimensional sets of 
markers and ECs using covariance functions. The model 
presented here consists of (random) reaction norm where 
the genetic and environmental gradients are described 
as linear functions of markers and of ECs, respectively. 
We assessed the proposed method using data from Arva-
lis, consisting of 139 wheat lines genotyped with 2,395 
SNPs and evaluated for grain yield over 8 years and vari-
ous locations within northern France. A total of 68 ECs, 
defined based on five phases of the phenology of the crop, 
were used in the analysis. Interaction terms accounted for 

Abstract 
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a sizable proportion (16  %) of the within-environment 
yield variance, and the prediction accuracy of models 
including interaction terms was substantially higher (17–
34  %) than that of models based on main effects only. 
Breeding for target environmental conditions has become 
a central priority of most breeding programs. Methods, 
like the one presented here, that can capitalize upon the 
wealth of genomic and environmental information avail-
able, will become increasingly important.

Introduction

In the analysis of agricultural data and plant breeding 
experiments, the development of methods for modeling the 
interaction between genotypes and environments (G × E) 
precedes the development of analysis of variance. For 
instance, Fisher and Mackenzie (1923) suggested modeling 
the differential responses of genotypes (G) to environments 
(E) using a multiplicative (product) operator rather than 
additive models. Yates and Cochran (1938) proposed using 
a multiplicative operator consisting of a simple regression 
of a line’s performance on the environmental mean (joint-
regression analysis). Years later, other multiplicative opera-
tors based on singular value decomposition were proposed 
and used by Gollob (1968), Mandel (1969), Gauch (1988), 
Cornelius et  al. (1996) and Crossa and Cornelius (1997). 
Later, Piepho (1998) and Smith et  al. (2001, 2005) used 
this multiplicative operator for modeling G × E but in the 
context of linear mixed-effect models, and Crossa et  al. 
(2004, 2006) and Burgueño et al. (2008, 2011) considered 
the use of structured covariance matrices to model G × E 
in the context of pedigree-based mixed models.

The main effects of genes and of environmental con-
ditions could be modeled by regressing phenotypes on 
genetic markers and on environmental covariates (ECs; 
e.g., temperature, soil moisture, solar radiation) concur-
rently; and G × E can in principle be modeled using inter-
actions between genetic markers and ECs. An example of 
such an approach is the factorial regression (FR) model 
(Denis 1988; van Eeuwijk et al. 1996; Vargas et al. 1999, 
2001). Models for QTL × environment interaction (Q × E) 
have been applied both in the context of fixed-effects 
regression, such as the FR, and using Partial Least Squares 
(Crossa et  al. 1999; Vargas et  al. 2006). More recently, 
these methods were used in a mixed model context (Boer 
et  al. 2007; Malosetti et  al. 2004) and later extended to 
multi-environment multi-trait model settings (Malosetti 
et al. 2008; Alimi et al. 2013).

With the development of modern genotyping and 
sequencing technologies, molecular marker information has 
become high dimensional, with the number of markers (p) 
potentially exceeding by large the number of phenotypic 

records (n) available for model fitting. Similarly, as cli-
matic and agronomic information systems develop, envi-
ronmental information also becomes high dimensional. 
The Q × E models discussed above cannot cope with the 
high-dimensional nature of genomic and EC information. 
A simple approach would be to introduce a first step where 
a few ‘significant’ ECs and genomic regions are selected, 
with only a small subset of markers and ECs used in the 
final model. However, with variable selection procedures 
important volumes of information can be lost in the process 
of selecting markers (Bernardo 2010; Crossa 2012) or ECs, 
with the undesirable result that large proportions of genetic 
or environmental signals may be unaccounted for.

To circumvent the limitations of QTL-based models, 
Meuwissen et  al. (2001) proposed using whole genome 
regression (WGR) methods (also known as models for 
genomic selection, GS) where information about poten-
tially hundreds of thousands of markers is jointly consid-
ered. Such models allow capturing not only major-effect 
genes but also the contribution of genomic regions with 
small effects. Implementing these large-p with small-n 
regressions is possible using modern shrinkage estimation 
procedures, and empirical evidence obtained with plant 
breeding data shows that GS can outperform the predictive 
power of pedigree-based methods by a sizable amount (de 
los Campos et  al. 2009; Crossa et  al. 2010, 2011; Heslot 
et al. 2012; Pérez et al. 2010). Recently, GS models were 
extended to multi-trait multi-environment settings. For 
instance, Burgueño et al. (2012) used a multi-environment 
version of the genomic best linear unbiased predictor 
(G-BLUP) where G × E was modeled using genetic cor-
relations, and found that the multi-environment G-BLUP 
had a much higher prediction accuracy than the single-trait 
G-BLUP. However, the study of Burgueño et al. (2012) did 
not incorporate environmental variables to model G × E.

The principles used in GS to model the effects of genetic 
markers could also be exploited for modeling the main 
effects of large numbers of ECs, and, in theory, one could 
also include in the model explicitly all possible contrasts 
between markers and ECs. However, such an approach 
would be extremely demanding because the number of 
contrasts to be considered (and consequently the number of 
effects to be estimated) grows proportionally to the product 
of the number of markers and the number of ECs, leading 
to important statistical and computational challenges.

In this article, we propose a class of random effects 
models where the main and interaction effects of markers 
and ECs are introduced using covariance structures that 
are functions of marker genotypes and ECs. The proposed 
approach represents an extension of the G-BLUP and can 
be interpreted as reaction norm model (e.g., Woltereck 
1909; Gregorius and Namkoong 1986; Falconer and Mac-
kay 1996; Calus et  al. 2002; Calus and Veerkamp 2003; 
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Su et al. 2006) where genetic and environmental gradients 
are described using a linear regression on genetic mark-
ers and on ECs. We evaluated the proposed methods using 
a data set from Arvalis, consisting of 139 wheat lines 
evaluated for grain yield in 340  year ×  location combi-
nations. Genetic and ECs information consisted of 2,395 
SNPs and 68 ECs. The prediction accuracy of the pro-
posed models was assessed for two prediction problems: 
one (CV1) in which models are used to predict the perfor-
mance of lines that have never been evaluated in field tri-
als (newly developed lines) and a second design (CV2) in 
which all lines have at least one field evaluation available 
and the prediction problem was that of predicting perfor-
mance across environments (i.e., in an incomplete field 
trial). Predictive correlations were in line with previous 
reports on grain yield but varied considerably depending 
on the prediction problem (CV1 or CV2) and the model 
used. Relative to a model that accounted only for the main 
effects of markers, environments and ECs, the introduc-
tion of interactions between these terms increased the pre-
dictive correlation by roughly 35 %, from 0.175 to 0.236 
in CV1 and 17 % from 0.439 to 0.514 in CV2. Therefore, 
we concluded that sizable gains in prediction accuracy 
can be attained by combining molecular marker informa-
tion with EC data.

Materials and methods

Experimental data set

Data were provided by Arvalis and consisted of a total of 
7,876 field records of grain yield collected on 139 commer-
cial lines tested in eight different years (from 2003–10) and 
134 locations within northern France, yielding a total of 340 
location × year combinations. No further information about 
the experimental design was available. All trials received 
fungicide and seed treatments, all locations had a meteor-
ological station within a distance of less than 10  km, and 
soil characteristics at each location were analyzed. The lines 
were screened for grain yield (15 % moisture content) and 
yield components in plots harvested at maturity. Care was 
taken for the data to have connections across locations and 
years, with 55, 20, 11, 3, 2 lines being evaluated in at least 
50, 100, 150, 200 and 330 location × year combinations.

Lines were genotyped for 3,548 SNPs using an inser-
tion site-based polymorphism technique (Paux et al. 2010). 
After removing SNPs with minor allele frequency smaller 
than 3 % and SNPs with more than 10 % of missing val-
ues, a total of 2,395 SNPs were still available for analysis. 
The remaining missing genotypes were imputed using 2θm 
where θm is the estimated frequency of the allele coded as 
one at the mth marker. A total of 130 ECs that described 

environmental conditions were collected. These environ-
mental conditions were related to abiotic factors such as 
temperature, soil type, humidity, radiation and precipita-
tion. Environmental covariates were calculated based on 
climatic records and soil characteristics, allowing the esti-
mation of water balance.

The phenology of the crop was divided into five phases 
(ear 1 cm, ear 1 cm to spiking, spiking to flowering, flow-
ering to milk stage and milk stage to harvesting), and 
environmental descriptors linked to water deficit, the 
effects of minimum and maximum temperatures, evapo-
transpiration rate and radiation were defined for each of 
these phases yielding a total of 130 distinct ECs. Covari-
ates that had more than 30 % of repeated values or more 
than 0.2  % of values outside the range defined by the 
mean ± 4 SD were removed. After applying this quality 
control, a total of 68 ECs were used in the analysis. Both 
markers and ECs were centered by subtracting the mean 
of each marker or EC, and standardized to a unit variance 
by dividing the centered values by the standard deviation 
of the marker or EC.

Statistical methods

We begin by describing a set of models that define the 
building blocks that are later combined to arrive at the 
sequence of models used for data analysis.

Baseline model

The starting point is a model where phenotypes (yijk) are 
described as the sum of an overall mean (µ) plus random 
deviations due to the environment (Ei; i = 1,…,I), defined 
hereinafter as the location × year combination, and the line 
(Lj; j = 1,…,J), plus an error term (εijk; k = 1,…rij). For the 
random components, we adopted the standard assumption 
of mixed effects models; therefore:

where Ei
IID∼ N

(

0, σ 2
E

), Lj
IID∼ N

(

0, σ 2
L

) and εijk
IID∼ N

(

0, σ 2
ε

), 

and N(.,.) denotes a normal density and IID stands for inde-
pendent and identically distributed. In the baseline model, 
the effects of the different levels of each random effect 
are independent; therefore, in the model described above 
there is no borrowing of information across lines or across 
environments.

Introducing genetic markers in the baseline model using 
G‑BLUP

When markers are available, one can consider replacing 
in (1) the random effect of the line with a regression on 

(1)yijk = µ + Ei + Lj + εijk
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marker covariates of the form: gj =
∑p

m=1 xjmbm, where gj 
represents an approximation of the true genetic value of the 
jth line, xjm is the genotype of the jth line at the mth marker, 
and bm is the effect of the mth marker. Following the stand-
ard assumptions of the Ridge-Regression-BLUP model 
(Habier et al. 2007; VanRaden 2008), we regarded marker 
effects as IID draws from normal distributions of the form 

bm
IID∼ N

(

0, σ 2
b

), m = 1,…,p.
From properties of the multivariate normal density we 

have that the vector g = Xb containing the genomic values 
of all the lines follows a multivariate normal density with 
null mean and covariance-matrix Cov(g) = Gσ 2

g , where G 
is a genomic relationship matrix whose entries are given 
by 

Gjj′ = p−1
∑p

m=1

(xjm−2θm)
(

xj′m−2θm

)

2θm(1−θm)

. Here, θm is the 

estimated frequency of the allele whose number of cop-
ies at the jth individual is counted in xjm. Centering (i.e., 
subtracting 2θm from the genotype codes) or standardiza-
tion (i.e., dividing each marker covariate by 

√
2θm(1 − θm))  

are not strictly needed; however standardization allows 
interpreting σ 2

g  as a genomic variance. The matrix G is a 
marker-derived genomic relationship matrix, and its entries 
converge (as the number of independently segregating loci 
increases) to twice the kinship coefficient between lines. 
Collecting the above-mentioned assumptions, we have the 
standard G-BLUP model plus a random environmental 
effect (E) yielding the EG model:

with Ei
IID∼ N

(

0, σ 2
E

), g ∼ N

(

0, Gσ 2
g

)

 and εijk
IID∼ N

(

0, σ 2
ε

).

Note that unlike (1), the effects of the level of the ran-
dom effects g = (g1, . . . , gJ)

′ are now correlated according 
to the off-diagonal values of G; therefore, in the model in 
expression  (2), there is potentially borrowing of informa-
tion across lines. This allows, for example, predicting the 
performance of lines that have not been evaluated in any 
field trial.

Extending G‑BLUP with addition of environmental 
covariates

Using the same principles used in G-BLUP, we can now 
replace in (2) the environmental effects (Ei) with a ran-
dom regression on the ECs (W) that describes the environ-
mental conditions faced by each line in each environment, 
that is: wij =

∑Q
q=1

Wijqγq, where Wijq is the value of the 
qth EC evaluated in the ijth environment  ×  line combi-
nation, γqis the main effect of the corresponding EC, and 
Q is the total number of ECs. As before, we regarded the 
effects of the ECs as IID draws from normal densities, that 

is, γq
IID∼ N

(

0, σ 2
γ

)

. Consequently, the vector w = Wγ fol-

lows a multivariate normal density with null mean and a 

(2)yijk = µ + Ei + gj + εijk

covariance matrix proportional to � whose entries are com-
puted as those of the G-matrix but using ECs instead of 
markers. This covariance structure describes the similarity 
between environmental conditions in a similar way that G 
describes genetic similarity between lines. Therefore, when 
the effects of the environments in (2) are replaced with 
w = Wγ, the model becomes

where w ∼ N
(

0, �σ 2
w

)

, g ∼ N
(

0, Gσ 2
g

)

 and εijk
IID∼ N

(

0, σ 2
ε

).

In the model of expression (3) the covariance matrices Ω 
and G permit the borrowing of information between envi-
ronments and between lines, respectively.

The ECs may not fully describe differences across envi-
ronments, perhaps because some relevant ECs were not 
measured or because of model miss-specification (e.g., 
non-linear effects of ECs on the trait of interest). Similarly, 
because of imperfect linkage disequilibrium (LD) between 
markers and genes at causal loci or because of model miss-
specification (e.g., interactions between alleles that are 
unaccounted for), the regression on markers may not fully 
describe genetic differences among lines. One possibility is 
to combine models (1) and (3) into a single model of the 
following form:

where Ei
IID∼ N

(

0, σ 2
E

), w ∼ N
(

0, �σ 2
w

)

, Lj
IID∼ N

(

0, σ 2
L

),  

g ∼ N
(

0, Gσ 2
g

)

 and εijk

IID∼ N
(

0, σ 2
ε

). In the model in Eq. 

(4), both environmental and line effects are partitioned into 
two components, one that is explained by regression on 
covariates (either markers, gj, or ECs, wij) and deviations 
that represent variation attributable to lines or environments 
and cannot be explained by regression on markers (Lj) or 
ECs (Ei).

Incorporating interactions between  markers and  environ‑
mental covariates  So far we have presented models that 
account for the main effects of markers (G) and the main 
effects of ECs (W) without accounting for possible inter-
actions between markers and ECs. In principle, first order 
interactions between markers and ECs can be incorporated 
by first constructing all possible contrasts (for p markers and 
Q ECs there will be p × Q contrasts) and then including 
these contrasts as predictors in the model. However, when 
this approach is used, the number of effects to be estimated 
can be extremely large. For instance, in our case a total of 
162,860 terms are required to model first order interactions 
between 68 ECs and 2,395 SNPs. Modeling interactions in 
such an explicit way becomes unfeasible when either p or Q 
are large. To circumvent this problem, we propose incorpo-
rating interactions using covariance structures.

(3)yijk = µ + wij + gj + εijk

(4)yijk = µ + Ei + wij + Lj + gj + εijk
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The covariance function generated by the interaction 
terms will depend on the mode of interaction (which mark-
ers interact with which covariates, degree of interactions, 
etc.). Here we consider the case of a first order multiplica-
tive model where the interaction is the product of two ran-
dom linear scores: a genetic score, g̃j =

∑p
m=1 xjmb̃m, and 

an environmental score, w̃ij =
∑Q

q=1
Wijqγ̃q. To be consist-

ent with our previous assumptions, we assume that both 
the b̃m’s and the γ̃q are IID, zero-mean, random variables. 
We further assume that the b̃m’s and the γ̃q’s are independ-
ent. With these assumptions we have: E

[

g̃j

]

= E
[

w̃ij

]

= 0,  
Cov

(

g̃j, g̃j′
)

∝ Gjj′ Cov
(

w̃ij, w̃i′j′
)

∝ Ωij,i′j′ and 
Cov

(

g̃j, w̃ij

)

= 0 where Gjj′and Ωij,i′j′ are entries of G and of 
�, respectively.

Now consider the random process obtained by 
multiplying both random scores: gwij = g̃j × w̃ij.  
The expected value of this process is 
E
[

gwij

]

= E
[

g̃j × w̃ij

]

= E
[

g̃j

]

× E
[

w̃ij

]

= 0 and the 
covariance function is:

Therefore, the covariance function of gwij = g̃j × w̃ij is 
simply the cell by cell product (known as the Hadamard 
or Schur product) of Gjj′ and Ωiji′j′, the entries of G and 
�. The terms Gjj′ measure the degree of genetic similarity 
between lines, and Ωiji′j′ measures the degree of similarity 
among environmental conditions. Whenever Ωiji′j′ or Gjj′ 
are close to zero, the product of the two will be close to 
zero; therefore, resemblance between records due to inter-
action term requires resemblance both at the genetic and 
EC level. These types of covariance functions are not new 
to quantitative genetic methods; indeed, Cockerham (1954) 
and Kempthorne (1954) arrived at these type of covari-
ance functions when studying the degree of resemblance 
between relatives generated by epistatic interactions (e.g., 
additive by additive and additive by dominance). Also, as 
stated, the multiplicative approach above-described can 
be viewed as a reaction norm where the genetic (g̃j) and 
environmental (w̃ij) values, or gradients, are replaced with 
regressions on markers and on ECs, respectively.

When data involve multiple phenotypic records per 
line, the genetic covariance structure of additive effects 
is ZgGZ′

g, where Zg is an incidence matrix for the vec-
tor of additive genetic effects. In this case, the covariance 
structure of the vector of interaction terms gw =

{

gwij

}

 is 

Cov
[

gwij, gwi′j′
]

= E

[

gwij × gwi′j′
]

− E

[

gwij

]

E

[

gwi′j′
]

= E

[

gwij × gwi′j′
]

= E

[

g̃j × w̃ij × g̃j′ × w̃i′j′
]

= E

[

g̃j × g̃j′
]

E

[

w̃ij × w̃i′j′
]

= Cov
[

g̃j, g̃j′
]

Cov

[

w̃ij, w̃i′j′
]

∝ Gjj′Ωiji′j′

the Hadamard product of ZgGZ′
g and �, denoted here as 

[

ZgGZ′
g

]

◦ �.
Using the results presented above, we then extended 

the models above-described by adding a term representing 
interactions between markers and ECs. For instance, we 
can extend the model in expression (3) as follows:

with w ∼ N
(

0, �σ 2
w

)

, g ∼ N
(

0, Gσ 2
g

)

, gw ∼ N
(

0,
[

ZgGZ
′
g

]

◦ �σ 2
gw

)

, εijk
IID∼ N

(

0, σ 2
ε

).

Incorporating interactions between markers 
and environments

Because of imperfect LD between alleles at markers and 
alleles at causal loci, markers may not fully account for 
genetic differences between lines. Similarly, ECs may not 
fully account for differences due to environmental condi-
tions. Therefore, some proportion of the G ×  E may not 
be fully captured by the interaction term gwij. To account 
for this, one possibility is to expand any of the previously 
presented models by including an interaction term between 
environments (Ei) and the random effect of the markers 
(gj). This model is obtained by including the interaction 
term gEij in either (2) or (5). Following a procedure simi-
lar to that used to obtain (5), we have that the covariance 
structure generated by gEij is proportional to the Hadamard 
product 

[

ZgGZ′
g

]

◦
[

ZEZ′
E

]

, where ZE represents the 
incidence matrix for the effects of environments (i.e., the 
matrix that connects the phenotypes with environments). 
For instance, adding to the model described in (2), we have 
a model that accounts for main effects of markers, main 
effects of environments and the interactions between mark-
ers and environments:

with Ei
IID∼ N

(

0, σ 2
E

), g ∼ N
(

0, Gσ 2
g

)

, 
gE ∼ N

(

0,
[

ZgGZ
′
g

]

◦
[

ZEZ
′
E

]

σ 2
gE

)

, εijk
IID∼ N

(

0, σ 2
ε

).

Phenotypic and  genetic correlations  The models above-
described, and others that could be constructed by combin-
ing the random effects of each of the models listed before, 
impose specific forms on the phenotypic and genetic correla-
tion functions. In these models, correlation depends on the 
variance parameters of the model as well as on the degree of 
environmental and genetic similarity. To illustrate, we present 
the derivation of the phenotypic and genetic correlations for 
the model defined by Eq. (5), similar steps can be followed 
to derive the covariance and correlation functions implied by 
any of the above-described models. For the model defined by 
Eq. (5) the covariance between phenotypic records of line j 
measured under environmental conditions ik and i′k′ is,

(5)yijk = µ + wij + gj + gwij + εijk

(6)yijk = µ + Ei + gj + gEij + εijk
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and the phenotypic and genetic correlation functions are 
then given by:

andρg(ijk,i′jk′) = Gjjσ
2
g +Ωij,i′ jGjjσ

2
gw

√

Gjjσ
2
g +Ωij,ijGjjσ

2
gw

√

Gjjσ
2
g +Ωi′j,i′ jGjjσ

2
gw

, 

respectively.

Data analysis

Models

Using the random effects included in models (1)–(6) as 
building blocks, we defined a sequence of models that were 
used for empirical data analysis. The effects included in 
each of the seven models in our sequence are described in 
Table  1. The columns in Table  1 give the random effects 
considered, for main effects (E, L, G and W) and for inter-
actions (G × E and G × W).

Each of the models described in Table 1 were fitted to 
the full data set using the computational methods described 
in de los Campos et al. (2010) which were recently imple-
mented in the R-package BGLR (de los Campos and Perez-
Rodriguez 2013). All the statistical analyses were done 
using the R-software R Core Team (2013).

Assessment of prediction accuracy

Following Burgueño et al. (2012), we considered two dis-
tinct predictions problems: in the first one (hereinafter 
denoted as CV1), we measured the ability of the model to 
predict the performance of lines that have not yet been eval-
uated in any field trial (newly released varieties). In the sec-
ond design (CV2), we assessed the ability of models to pre-
dict the performance of lines using data collected in other 
environments. This design mimics the prediction problem 
encountered in incomplete field trials and was also used by 
Burgueño et al. (2012). In CV1 we randomly assigned lines 
to folds; this assures that all the records of a given line are 
assigned to the same fold. On the other hand, in CV2 we 
randomly assigned individual plot records to folds; with 
this setting individual records of a given line are potentially 
assigned to different folds. Table 2 gives a graphical repre-
sentation of the two prediction problems where, for exam-
ple, CV1 aims to predict the performance of Line 3, (unob-
served in all environments) in environments E1–E5, using 

Cov
(

yijk , yi′jk′
)

= Cov(µ + wij + gj + gwij + εijk , µ + wi′j

+ gj + gwi′j + εi′jk′)

= Ωij,i′jσ
2
w + Gjjσ

2
g + Ωij,i′jGjjσ

2
gw,

ρy(ijk,i′jk′) =
Ωij,i′jσ

2
w + Gjjσ

2
g + Ωij,i′jGjjσ

2
gw

√

Ωij,ijσ 2
w + Gjjσ 2

g + Ωij,ijGjjσ 2
gw + σ 2

ε

√

Ωi′j,i′jσ
2
W + Gjjσ 2

g + Ωi′j,i′jGjjσ 2
gw + σ 2

ε

phenotypic records from Lines 1, 2, 4 and 5 (observed in 
all environments). On the other hand, in CV2, the aim is to 
predict the performance of Lines 1, 2, 3, 4 and 5 in environ-
ments E2, E3, E5, E4 and E1, respectively. Naturally, CV1 
presents a much more difficult prediction problem because 
it is not possible to borrow information within lines (Line 

3, in our case) from any other environment. We imple-
mented CV1 and CV2 in a tenfold design.

Target of prediction

We focus on assessing the ability of the model to predict per-
formance of lines within environments; therefore, prediction 
accuracy was assessed based on the ability of each model 
to predict phenotypic yields, after accounting for the main 
effects of the environment. To this end, both the observed 
phenotypic records and the CV-derived predicted perfor-
mance were pre-corrected with (CV-derived) estimates of 
the main effects of the environments and of the ECs, that is, 
η̂ij = Êj + ŵij, derived from the most comprehensive model 
(EGW-G × WG × E; see Table 1) and in the corresponding 
fold of the CV. The adjusted phenotype (ỹijk = yijk − η̂ij) was 
then compared with the corrected CV-predictions derived 
from each of the models listed in Table 1 ( ˜̂yijk = ŷijk − η̂ij),  
where ŷijk is a CV-derived predicted yield. The correlation 
between adjusted phenotypes and adjusted predictions was 
computed using Pearson’s product-moment correlation coef-
ficient evaluated on the entire vector of adjusted predictions 
and adjusted phenotypes. As measures of uncertainty about 
estimates of correlations we present: (a) confidence inter-
vals (CIs) based on a large-sample formula for the SE of the 
correlation coefficient, ρ̂ ± 1.96

√

1−ρ̂2

n−2
 where ρ̂ is the esti-

mated correlation coefficient, and (b) CIs derived using a 

bootstrap procedure implemented by re-sampling the entries 
of the vectors of adjusted phenotypes 

(

ỹ =
{

yijk − η̂ij

})

 and 

of adjusted predictions 
(

˜̂y =
{

˜̂yijk

})

 10,000 times. Finally, 

we present a rank-based measure of association obtained by 

categorizing ỹ and ˜̂y into classes based on percentiles of the 
empirical distribution of each of these variables and report 
the conditional distribution of the categories defined by ỹ 
given the categories defined by ˜̂y.

Results

Figure  1 gives a histogram of grain yield. The empirical 
yield distribution was close to normal, with an average of 
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92.5 quintals per hectare and a standard deviation of 15, 
corresponding a coefficient of variation of 16 %. The distri-
bution of the minor allele frequencies was close to uniform 
in the (0.03–0.5) range.

Figure  2 gives the scree plot of the eigenvalues (left 
panel) and the loadings of the first two eigenvectors (right 
panel) of the eigenvalue decomposition of the matrices G 
and Ω (top and lower panels, respectively). The first two 
eigenvectors of the marker-derived genomic relationship 
matrix showed some but not strong evidence of popula-
tion stratification. The proportion of the variance of marker 
genotypes explained by the first two eigenvectors was 
11.5 %, and the top 60 eigenvectors (of a total 138 eigen-
vectors with non-zero eigenvalues) were needed to explain 
80 % of the variance of genotypes, suggesting that we are 
in the presence of a relatively diverse set of lines. This was 
expected because lines in this data set come from differ-
ent breeding plans. The scree plot of the eigenvalues of Ω 
shows that at least 11 eigenvectors are needed to account 
for ~80 % of the variance observed in environmental covar-
iates. Two main clusters seem to be separated by the first 
eigenvector, but the separation is not very clear, suggest-
ing that environmental variation is better characterized by a 
continuum of variability in environmental conditions rather 
than by clusters of environments.

Estimates of variance components

Table  3 gives estimates of variance components derived 
from the full data analysis. The main effect of environments 

Table 1   Main effect and 
interaction of the seven models 
used to fit the data set

E environment, L line, G marker 
covariates, W environmental 
covariates, G × E interaction 
between environments and 
markers, G × W interactions 
between markers and ECs

Model abbreviation Factors included

Main effect Interaction

E L G W G × E G × W

EL X X

EG X X

ELW X X X

EGW X X X

EGW-G × E X X X X

EGW-G × W X X X X

EGW-G × WG × E X X X X X

Table 2   Two hypothetical cross-validation schemes (CV1 and CV2) for five lines (Lines 1–5) and five environments (E1–E5)

Lines with unobserved phenotypic data in the cross-validation scheme are indicated by NA (not available); lines with observed values in envi-
ronments are denoted as Yji for (i, j = 1, 2, 3, 4, 5)

CV1 CV2

E1 E2 E3 E4 E5 E1 E2 E3 E4 E5

Line 1 Y11 Y12 Y13 Y14 Y15 Y11 NA Y13 Y14 Y15

Line 2 Y21 Y22 Y23 Y24 Y25 Y21 Y22 NA Y24 Y25

Line 3 NA NA NA NA NA Y31 Y32 Y33 Y34 NA

Line 4 Y41 Y42 Y43 Y44 Y45 Y41 Y42 Y43 NA Y45

Line 5 Y51 Y52 Y53 Y54 Y55 NA Y52 Y53 Y54 Y55

Fig. 1   Histogram of grain yield in quintals per hectare
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(E) was the random effect that explained the largest propor-
tion of the yield variance, with estimated posterior means 
between 144 and 200, depending on the model. However, 
as noted earlier, from the point of view of predicting ranks 
within an environment, variability due to the mean of the 
environment becomes a nuisance; therefore, we also report 
(in Table 3) the proportional contribution of each random 
effect to within-environment variance, that is, relative to the 
total variance minus the variance due to the main effects of 
environment.

When information on ECs was incorporated into the 
model, the estimated variance due to environments (E) 
diminished from roughly 200 (either model EL or model 
EG) to values slightly smaller than 150 (e.g., 143.7, in 

model ELW and 145.6 in model EGW), indicating that the 
ECs (W) captured a sizable proportion of across environ-
ment variation. However, a large proportion of the total 
variance was attributable to environments (E), even after 
including all ECs in the model.

The estimated variance due to lines (L; e.g., 12.3 in 
model EL) and that associated with regression on SNPs 
(G; e.g., 14.9 in model EG) were very similar, but slightly 
larger for G, suggesting that markers are able to capture a 
sizable proportion, if not all, of the variability due to the 
main effects of genotypes.

The inclusion of interaction terms (G × E, G × W, and 
both G × W and G × E) induced a reduction in the esti-
mated residual variance of about 33 % (from an estimated 

Fig. 2   Scree plot (left panel) and loadings of the first two eigenvectors (right panel) of the covariance matrices derived from markers (top panel) 
and from environmental covariates (lower panel)
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residual variance of 22.1 in model EGW to 14.9 in model 
EGW-G × WG × E) indicating that some components of 
differences across lines and environmental conditions can-
not be fully captured by the main effects of markers, envi-
ronments and ECs. Estimates from our most comprehensive 
model (EGW-G × WG ×  E) suggest that, of the within-
environment variability, roughly 23 % can be explained by 
main effects of markers, 35 % by main effects of ECs, 16 % 
by interaction terms, and 26 % by factors unaccounted for 
(residuals). The proportion of within-environment variation 
that is explained by interactions (16  %) is not negligible 
and reflects the importance of considering such interac-
tions in models for genome-enabled prediction. However, 
it is worth noting that the variance due to main effects of 
markers and of ECs increased when interactions were omit-
ted, suggesting that some proportion of the variance due to 

interactions may be captured by main effects if interactions 
are omitted.

Assessment of prediction accuracy

The estimated correlations between corrected phenotypes 
and predictions obtained in CV1 and CV2 are shown in 
Table 4. This table also provides an estimated 95 % Confi-
dent Interval (CI) estimated using two different procedures. 
In CV1 the prediction problem consisted of predicting 
the performance of lines with no previous records (newly 
released lines) and the correlation ranged from very small 
values (0.09 for the model not including markers, EL) to 
0.236 (most comprehensive model, EGW-G × WG × E). A 
null correlation is expected for CV1 in the case of mod-
els that do not include markers or environmental covariates 

Table 3   Estimated variance components

E environment, L line, G genomic [marker] information, W environmental covariate [EC] information, G × E genotype ×  environment and 
G × W genotype × EC interaction, and Res model residual
a  Relative to the total variance minus the variance due to main effect of the environment

Model Variance component

Estimate Percentage of the within-environment variancea

E L G W G × E G × W Res. L G W G × E G × W Res

EL 199.7 12.3 22.6 35.2 64.8

EG 199.0 14.9 22.6 39.7 60.3

EW 153.5 23.7 27.7 46.1 53.9

ELW 143.7 12.9 24.9 22.1 21.5 41.6 36.9

EGW 145.6 14.6 23.3 22.1 24.3 38.8 36.8

EGW-G × E 148.0 14.4 20.2 5.9 16.4 25.3 35.5 10.4 28.8

EGW-G × W 146.7 12.8 22.3 5.3 18.3 21.8 38.0 9.0 31.2

EGW-G × WG × E 148.6 12.7 19.8 3.9 5.0 14.9 22.6 35.2 6.9 8.9 26.5

Table 4   Estimated correlations between adjusted phenotypes and 
cross-validation prediction for each of the seven models for cross-val-
idation CV1 (prediction without using phenotypic records of the lines 

whose performance is predicted, i.e., prediction for un-tested lines) 
and CV2 (prediction in incomplete field trials)

a  Computed using ρ̂ ± 1.96

√

1−ρ̂2

n−2
, where ρ̂ is the estimated correlation and n is the number of records used to compute the correlation

b  Obtained by Bootstrapping 10,000 times the vectors of CV-adjusted predictions and CV-adjusted phenotypes

Models CV1 CV2

Estimate 95 % CI Estimate 95 % CI

Par.a Non-P.b Par.a Non-P.b

EL 0.090 [0.068; 0.112] [0.063; 0.117] 0.425 [0.405; 0.445] [0.404; 0.447]

EG 0.191 [0.169; 0.213] [0.167; 0.215] 0.426 [0.406; 0.446] [0.404; 0.448]

ELW −0.027 [−0.049; −0.005] [−0.050; −0.004] 0.438 [0.418; 0.458] [0.416; 0.459]

EGW 0.175 [0.153; 0.197] [0.151; 0.198] 0.439 [0.419; 0.459] [0.417; 0.460]

EGW-G × E 0.209 [0.187; 0.231] [0.185; 0.232] 0.454 [0.434; 0.474] [0.432; 0.476]

EGW-G × W 0.214 [0.192; 0.236] [0.191; 0.237] 0.506 [0.486; 0.525] [0.495; 0.525]

EGW-G × WG × E 0.236 [0.215; 0.257] [0.213; 0.259] 0.514 [0.495; 0.533] [0.494; 0.535]
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because in CV1 predictions are derived without using 
records of the lines being predicted. In such contexts, bor-
rowing information from other lines in the same or other 
environments takes place through markers and environmen-
tal covariate information. When the main effects of markers 
and ECs were included (model EGW), the predictive corre-
lation was 0.175. Further, when interactions were included, 
the correlation rose to 0.236; this is a 35 % increase in cor-
relation achieved by adding interaction terms.

The prediction correlations obtained in CV2 were much 
higher than those observed in CV1; this was to be expected 
because in CV2 predictions can benefit from records (col-
lected in other environments) of the line whose perfor-
mance we want to predict. The predictive correlation for 
the baseline model (EL) was 0.425. When ECs were added 
to the model, there was a 3–4  % increase in correlation 
(from about 0.425–6 in either model EL or model EG to 
0.438–9 in model ELW and EGW, respectively). But the 
most notorious increase in correlation occurred when inter-
actions (both G × E and G × W) were added to the model. 
Our most comprehensive model yielded a predictive corre-
lation of 0.514, which is a 21 % increase in correlation over 
the baseline model.

An alternative way of assessing the ability of a model 
to predict yet-to-be-observed phenotypes is to evaluate the 
agreement/disagreement of rankings based on observed 

and predicted performance. Figure  3 shows, for the most 
comprehensive model (EGW-G × WG × E), CV-adjusted 
yields (vertical axis) versus CV-adjusted predictions (hori-
zontal axis) for CV1 (right panel) and CV2 (left panel) 
designs. In each of the figures, we superimposed a grid 
defined based on the empirical percentiles of the variables 
in the horizontal and vertical axes (adjusted predictions 
and adjusted phenotypes). The numbers within each cell in 
the grid give the (estimated) conditional probability of the 
observed ranking (based on the corrected phenotypes, the 
variable in the vertical axis), given the predicted ranking 
(based on genomic prediction). For instance, in CV1, if one 
were to recommend, based on predicted performance, the 
top 20 % lines for either breeding or agronomic purposes, 
we estimate that roughly 63 % of these lines would have a 
performance above the median. For the prediction problem 
of CV2, 79 % of the lines ranked in the top 20 % (based 
on predictions) did have observed performance above the 
median.

Discussion

Genotype × environment interaction is ubiquitous in agri-
cultural crops. In genomic models G  ×  E can be mod-
eled by including interactions between markers and 

Fig. 3   Adjusted phenotype versus  adjusted cross-valida-
tion predictions, derived from the most comprehensive model 
(EGW-G × WG × E) in two cross-validation designs (CV 1: predic-
tion without using phenotypic records of the lines whose performance 
is predicted, i.e., prediction of un-tested lines; and CV 2: prediction 
in incomplete field trials). Horizontal and vertical dashed lines  give 

the 20, 50 and 80 % empirical percentiles of the variables in the ver-
tical and horizontal axes, and the numbers inside the grid give the 
observed proportions of each of four groups defined by the percen-
tiles displayed for observed adjusted yield, given the groups defined 
in the horizontal line (predictions)
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environments or ECs (e.g., Denis 1988; van Eeuwijk et al. 
1996; Vargas et al. 1999, 2001; Malosetti et al. 2004; Boer 
et  al. 2007). However, when the number of markers and 
ECs is large, modeling explicitly all possible interactions 
between markers and ECs becomes infeasible because the 
number of contrasts to be considered increases proportional 
to the product of the number of markers and of ECs. To 
circumvent this problem, we propose a variance compo-
nents approach that allows modeling the main and interac-
tion effects of large numbers of markers and of ECs jointly 
using covariance structures. In our model, the main effects 
of markers and ECs are modeled using the same principles 
used in the standard G-BLUP, and the interaction terms 
are described using a multiplicative model, equivalent to a 
reaction norm model where the genetic and environmental 
gradients are described using regressions on markers and 
on ECs, respectively.

The multiplicative model used to describe interactions 
induces a covariance function that is the Hadamard product 
of two covariance structures: one defining similarity based 
on markers (the G matrix used in standard G-BLUP) and 
one describing similarity between records due to ECs (Ω). 
This type of covariance structures is not new to quantita-
tive genetics; indeed, it has emerged before in the analysis 
of infinitesimal models for various forms of interactions 
between alleles at different loci (e.g., Cockerham 1954; 
Kempthorne 1954). Importantly, once the covariance func-
tions for main and interaction effects are defined, the imple-
mentation of the proposed models is straightforward using 
Bayesian or other likelihood-based (e.g., REML) methods.

The proposed model was used to analyze data set con-
sisting of 7,876 records of grain yield collected on 139 
commercial lines tested in eight different years (from 
2003–10) and various locations within northern France. 
We found that in our data set roughly 16  % of within-
environment variation of wheat grain yield was explained 
by interactions either between markers and ECs (9  %) or 
between markers and environments (7 %). Moreover, when 
interaction terms were included in the model, we observed 
a 17–34  % (depending on the validation design) increase 
in prediction correlation in cross-validation. This suggests 
that introducing interactions between markers and environ-
mental conditions can increase the proportion of variance 
accounted for by the model and, more importantly, it can 
increase prediction accuracy. The increase in prediction 
accuracy with the inclusion of environmental informa-
tion represents a very promising result and has important 
implications both for breeding as well as for agronomic 
recommendations.

Burgueño et  al. (2012) compared the prediction accu-
racy for wheat GY (defined as average of two replicates) 
of models, with and without G  ×  E. In a CV similar to 
our CV2, Burgueño et  al. (2012) reported prediction 

correlations of 0.475 (for a model without G  ×  E) to 
0.556 (for a model with G × E). These values are similar 
to the values we obtained in CV2 for models with (0.439 
for model EGW) and without G  ×  E (0.514 for model 
EGW-G  ×  E-G  ×  W). Our prediction correlations were 
only slightly smaller and this is expected because the trait 
analyzed in Burgueño et  al. (2012) was the average yield 
of two replicates, while in our case we analyzed individual 
plot records.

In CV1, our prediction correlations are considerably 
lower than those of Burgueño et al. (2012) and the differ-
ences between the two studies are likely affected by two 
factors: (a) as mentioned the trait analyzed in Burgueño 
et al. (2012) is the average of two replicates and therefore 
it has a higher heritability than the single-plot record used 
in this study and (b) the strength of genetic relationships 
among the lines in our study is much weaker, because lines 
in our data set come from different commercial breeding 
programs, while in Burgueño et al. (2012) lines come from 
highly connected breeding programs. In CV1 no records 
from the own line are available for model fitting; there-
fore all the prediction accuracy of the models that do not 
account for G × E comes from borrowing of information 
among lines, and this is highly affected by genetic relation-
ships. Because the lines used in our study are not as tightly 
related as those used in Burgueño et al., our baseline cor-
relation is lower (0.175); however, the gains in prediction 
accuracy obtained by modeling G × E in our study and that 
of Burgueño et al. (2012) are very similar.

Although ECs and their interactions with markers can 
explain a sizable proportion of GY variance, we found that 
the ECs we used in this study explained only a limited pro-
portion of across-environment variation. We also found that 
even after including ECs and their interaction with mark-
ers, a substantial proportion of phenotypic differences were 
explained by the main effects of environment not accounted 
for by ECs. Consequently, our most comprehensive model 
includes—in addition to the effects of markers and ECs and 
their interaction—the effects of environments and the inter-
actions between markers and environments, whose role in 
the model was to capture signals that are not captured by 
markers or ECs. This also suggests that there are opportu-
nities for improving the methods presented here by either 
considering more ECs or by introducing the ECs in the 
model in ways that are different from the ones considered 
here.

We developed our models within the context of a mul-
tivariate normal distribution. These models are easy to 
implemented using existing software for mixed models 
with structured covariance matrices. However, although the 
complete model EGW-G × WG × E yielded sizable gains 
in predictive correlation for CV2 and CV1, our approach is 
not free of limitations. The Gaussian prior does not induce 
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variable selection and the type of shrinkage induced by the 
Gaussian prior density may not be appropriate in the pres-
ence of large-effect QTLs or large-effect ECs. Therefore, 
an area of further research would be to extend the meth-
ods discussed here to models that induce either differential 
shrinkage of estimates of effects or a combination of vari-
able selection and shrinkage.

Finally, the models we proposed here considered only 
one possible mode of interaction: the multiplicative reac-
tion norm model. In practice, interactions between genes 
and environmental conditions may take many different 
forms, and the methods proposed here can be considered, at 
best, a good approximation. Further research on alternative 
ways of modeling interactions between markers and ECs is 
warranted.

Conclusions

Complex traits are affected by large numbers of, possibly 
interacting, genetic and environmental factors. The contin-
ued development of genotyping and sequencing technolo-
gies as well as that of information systems that can capture 
very detailed environmental information opens enormous 
opportunities for modeling G  ×  E. However, when the 
number of genetic markers and of ECs is large, modeling 
all possible interactions between these two sets of vari-
ables becomes infeasible. To circumvent this problem we 
proposed a variance components approach where different 
covariance structures are used to account for and exploit 
signals generated by main and interaction effects. The 
G × E component of the proposed model can be viewed as 
a reaction norm where the environmental and genetic gra-
dients are modeled as regressions on markers and on ECs. 
Importantly, the implementation of the proposed model in a 
REML or Bayesian framework is straightforward.

When the model was used to analyze data from 139 
lines evaluated in 340 environments we found that a sizable 
proportion of the phenotypic variance can be attributed to 
marker by EC interactions, and that the ability of the model 
to predict yet-to-be-observed phenotypes increased signifi-
cantly. These results suggest that the proposed model can 
be useful for breeding as well as for providing agronomic 
recommendations tailored to specific environmental condi-
tions. However, the proposed model is not free of limita-
tions and we have outlined research areas that may be pur-
sued to further improve our ability to extract the most out 
of the wealth of data that is at our disposal.
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