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resistance were phenotyped with a panel of differential 
R. commune isolates. Subpopulations were genotyped 
with the Illumina GoldenGate 1,536 SNP Assay and a 
large QTL in the centromeric region of chromosome 3H, 
known to harbour several scald resistance genes and/or 
alleles, was found in both populations. Five SNP mark-
ers closest to the QTL were converted into CAPS mark-
ers. These CAPS markers, together with informative SSR 
markers used in other scald studies, confirmed the pres-
ence of the Rrs1 locus. The panel of differential scald 
isolates indicated that the allele carried by both donors 
was Rrs1Rh4. The genetic distance between Rrs1 and its 
flanking markers was 1.2 cM (11_0010) proximally and 
0.9 cM (11_0823) distally, which corresponds to a dis-
tance of just below 9 Mbp. The number and nature of 
scald resistance genes on chromosome 3H are discussed. 
The effective Rrs1 allele found and the closely linked 
markers developed are already useful tools for molecular 
breeding programs and provide a good step towards the 
identification of candidate genes.

Abstract 
Key message In two Spanish barley landraces with 
outstanding resistance to scald, the Rrs1Rh4 locus was 
fine mapped including all known markers used in previ‑
ous studies and closely linked markers were developed.
Abstract Scald, caused by Rhynchosporium commune, 
is one of the most prevalent barley diseases worldwide. 
A search for new resistance sources revealed that Spanish 
landrace-derived lines SBCC145 and SBCC154 showed 
outstanding resistance to scald. They were crossed to 
susceptible cultivar Beatrix to create large DH-mapping 
populations of 522 and 416 DH lines that were scored 
for disease resistance in the greenhouse using two R. 
commune isolates. To ascertain the pattern of resistance, 
parents and reference barley lines with known scald 
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Abbreviations
SBCC  Spanish barley core collection
SARDI  South Australian Research and Development 

Institute
BOPA1  Barley oligonucleotid pool assay
Rs  Rhynchosporium secalis
DH  Doubled haploid

Introduction

The fungal disease leaf blotch or leaf scald, caused by 
the hemibiotrophic haploid fungus Rhynchosporium com-
mune (formally R. secalis Zaffarano et al. 2011), is one of 
the most prevalent barley diseases worldwide, particularly 
in the cool and semi-humid barley growing regions (Zhan 
et al. 2008). Yield losses attributed to this pathogen com-
monly range around 5–10 %, though losses of up to 40 % 
have been reported (Paulitz and Steffenson 2011). The fun-
gus and its interaction with barley have been thoroughly 
reviewed by Zhan et al. (2008) and are described in more 
detail in Thirugnanasambandam et al. (2011). A compre-
hensive profile of R. commune is shown in Avrova and 
Knogge (2012).

Barley scald is currently controlled by means of agro-
nomic practices, chemical control and genetic resistance 
(Avrova and Knogge 2012). In northern Europe, leaf scald 
is principally controlled by fungicide treatment, although 
increasing bans on pesticides in the EU reduce the oppor-
tunities to achieve good control of pathogens in cereals 
exclusively through the application of fungicides (Hill-
ocks 2012). The most sustainable and cost-efficient way 
to reduce the disease is by growing resistant cultivars. The 
main drawback of both disease management strategies is 
that R. commune is a highly variable pathogen and able 
to overcome new fungicides and resistances very quickly 
(Shipton et al. 1974; Xi et al. 2000; Zhan et al. 2008; 
Avrova and Knogge 2012). Even in scald-resistant culti-
vars, the fungus is sometimes able to sporulate to a small 
extent, without clear symptoms (Ayres and Owen 1971; 
Thirugnanasambandam et al. 2011; Zhan et al. 2012). 
Therefore, the demand for resistance genes and/or alleles is 
still high, as is the need for suitable markers to design more 
efficient breeding programs and gene pyramiding (Loose-
ley et al. 2012).

The number and nomenclature of scald resistance genes 
in barley is not settled, though efforts to clarify the differ-
ent QTLs and genes have simplified the field and in 2002 
Bjørnstadt et al. summarized the accepted new Rrs classifi-
cations (Bjørnstad et al. 2002). Following one of the most 
recent and thorough reviews on this subject, by Zhan et al. 
(2008), nine major resistance genes have been identified 
(designated with an Rrs prefix), as well as many QTLs, at 

least seven of them in genomic locations clearly distinct 
from the major genes. The sources of resistance are barley 
varieties (Dyck and Schaller 1961; Habgood and Hayes 
1971; Schweizer et al. 1995, 2004; Graner and Tekauz 
1996; Cheong et al. 2006; Wagner et al. 2008), landraces 
(Dyck and Schaller 1961; Garvin et al. 2000; Patil et al. 
2003), Hordeum vulgare ssp. spontaneum (Garvin et al. 
2000; Genger et al. 2003; von Korff et al. 2005; Yun et al. 
2005) and even one gene from H. bulbosum (Pickering 
et al. 2006).

The Rrs1 locus was the first to be discovered and has 
been repeatedly mapped to chromosome 3H (Thomas et al. 
1995; Graner and Tekauz 1996; Williams et al. 2001; Grøn-
nerød et al. 2002; Genger et al. 2003) with more than 11 
identified alleles (Bjørnstad et al. 2002). However, it is still 
not clear whether Rrs1 is a collection of several R-genes 
close to each other or several alleles of the same gene. In 
fact, the number and location of scald resistance genes on 
chromosome 3H of barley is an issue still under debate 
(Bjørnstad et al. 2002; Wallwork and Grcic 2011). Dyck 
and Schaller (1961) described two closely linked genes 
Rh3 and Rh4, which later Habgood and Hayes (1971) 
described as alleles of the same gene (Rh and Rh4). Recent 
studies (Wallwork and Grcic 2011) identified at least two 
distinct patterns of reaction to scald caused by the gene(s) 
located close to the centromere on 3H, which are distin-
guishable using panels of differential isolates and cultivars. 
Patil et al. (2003) mapped a second resistance locus, named 
Rrs4CI11549, 22 cM distal to Rrs1 on chromosome 3HL. 
Finally, several authors have found that dwarfing genes on 
the long arm of 3H have a pleiotropic effect on scald resist-
ance (Jensen et al. 2002; Looseley et al. 2012).

With the exception of Rrs2 (Hanemann et al. 2009), 
there are no diagnostic markers for any of the scald resist-
ance loci. There are markers closely linked to Rrs1, namely 
HVM0027 (SSR), MWG680 (RFLP) and STS_agtc17 
(Patil et al. 2003), but they still show recombination with 
each other and with the resistance gene itself, making them 
unreliable for precise marker-assisted selection. This is fur-
ther aggravated by the centromeric region position of Rrs1 
exhibiting very low recombination frequency. Phillips et al. 
(2010) report that about 20 % of all barley genes may be 
located in centromeric and subcentromeric regions and thus 
represent genes with limited accessibility based on genetic 
mapping approaches. Even if tightly linked markers are 
used for MAS, linkage drag during introgression of these 
“centromeric” genes will be large.

To this day, no single publicly available map that inte-
grates all the known SSR and STS markers around the 
Rrs1 locus exists. The development of integrated maps and 
tightly linked markers is recommended to provide more 
diagnostic markers for scald resistance loci to molecular 
breeding programs and to analyse genetic haplotypes for 
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association studies. For these reasons, a precise location 
of “Rrs1” in a dense map including as many informative 
markers as possible is a sensible research objective, espe-
cially in terms of combining older SSR with newly devel-
oped SNP markers (Illumina) in one map.

Another requisite to improve breeding for disease resist-
ance is the identification of additional resistance sources, 
preferably in the primary genepool of H. vulgare. Collec-
tions of landraces represent valuable resources contain-
ing broad genetic variability for numerous agronomically 
important traits. One of these collections is the Spanish 
Barley Core Collection (SBCC), a representative sample 
of the landraces traditionally cultivated in Spain, com-
prising 175 genetically diverse genotypes (Igartua et al. 
1998; Lasa 2008). The SBCC was evaluated for resistance 
against multiple pathogens and a remarkably high number 
of lines (26 %) presented good resistance to scald (Silvar 
et al. 2010). Two of the highly resistant lines, SBCC145 
and SBCC154, were chosen for further investigation and 
fine mapping of the scald resistance loci in two large DH 
populations.

So, the objectives of the present work were to (1) iden-
tify the factors underlying the resistance to scald of both 
SBCC lines, (2) locate them in a dense map with publicly 
available markers as well as all known markers used in pre-
vious Rrs1 studies and (3) develop tightly linked markers 
suitable for the rapid incorporation of these loci in barley 
breeding programs.

Materials and methods

Plant material and fungal isolates

The lines SBCC145 and SBCC154, from the SBCC, were 
selected for their outstanding resistance to R. commune 
(Silvar et al. 2010). SBCC145 is a six-rowed intermedi-
ate barley line (with a mild vernalization requirement) and 
is also resistant to powdery mildew (Silvar et al. 2011), 
whereas SBCC154 is a two-rowed facultative barley. Both 
lines were crossed with Beatrix (Viskosa/Pasadena), a 
cultivar from the German breeder Nordsaat. Beatrix is a 
two-rowed spring barley with good malting quality and is 
highly susceptible to scald.

For scald resistance and further mapping studies, two 
doubled haploid (DH) populations consisting of 522 
(SBCC145 × Beatrix) and 416 DH lines (SBCC154 × Bea-
trix) were generated by anther culture from the F1 genera-
tion. From them, subpopulations of 190 and 168 DH lines, 
respectively, were created for whole genome genotyp-
ing and QTL analysis. Lines for each subpopulation were 
selected randomly based on the expression of a clear phe-
notype in response to scald infection. In addition to the 

susceptible parent Beatrix, the two-rowed German spring 
barley varieties, Steffi (Saatzucht Ackermann, Irlbach) and 
Alexis (Saatzucht Breun, Herzogenaurach), were used as 
scald-susceptible references for phenotyping. A set of 11 
additional barley accessions with one or two known resist-
ance loci was used for comparison purposes on the level of 
resistance of SBCC145 and SBCC154 (Table 1).

Five genetically diverse isolates of R. commune (S147-
1, Rhy17, Rhy174, UK7, LfL07) from the collection held 
at the Bavarian State Research Center for Agriculture in 
Freising (Germany) were used to assess the level of resist-
ance of Spanish lines in comparison with the set of 11 bar-
ley accessions. Isolate 271 was used to phenotype the entire 
DH populations and isolate LfL07 was used for additional 
phenotyping of the subpopulations used for whole genome 
genotyping. Isolates 271 and LfL07 produced similar reac-
tions on the parents of both populations. The R. commune 
isolates were cultivated in liquid media in the dark at 15 °C. 
The spore suspension was produced by planting pea-sized 
pieces of mycelium on lima bean agar to induce the for-
mation of spores. Spores were harvested after 2 weeks of 
growth, at 15 °C in the dark, by scraping culture plates 
with 5 ml RO water and then diluted to a concentration of 
2 × 105 spores/ml (Hanemann et al. 2009).

Two additional isolates of R. commune, 332a and 385 
from the collection held at the South Australian Research 
and Development Institute (SARDI) in Adelaide were 
tested in Australia against the Spanish parent lines and 4 
of the 11 barley accessions. These two isolates are able to 
discriminate between specific virulence patterns of Rrs1 
alleles found in the centromeric region of chromosome 
3H (Wallwork and Grcic 2011). At SARDI, the two iso-
lates were cultivated following the procedures detailed in 
Wallwork and Grcic (2011) using an end concentration of 
1 × 106 spores/ml for inoculation.

Resistance assessment

At Freising, an assessment of resistance to R. commune for 
the parents, checks and the two populations was carried out 
according to (Schweizer et al. 2004) and Hanemann et al. 
(2009) with two isolates (271 and LfL07). Each trial con-
sisted of four individual plants of each DH line. Plants were 
grown in the greenhouse at 18 °C for 3 weeks to the early 
three-leaf stage and then sprayed with a spore suspension 
adjusted to a concentration of 200,000 spores/ml. Immedi-
ately after spray inoculation, the plants were maintained in 
the dark with 100 % humidity for 48 h. Approximately at 
14–21 days after inoculation, scald symptoms were rated 
on the second leaf of each individual plant three times every 
other day according to Jackson and Webster (1976), using 
half steps for better discrimination. The data presented in 
this work (Fig. 1) are the average score of all four plants 
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per DH line and isolate. The German varieties Steffi and 
Alexis were used as scald-susceptible reference cultivars. 
At SARDI/Adelaide, the tests were also conducted under 
controlled environmental conditions, following the proce-
dures explained in detail in Wallwork and Grcic (2011). 
Merging the data of both scales leads to R = 0, R/MR = 1, 
MRMS = 2, S/MS = 3 and S = 4.

Genotyping

Genomic DNA was isolated from frozen barley leaves by 
using the NucleoSpin Plant II Minikit (Macherey–Nagel, 
Düren, Germany) or according to Behn et al. (2004). To 
check for the association between resistance and markers 

previously linked to scald resistance in other populations, 
the populations were genotyped with HVM0027 (Ram-
say et al. 2000) and STS_agtc17, for Rrs1 (Grønnerød 
et al. 2002; Patil et al. 2003) and with HVM0060 for 
Rrs4 (Patil et al. 2003). To identify polymorphic markers 
surrounding the known Rrs1 locus, SBCC145, SBCC154 
and Beatrix were screened with all available SSRs (Ram-
say et al. 2000; Li et al. 2003; Rostoks et al. 2005; Stein 
et al. 2007; Varshney et al. 2007) and SNPs (Rostoks 
et al. 2005; Stein et al. 2007) in the centromeric region 
of chromosome 3H. Markers for Rrs15 (Gems13; Sch-
weizer et al. 2004) and Rrs2 (Atlas14, AcriCaps; Hane-
mann et al. 2009) were not polymorphic in the present 
populations.

Table 1  Disease reactions of 15 barley accessions, landraces and cultivars against up to seven isolates of R. commune (formerly R. secalis)

Cultivars Alexis, Beatrix and Steffi were included as susceptible controls

–, not determined
a Isolates S147-1—LfL07 were tested at LfL in Freising in the greenhouse at early three-leaf stage with four seeds/accession in two replications, 
as described in “Materials and methods”. In addition, to discriminate the Rrs1 locus with differential scald isolates 332a and 385 for the Rrs1 
locus (Wallwork and Grcic 2011), the SBCC lines 145 and 154, as well as four reference lines, were tested at SARDI following the procedures 
explained in “Materials and methods”
b Plants were tested in a single greenhouse test with four plants
c This publication
d Dyck and Schaller (1961)
e Schweizer et al. (1995)
f Wallwork and Grcic (2011)
g Schweizer et al. (unpublished)
h Habgood and Hayes (1971)
i Bjørnstad et al. (2002)
j Schweizer et al. (2004)
k Wagner et al. (2008)
l Hanemann et al. (2009)

Barley lines  
(references)

Rhynchosporium commune isolatesa R-gene (s) (according 
to literature)

S147-1 Rhy17 Rhy174 UK7 LfL07 Mean S147-1, 
LfL07

332a 385

SBCC145c 0.0 0.0 0.5 0.5 0.0 0.2 0.0 4.0 Rrs1Rh4

SBCC154c 0.0 0.0 0.6 0.6 0.0 0.2 0.0 4.0 Rrs1Rh4

Atlasd,e,f,l 0.1 0.3 0.8b 0.8 0.9b 0.6 4.0 4.0 Rrs2

CIho 2235g,l 0.3 0.2 0.4 0.2 1.1 0.4 – – Rrs2

Pewterg,l 0.9 0.8 1.2 0.6 1.3 0.9 – – Rrs2

Escald. 15g,l 0.3 0.1 0.7b 1.3 – 0.6 – – Rrs2

CIho 8288j,k 1.3 0.0 0.6 0.5 1.2 0.7 – – Rrs15

Atlas 46e,f,g,l 0.4 0.3 0.0 0.0 0.0 0.1 4.0 0.0 Rrs1 + Rrs2

Osirise,f,g,l) 0.0 0.0 0.4 0.3 0.0 0.1 0.0 3.5 Rrs1Rh4 + Rrs2

PI 452395g,l 0.5 0.2 0.0 0.1 0.0 0.2 – – Rrs1 + Rrs2

CIho 3515f,g,h 0.0 0.0 0.4 0.3 0.1 0.2 0.0 1.0 Rrs1Rh4 + Rrs13

Tritonk 0.1 0.0 0.0 0.0 0.0 0.0 – – Rrs1 + Rrs15

Alexis 4.0 4.0 4.0 3.9 4.0 4.0 – – Susceptible

Beatrix 4.0 4.0 3.9 4.0 4.0 4.0 – – Susceptible

Steffi 4.0 4.0 4.0 4.0b 4.0 4.0 – – Susceptible
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QTL mapping was conducted to check for scald resist-
ance loci over the whole genome. With this purpose, both 
subpopulations of 190 and 168 DH lines described above 
were genotyped with the 1,536-SNP Illumina Gold-
enGate Oligonucleotid Pool Assay (Barley OPA1 or 
BOPA1) (Close et al. 2009) as described previously for 
SBCC145 × Beatrix (Silvar et al. 2011). Five BOPA1 
markers (11_0010, 11_0205, 11_0315, 11_0823 and 
11_1476) that were closely linked to the resistance QTL 
(most likely Rrs1) were converted into CAPS markers 
(Table S1) and used to genotype the entire populations. 
These markers were positioned in the Genome Zipper 
(Mayer et al. 2011) and in the barley physical map to real-
ize the size of the genomic region of interest. Their position 
was determined by running BLASTN (Altschul et al. 1997) 
with options—task megablast-dust no, against all anchored 
contigs and genes (datasets AC1, AC2 and AC3) of the bar-
ley physical map (IBSC 2012), available from ftp://ftpmips.
helmholtz-muenchen.de/plants/barley/public_data/.

Linkage and QTL analysis

Single and integrated linkage maps were constructed with 
JoinMap 4.0 (van Ooijen 2006), using Kosambi’s map 
function (Kosambi 1944) and a minimum logarithm of 
the odds ratio (LOD score) of 5. A map with just BOPA1 
markers for the subpopulation SBCC145 × Beatrix was 
previously constructed for all seven chromosomes (Silvar 
et al. 2011). For chromosome 3H, a detailed consensus map 
comprising all SSRs and the five closest BOPA markers 
was built using the information from the entire populations.

QTL analysis was performed using MapQTL 5.0 (van 
Ooijen 2004). The interval mapping (IM) procedure was 
used in a preliminary analysis to identify major QTLs and 

to detect significantly associated markers. These mark-
ers were then used as cofactors in a multiple QTL model 
(MQM) (Jansen and Stam 1994). MQM was repeated itera-
tively by adding significant ‘peak markers’ at each step 
as cofactors, until a stable LOD profile was reached. The 
LOD threshold for detecting QTLs was calculated by a per-
mutation test with 1,000 iterations and a genome-wide sig-
nificance level of 0.05. This procedure was followed for the 
whole genome scans of the subpopulations genotyped with 
BOPA1, and also for chromosome 3H for the whole popu-
lations. The interaction between QTLs was analysed by 
means of analysis of variance, including as sources of vari-
ation the closest markers to the QTL peaks, and calculated 
using the unbalanced anova routine implemented in Gen-
stat 14 (VSN International 2011). Rrs1 was also mapped as 
a binary trait, assigning a score of 0 (resistant) to lines with 
average disease resistance scores between 0 and 1.9, and a 
score of 1 to lines with disease scores between 2.0 and 4.0.

Results

Disease resistance

In a first step, the scald-resistant lines SBCC145 and 
SBCC154 out of the Spanish Barley Core Collection were 
phenotyped for disease resistance with five different R. 
commune isolates (Table 1) along with another 11 refer-
ence donors for scald resistance (Rrs1Rh4, Rrs2, Rrs15, 
Rrs1, Rrs13) and three highly susceptible cultivars (Alexis, 
Barke, Steffi). All resistance donors showed mild disease 
symptoms to at least one R. commune isolate in the form of 
small isolated necrosis on the leaf surface or leaf margins 
after infection (no large lesions), whereas cultivar Pewter, 

Fig. 1  Response of 
SBCC145 × Beatrix and 
SBCC154 × Beatrix DH 
lines to R. commune isolates 
271 and LfL07. The Jackson 
and Webster (1976) scale 
extended by half steps was 
used. Vertical arrows indi-
cate mean disease scores. 
a, b Both DH populations 
(n = 522/SBCC145 × Beatrix, 
n = 416 SBCC154 × Beat-
rix) were tested with isolate 
271. c, d Isolate LfL07 was 
used with those subpopula-
tions genotyped with BOPA1 
(n = 190/SBCC145 × Beatrix, 
n = 168/SBCC154 × Beatrix)
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Atlas, Escaldadura15 and CIho 2235 showed weak symp-
toms with all isolates. Mean infection scores of the resist-
ant accessions with these isolates ranged from 0.0 to 0.9. 
SBCC145 and SBCC154 had some of the lowest scores, 
with means of 0.2 and 0.2, respectively. Only the acces-
sions with more than one resistance locus (Atlas46, Osiris, 
PI 452395, CIho 3515, Triton) showed comparable infec-
tion scores (0.1–0.2). Accessions with only one resistance 
locus and without Rrs1Rh4 like Atlas, CIho 2235, CIho 
8288, Pewter and WW Glabron on the other hand were less 
resistant (0.4–0.9). The susceptible cultivars reached mean 
infection scores of 4.0 (Table 1). An additional independ-
ent phenotyping of the landraces, SBCC145 and SBCC154, 
and reference lines with the differential scald isolates, 332a 
and 385, at SARDI revealed distinct patterns of resistance 
(Table 1), by which all resistant lines with the assumed 
Rrs1Rh4 locus (SBCC145, SBCC154, Osiris and CIho 
3515) were resistant to isolate 332a and susceptible to iso-
late 385 (Wallwork and Grcic 2011). In case of CIho 3515, 
the R-gene Rrs13 improved the infection score.

The whole DH-mapping populations SBCC145 × Bea-
trix (n = 522) and SBCC154 × Beatrix (n = 416) were 
phenotyped for scald resistance with the R. commune iso-
late 271 (Fig. 1). Infection scores for the parental lines 
were on average 0.0 for SBCC145, 0.0 for SBCC154 and 
4.0 for Beatrix. Mean infection scores for the popula-
tions were 2.63 and 2.32 for SBCC145 × Beatrix and 
SBCC154 × Beatrix, respectively. The segregation ratios 
were 215 (R): 305 (S) for SBCC145 × Beatrix and 149 
(R): 264 (S) for SBCC154 × Beatrix, with 0–1.9 con-
sidered resistant (R) and 2.0–4.0 being susceptible (S) 
in both cases. Deviation from the expected 1:1 segrega-
tion was significant (χ² test) at 0.01 for both populations 
(χ² = 15.58 for SBCC145 × Beatrix, χ² = 32.02 for 

SBCC154 × Beatrix). The bimodality observed points to 
the presence of one large QTL, although the deviation from 
a 1:1 segregation might suggest the presence of additional 
minor QTLs (Fig. 1). To account for this, two randomly 
selected smaller subpopulations from SBCC145 × Beatrix 
(n = 190) and SBCC154 × Beatrix (n = 168) were used 
(“Materials and methods”) to perform whole genome QTL 
analysis with the Illumina Barley OPA1 chip. In addition to 
the disease scoring with R. commune isolate 271, the sub-
populations were additionally phenotyped with the scald 
isolate LfL07, and the infection scores for the parental lines 
were 0.0 for SBCC145, 0.0 for SBCC154 and 4.0 for Bea-
trix. Mean infection scores for the subpopulations were 2.5 
and 2.4 for SBCC145 × Beatrix and SBCC154 × Beatrix, 
respectively. Segregation ratios were 83 (R): 107 (S) and 62 
(R): 80 (S) for SBCC145 × Beatrix and SBCC154 × Bea-
trix, respectively (Fig. S1). Segregation did not devi-
ate from 1:1 at a level of 0.01 for both subpopulations 
(χ² = 3.03 for SBCC145 × Beatrix and χ² = 2.28 for 
SBCC154 × Beatrix).

Mapping of the scald resistance locus

Both mapping populations were genotyped with markers 
linked to previously published scald resistance genes and, 
as a preliminary result, the main scald resistance locus in 
both populations was linked to markers HVM0027 and 
STS_agtc17, close to the centromeric region of chromo-
some 3H. This location suggested that the Rrs1 locus was 
the major factor underlying the resistance of both SBCC 
lines. Consequently, publicly available markers, includ-
ing all known markers used in previous studies to locate 
the Rrs1 locus, and those close to the centromeric region 
of chromosome 3H were screened for polymorphism 

Table 2  Summary of QTLs for scald resistance detected in the SBCC145 × Beatrix and SBCC154 × Beatrix DH populations in response to 
inoculation with R. commune isolates 271 and LfL07

The columns QTL and Interval show the position of the peak and the 2-LOD confidence intervals. R2 is the percentage of phenotypic variance 
explained by the QTL. A negative value for the additive effect indicates that the allele from SBCC145 or SBCC154 reduced the value of the trait

Population QTL No. Linkage group QTL (cM) Interval (cM) Closest marker LOD score R2 (%) Additive effect

SBCC145 × Beatrix Isolate 271

1 2H 31.4 30.3–33.4 11_1175 3.6 0.5 −0.12

2 3H 70.4 70.0–72.1 11_0205 141.3 96.2 −1.68

3 4H 53.1 52.5–53.9 11_1316 10.6 1.2 −0.88

Isolate LfL07

1 3H 70.0 68.0–70.8 11_0205 73.4 84.3 −1.52

SBCC154 × Beatrix Isolate 271

1 2H 37.1 35.1–37.5 11_1159 2.8 1.5 −0.19

2 3H 70.3 72.0–73.1 11_0010 61.5 88.3 −1.53

Isolate LfL07

1 3H 72.5 72.0–73.1 11_0010 37.8 73.1 −1.14
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between the parental lines and used for map construction 
(Table S2).

In a second step, a whole genome mapping of the 
SBCC145 × Beatrix subpopulation was performed with 
Illumina-BOPA1 as reported in Silvar et al. (2011). 
Regarding the SBCC154 × Beatrix subpopulation, 636 
out of 1,536 SNPs were polymorphic between SBCC154 
and Beatrix and were used for the construction of the link-
age map, which comprised a total length of 1,256.9 cM 
(Fig. S2). QTL analyses were then carried out for both 
SBCC145 × Beatrix and SBCC154 × Beatrix subpopula-
tions. A major QTL was detected in both subpopulations 
for both isolates, with LOD scores between 37.8 and 141.3 
on chromosome 3H, close to the centromeric region, and 
in accordance with the preliminary marker results (Fig. 
S3, Table 2). Two additional minor QTLs were detected 
for isolate 271 on chromosomes 2H and 4H. The first one 
was present in both subpopulations, with LOD scores of 
3.6 (SBCC145 × Beatrix) and 2.8 (SBCC154 × Beatrix) 
(Table 2). The second minor QTL on chromosome 4H 
was detected only in the SBCC145 × Beatrix subpopula-
tion, with an LOD score of 10.6 (Table 2). There was no 
significant interaction among QTLs in the population 
SBCC154 × Beatrix. However, in SBCC145 × Beatrix, a 
significant three-way interaction between the three QTLs 
was detected for resistance to isolate 271. Also, the inter-
actions of the two minor QTLs with the large QTL on 3H 
were close to the significance threshold (P values of 0.05 
and 0.07). This was caused by the more conspicuous effect 
of the minor QTL in the presence of the resistant allele at 
the 3H large QTL (Table 3).

Using the genotypic information of both subpopulations, 
an integrated map of chromosome 3H was constructed. 

Five BOPA1 markers that mapped closest to the resistance 
locus (11_1476, 11_0010, 11_0823, 11_0205 and 11_0315) 
were converted into CAPS markers (Table S1) and mapped 
in the population SBCC145 × Beatrix (n = 522) and 

Table 3  Mean scald resistance values against R. commune iso-
late 271 in the subpopulation SBCC145 × Beatrix for the DH lines 
grouped according to the haplotypes presented at the markers closest 
to the QTL peaks

a Haplotypes for alleles at markers 11_1175 (2H), 11_1316 (4H) and 
11_0205 (3H); a SBCC145 allele; b Beatrix allele
b Means followed by the same letter are not significantly different 
(LSD, P < 0.05)

Haplotypea n Scald resistance 
scoresb

aaa 15 0.33 a

aba 12 0.39 ab

baa 27 0.58 b

bba 19 1.00 c

aab 25 3.68 d

abb 15 4.00 e

bab 34 3.97 e

bbb 35 3.98 e

A

B

Bmag0318b0.0
GBM14442.2
GBMS01493.2
Bmag0122 GBMS02034.3
Bmag05084.9
GBM14135.9
GBMS01577.2
GBM11397.3
Bmac0677.4
Bmac01297.7
GBMS01857.9
GBM1031 EBmac0871
Bmag0138a GBMS0198
GBMS0048 GBMS0046
GBMS0189

8.1

HVM0027 Bmag01368.2
Bmac0209 Bmag00068.3
Falcon8.4
11_1476 GBM1242 9.9
11_001011.8
Rrs112.9
11_082313.8
11_020514.4
11_031515.1
STSagtc1717.9
scsnp1917520.7
GBM116324.5
GBM125326.4
HVM003326.5
GBMS002227.3
scind1544330.2
HVM006039.7
Bmag022540.3
GBM103441.1
GBM140542.7

Fig. 2  a Integrated map of the QTL region of chromosome 3H 
derived from 872 DH lines coming from the SBCC145 × Beatrix and 
SBCC154 × Beatrix populations. The map covers the region of the 
Rrs1 locus. Rrs1 itself was mapped as a binary trait. b Close-up view 
of the region around Rrs1
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SBCC154 × Beatrix (n = 350) in which they were poly-
morphic (all five in SBCC154 × Beatrix, all but 11_0010 
and 11_0823 in SBCC145 × Beatrix). A high confidence 
consensus map of chromosome 3H using the information 
of all lines of both populations was constructed (Fig. 2). 
It covered a region of 49.1 cM around the resistance 
locus. Four BOPA markers (11_0010, 11_0823, 11_0205, 
11_0315) mapped into the gap between Rrs1 and the clos-
est SSR (Bmag0006) or STS (Falcon and STSagtc17) 
markers, whereas SNP 11_1476 mapped together with 
the closest proximal SSR marker GBM1242. The genetic  
distance in the consensus map of the interval comprising 
the resistance locus was 2.1 cM. 

In the Genome Zipper (Mayer et al. 2011), the region 
encompassing markers 11_0010 and 11_0823 comprised 
a modest number of 16, 12 and 12 genes of Brachypo-
dium, rice and sorghum, respectively. Including 11_0315 
as the safe lower flanking marker, as present in the two 
populations, increased the number of syntenic genes in the 
Genome Zipper to 26, 22 and 23, respectively, for the three 
species.

The CAPS markers were placed in the physical map 
of barley. Sequences corresponding to genetic markers 
11_0010 (1_0005) and 11_0823 (1_0728) were obtained 
from Close et al. (2009). The matched contig for 11_0010 
had coordinate 377656880 in Morex, Bowman and Barke 
physical maps, which corresponds to a genetic distance of 
53.26 cM in chromosome 3H. However, marker 11_0823 
was assigned to two different, but close, positions: 
383952360 in Morex and Bowman, and 386536520 in 
Barke (54.21 cM and 54.53 cM, respectively). We decided 
to take the largest (8.9 Mb) defined interval to identify 
anchored genes within it. Although the barley physical 
map still does not resolve the fine order of genes, a total 
of 30 high confidence genes were found, and their anno-
tations retrieved from the file barley_HighConf_genes_M
IPS_23Mar12_HumReadDesc.txt. CAPS marker 1_0158 
(11_0205) was not located in Genome Zipper or in the 
physical map. Marker 11_0315 (1_0281) corresponded to 
position 55.15 cM, 389321560 bp in Bowman and Barke 
physical maps, and may be used as a safe external flanking 
position for further fine mapping.

Discussion

Previous screening of the Spanish Barley Core Collection 
revealed that several landrace-derived lines were highly 
resistant to the R. commune isolate Sachs 147-1 (Lasa 
2008; Silvar et al. 2010). Two of the most resistant lines, 
SBCC145 and SBCC154, were selected to further investi-
gate the genetic basis underlying their outstanding resist-
ance to scald using two large DH populations from crosses 

with the susceptible cultivar Beatrix. The goal was the 
development of tightly linked markers for selective incor-
poration of these loci in barley breeding programs.

An extensive screening of both populations with pub-
licly available markers revealed that the resistance locus 
in both populations co-located with the Rrs1 resistance 
gene on 3HL, close to the centromeric region. The dis-
torted ratios of segregation for resistant and susceptible 
plants were probably caused by an underlying distortion of 
allelic frequencies in the region of the main QTL in 3H, 
and not by the presence of more than one major QTL. All 
SNPs analysed in the area surrounding this QTL presented 
distorted allelic frequencies in both populations, between 
0.34 and 0.40 for the SBCC145 allele and between 0.31 
and 0.39 for the SBCC154 allele, in a region encompassing 
20 and 40 cM, respectively (Table S3). Such deviations are 
not unusual for DH populations derived from anther cul-
ture (Graner and Tekauz 1996; Sayed et al. 2002). There-
fore, it is safe to assume that this major resistance gene 
locus was the main cause for the outstanding resistance in 
both populations, as shown for the CAPS marker 11_0205 
in Fig. S1A, showing a distorted segregation at a ratio 
of about 40 % resistant to 60 % susceptible lines in both 
populations.

Besides the main QTL on 3H at the Rrs1 locus, two 
minor QTLs were found in this work. A review of com-
mon markers across several maps suggests that the two 
minor QTLs found in this work may have been detected by 
other studies. The two markers closest to the QTLs on 2H 
(Table 2) might be marking the same region, even though 
they are 11 and 15 cM apart in each population. These QTL 
also lie within the region where Rrs15 was detected by Sch-
weizer et al. (2004). In that same region, von Korff et al. 
(2005) and Wagner et al. (2008) found QTL for scald resist-
ance coming from wild and cultivated barley, respectively. 
The Rrs15 locus was further checked with linked markers 
for their influence on scald disease in both populations. The 
results confirmed the region, but did not point to the pres-
ence of a functional allele for the Rrs158288 major resist-
ance gene (data not shown). The second QTL on chromo-
some 4H could mark the position of a QTL detected by von 
Korff et al. (2005), flanked by HVM0013 and GMS0089 on 
bin 5 of 4H.

The presence of an interaction effect between the three 
loci detected in SBCC145 × Beatrix and isolate 271 could 
be caused by a mathematical artefact. Three of the haplo-
types shown in Table 3, abb, bab and bbb present mean dis-
ease scores very close or equal to the maximum (4.0). Only 
when the “resistant” alleles for two minor QTL were pre-
sent at the same time was their combined effect noticeable. 
It is possible that we were not able to discriminate visu-
ally among plants belonging to these classes, all of them 
highly susceptible, presenting very large areas of infected 
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leaves. At the other end of the spectrum, for the most 
resistant plants (i.e. plants with a “resistant” allele at the 
3H QTL), it was easier to discriminate between different 
degrees of attack. For example, it was easy to distinguish 
between plants covered with scald on 1 % of the surface vs. 
plants covered by scald on 5 % of the surface. But it was 
very difficult to differentiate between leaves that were cov-
ered by disease spots on 81 or 85 % of the surface. In both 
cases, the same difference in percentage cannot be equally 
detected.

Coming to the major QTL on chromosome 3HL, 
we found that this locus was responsible for most of the 
genetic and phenotypic variations in both populations, at 
coincident positions. SSR- and BOPA-derived CAPS mark-
ers confirmed the Rrs1 locus in both Spanish landrace-
derived lines as the main candidate for the outstanding 
resistance level to scald.

Formerly known as the Rh-Rh3-Rh4 locus, Rrs1 was the 
first scald resistance gene to be reported (Dyck and Schaller 
1961; Starling et al. 1971). Graner and Tekauz (1996) iden-
tified a dominant resistance gene and located it in an RFLP-
based linkage map of chromosome 3HL near the cen-
tromere, in the progeny of the DH population Igri × Triton 
(52 DH lines). In the work by Graner and Tekauz (1996), 
several RFLP markers co-segregated with the resist-
ance locus Rrs1. From one of those RFLPs, the authors 
developed the co-dominant STS marker cMWG680. The 
close association of this marker, or the original RFLP 
(MWG680), has been repeatedly found in literature (Grøn-
nerød et al. 2002; Genger et al. 2003; Patil et al. 2003). The 
SNP marker 11_0315, 2.4 cM distal to Rrs1 (Fig. 2), was 
actually developed from the same EST as cMWG680, so 
it can be considered to map at the same location for practi-
cal purposes. Our position for SNP 11_0315 is consistent 
with the position of cMWG680 in the four previous stud-
ies mentioned. Further investigations of Patil et al. (2003) 
identified the Rrs1 resistance locus in the DH population 
CI11549 × Ingrid. The locus was roughly mapped to the 
centromeric region of chromosome 3H. The precision of 
the mapping was impaired by the population size as well 
as by the presence of a second resistance locus Rrs4 on the 
same chromosome. But this second locus was linked to 
the SSR marker HVM0060 mapping about 22 cM distal to 
Rrs1. Our consensus map with over 800 DH lines (Fig. 2) 
clearly places 11_0315 and HVM0060 23 cM apart, about 
the same distance found in that study, and very similar 
to the one presented in the dense map of Aghnoum et al. 
(2010). All these distances are very consistent and, given 
the high precision of the map of chromosome 3H presented 
in this work, we can rule out that Rrs4 segregates in our 
populations.

The formerly known Rh-Rh3-Rh4 locus, renamed Rrs1 
in 2002, could be a complex locus for scald resistance. 

Bjørnstad et al. (2002) identified 11 alleles at the Rrs1 
locus and suggested that there should be more. Recently, 
Li and Zhou (2011) described two new QTLs at the same 
location in the TX9425 × Franklin and Yerong × Franklin 
DH populations. The Franklin allele provided resistance to 
one population, but susceptibility to the other population. 
The Yerong allele on 3H showed much better resistance to 
scald than the Franklin allele, which had not been reported 
before. These results confirm the presence of an allelic 
series at this locus, with functional differences at least in 
some cases. The QTL analyses reported in this work sug-
gest that both SBCC145 and SBCC154 may carry a strong 
allele of the Rrs1 locus such as Osiris, Yerong, La Mesita 
and CIho3515, and more efficient than those found in other 
cultivars (Table 1). Actually, Yerong is genetically very 
closely related to Osiris (Langridge et al. 1996), almost as 
close as to its parent Malebo (Read and Macdonald 1991).

The existence of one or two scald resistance loci in the 
centromeric region of 3HL has not been settled yet. Classi-
cal studies by Dyck and Schaller (1961) and Habgood and 
Hayes (1971) found a few recombinants in crosses involv-
ing Rh3, Rh4 and other alleles but, according to the latter 
study, they could not exclude that the recombinants were 
the result of outcrossing. To settle this issue, new popula-
tions of large size involving informative parents should be 
constructed and studied with a panel of differential scald 
isolates.

The panel of differential scald isolates derived from the 
work by Wallwork and Grcic (2011) indicated that the Rrs1 
allele carried by both donors was Rrs1Rh4. The evaluation 
of both SBCC parents revealed that they presented a viru-
lence pattern close to the resistance traditionally described 
as Rh4 (Graner and Tekauz 1996), later renamed by Bjørn-
stad et al. (2002) as Rrs1Rh4, to indicate that it belonged to 
the Rrs1 locus. This resistance seems typical of accessions 
originating in North Africa or the Western Mediterranean 
region—CIho 3515 is Spanish, Osiris and Malebo (parent 
of Yerong) from Algeria and La Mesita is from Egypt—
that evolved along one of the possible paths of expansion 
of barley from the Fertile Crescent towards the West (Baba 
et al. 2011; Igartua et al. 2013). Therefore, it may have 
evolved in response to pathotypes prevalent in that region.

Besides a large number of known scald resistance genes, 
barley researchers still find overall differences between 
spring and winter barley cultivars regarding the level of 
scald resistance. Zhan et al. (2008) described that winter 
barley cultivars apparently have much better resistance to 
R. commune than spring barley cultivars. This could be due 
to the higher selection pressure on winter barley caused by 
the longer growing season and the longer period of cold 
and humid weather in fall and early spring. Therefore, the 
process of selection for healthier lines is more distinct than 
in spring barley. This means that in general the resistance 
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level in winter barley tends to be on a higher level. Spanish 
barleys, though sometimes informally described as spring 
types, are actually winter types with a reduced vernaliza-
tion requirement (Casao et al. 2011), and are usually sown 
in autumn. In this case, SBCC145 is a typical example of 
that kind of genotype. SBCC154, however, is a true spring 
barley, the only one of the collection showing any degree of 
resistance to scald, and is probably one of the most resist-
ant spring barleys described in the literature. It may have 
arisen as a recombination with resistant winter types preva-
lent in the region.

To analyse the possible pleiotropic interaction of growth 
habit and scald, the populations were additionally investi-
gated for a segregating dwarfing gene present on 3HL (as 
stated by Ponce-Molina et al. (2012) for SBCC145 × Beat-
rix, and by E. Igartua, unpublished), but no effect of this 
gene on scald resistance was observed. In this regard, a 
scald resistance QTL was detected based on field observa-
tions and interpreted as a pleiotropic effect of growth habit 
(Jensen et al. 2002; Looseley et al. 2012). Prostrate plants, 
carrying the dwarfing allele, were more prone to acquire 
the disease by spread from rain splashes. In our study, done 
under controlled conditions, plant architecture did not play 
a role, but this factor should be taken into account when 
using this germplasm for breeding.

Besides scald, the SBCC lines are an interesting germ-
plasm resource providing ample variability for several 
agronomic key traits, directly useful for breeding programs. 
Within the SBCC145 × Beatrix population, lines segre-
gate for spring and winter types, two and six rows, plant 
height (Beatrix carries the denso gene, Ponce-Molina et al. 
2012) and for resistance to both scald and powdery mildew 
(Silvar et al. 2011). This diversity ensures that resistance is 
selected from amongst a wide variety of plant types.

In summary, we were able to show that the Rrs1Rh4 scald 
resistance locus identified in the lines of the Spanish Barley 
Core Collection, SBCC145 and SBCC154, is of importance 
for barley breeding programmes. We were able to ascertain 
the disease reaction with appropriate differentials and to 
position closely linked markers for the Rrs1 resistance locus 
in a complicated chromosomal region with low recombina-
tion frequency. The region encompassing the QTL and mark-
ers 11_1476, 11_0010, 11_0823, 11_0205 and 11_0315 was 
mapped with great confidence, based on a large number of 
individuals and coincides in loci order with the comprehen-
sive consensus map of Muñoz-Amatriaín et al. (2011). The 
consensus map developed, combining SSRs, STS and SNPs, 
presents an improvement of the definition of the Rrs1 region, 
including different scald resistance alleles and presents an 
increase in the precision of the location of Rrs1 compared 
with previous reports and their respective markers.

The increased polymorphism granted by the use of two 
different mapping populations allowed a better resolution 

of the QTL region than would have been attained by one 
population alone and pointed to the region flanked by 
markers 11_0010 and 11_0823 as the most plausible posi-
tion of the locus. By locating them in the physical map of 
barley, we were able to define an interval of approximately 
8.9 Mb, which contains at least 26 high confidence genes, 
including two chitinases, usually involved in defence reac-
tions (Collinge et al. 1993). Although the region is close 
to the centromere, showing low recombination, the future 
identification of a candidate gene through the development 
of a large population to search for recombinants in this 
region, with only around 30 genes, seems feasible.

For marker-based breeding programs, the closely linked 
BOPA1 SNP markers have been converted to easy acces-
sible CAPS markers. Unfortunately they are still not per-
fectly diagnostic or functional for the Rrs1 locus. Never-
theless, the easy to handle CAPS markers developed are 
all closer to the Rrs1 gene than formerly known mark-
ers. Therefore, we keep looking for further polymorphic 
markers mapping into the small interval between markers 
11_1476 and 11_0205 (which flank the QTL with great 
certainty in both populations), for which we still found 
22 (SBCC145 × Beatrix) and 17 (SBCC154 × Beat-
rix) recombinant DH lines. A BSTA (bulked segregant 
transcriptome analysis) approach and the production of 
marker-selected recombinant F2:3 lines have been started, 
and the analyses of map-based candidate genes is in 
process.
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