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LASSO, ridge regression, reproducing kernel Hilbert space, 
and partial least square regression. The accuracy of the 
predictions was assessed through the correlation between 
observed and predicted genetic values by cross validation 
within each panel and between the two panels. We observed 
equivalent accuracy among the four predictive models for a 
given trait, and marked differences were observed among 
traits. Depending on the trait concerned, within-panel cross 
validation yielded median correlations ranging from 0.29 to 
0.62 in the Reunion Island panel and from 0.11 to 0.5 in the 
Guadeloupe panel. Cross validation between panels yielded 
correlations ranging from 0.13 for smut resistance to 0.55 
for brix. This level of correlations is promising for future 
implementations. Our results provide the first validation of 
genomic selection in sugarcane.

Abstract  Sugarcane cultivars are interspecific hybrids 
with an aneuploid, highly heterozygous polyploid genome. 
The complexity of the sugarcane genome is the main obsta-
cle to the use of marker-assisted selection in sugarcane 
breeding. Given the promising results of recent studies of 
plant genomic selection, we explored the feasibility of 
genomic selection in this complex polyploid crop. Genetic 
values were predicted in two independent panels, each com-
posed of 167 accessions representing sugarcane genetic 
diversity worldwide. Accessions were genotyped with 1,499 
DArT markers. One panel was phenotyped in Reunion 
Island and the other in Guadeloupe. Ten traits concerning 
sugar and bagasse contents, digestibility and composition of 
the bagasse, plant morphology, and disease resistance were 
used. We used four statistical predictive models: bayesian 
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Introduction

Sugarcane (Saccharum spp.) is a clonally propagated 
industrial crop cultivated for its high sucrose content as 
well as for bioenergy purposes. Sugarcane supplies about 
80  % of the world’s sucrose and is cultivated in almost 
100 tropical or sub-tropical countries (FAOSTAT 2012). 
Modern cultivars are derived from interspecific crosses 
between S. officinarum and S. spontaneum. They have a 
highly polyploid genome, highly heterozygous and fre-
quently aneuploid. Modern sugarcane cultivars have 
between 2n  =  100 and 2n  =  130 chromosomes distrib-
uted in about 12 homologous groups for a total size of 
10 Gb (Grivet and Arruda 2001; D’Hont 2005). Chromo-
some behavior at meiosis displays mainly bivalents, but 
pairing affinity within a given homology class shows 
complex patterns due to subsets of chromosomes exhibit-
ing variable ranges of preferential mutual pairing (Jannoo  
et  al. 2004) and possible instances of systematic dis-
omic pairs (Hoarau et al. 2001). This complex sugarcane 
genome organization makes trait inheritance difficult to 
analyze. Currently, sugarcane breeding programs still 
rely on phenotypic selection in the framework of quan-
titative genetic approaches, usually based on combined 
mass and family selection strategies. Improvement of 
agronomic traits related to yield and disease resistance 
require large experiments that last for several crop cycles 
(Cheavegatti-Gianotto et  al. 2011). About 7–10  years of 
field experiments are needed to identify elites for further 
multi-location pre-commercial tests (Del Blanco et  al. 
2010; Scortecci et  al. 2012). Marker-assisted selection 
(MAS) approaches could have been valuable strategies 
for sugarcane breeders like in other crop models (Collard 
and Mackill 2008; Xu and Crouch 2008). However, the 
complexity of the sugarcane genome makes marker-trait 
association studies challenging. In the past two decades, 
numerous quantitative trait loci (QTLs) studies relative 
to yield components have been published on sugarcane 
based on biparental progenies (Hoarau et al. 2002; Ming 
et al. 2002; Reffay et al. 2005; Aitken et al. 2006, 2008; 
Piperidis et  al. 2008; Pinto et  al. 2010). More recently, 
genome-wide association studies (GWAS) were devel-
oped to identify QTLs relative to several agronomic traits 
(Wei et al. 2006, 2010). A lot is expected from this latest 
strategy, which is facilitated by the persistence of linkage 
disequilibrium (LD) observed within the first 5 cM among 
modern cultivars due to recent bottlenecks in breeding 
schemes (Jannoo et  al. 1999; Raboin et  al. 2008). How-
ever, all these QTL studies revealed common features: 
a modest phenotypic effect of most QTLs and frequent 
lack of repeatability across environments or crop cycles. 
In such a context, validating common QTLs between 
studies is not easy for agronomic traits related to yield 

components (Piperidis et al. 2008). Up to now, the use of 
molecular markers in sugarcane breeding programs has 
only been conceivable to tag a very few major resistance 
genes related to diseases (Aljanabi et  al. 2007; Costet 
et al. 2012a, b; Glynn et al. 2013).

Genomic selection, an approach introduced by Meu-
wissen et  al. (2001), is a novel method for selecting 
individuals in breeding programs, and is suitable for 
the improvement of complex traits requiring long field 
experiments (Heffner et  al. 2009; Lorenz et  al. 2011). 
Its principle is to predict the phenotypic performance of 
individuals, in terms of breeding value or total genetic 
value, on the basis of their genome-wide genotypic 
data, by using a predictive model previously calibrated 
with a representative phenotyped and genotyped ‘train-
ing population’. Genomic selection exploits the whole 
marker information by simultaneously estimating the 
effect of each marker across the entire genome to predict 
the genetic value of individuals (Meuwissen et al. 2001). 
Unlike conventional marker-assisted selection, genomic 
selection does not rely on a subset of significant mark-
ers. Therefore, genomic selection models should have 
the ability to capture more of the genetic variation by 
taking QTLs with small-effect into account. Genomic 
selection was first applied for livestock breeding. Added 
value brought by genomic selection predictions, demon-
strated through theoretical simulations (Meuwissen et al. 
2001; Calus et al. 2008; Solberg et al. 2008) or empiri-
cal evidence (Luan et al. 2009; Moser et al. 2009; Van-
Raden et al. 2009) now opens a new area of development 
in animal breeding programs. In plant breeding, numer-
ous simulated and experimental genomic selection stud-
ies have been recently published, on cereal crops such as 
wheat, barley, or maize (Lorenzana and Bernardo 2009; 
Zhong et  al. 2009; Crossa et  al. 2010; Lorenz et  al. 
2011; Heslot et al. 2012; Guo et al. 2012; Rutkoski et al. 
2012) and on forest trees such as loblolly pine (Resende 
et  al. 2012b) and eucalyptus (Grattapaglia et  al. 2011; 
Resende et  al. 2012a; Denis and Bouvet 2013). Given 
the increasing access to high-throughput genotyping 
at more affordable costs, opportunity to test genomic 
selection approaches should expand on a larger number 
of plant species. To date, this approach has never been 
tested in sugarcane.

The objective of our study was to evaluate genomic 
selection in sugarcane using four prediction models and 
ten quantitative traits of agronomic interest. Predictions 
were based on the genetic value of two independent  
panels composed of accessions representing the diver-
sity of germplasm used in breeding programs world-
wide. The accuracy of the genomic selection models was 
assessed by cross validations within panels and between 
panels.
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Materials and methods

Plant material

Two independent sugarcane panels were used in this study, 
REU (phenotyped in Reunion Island) and GUA (pheno-
typed in Guadeloupe), each composed of 167 accessions. 
The two panels are subsamples of the REUb and GUA 
panels, described in detail in Costet et  al. (2012a), cho-
sen to be totally exclusive from one another (no common 
materials). The 334 accessions were modern cultivars and 
breeding material derived more or less recently from over 
30 breeding centers around the world. The REU panel was 
maintained in Reunion Island at the eRcane and CIRAD 
experimental stations. The GUA panel was maintained in 
Guadeloupe at CIRAD Roujol experimental station.

Field trials

The REU and GUA panels were phenotyped using a total 
of seven field trials covering several crop cycles. In Reun-
ion Island, the REU panel was phenotyped in four loca-
tions: Bassin-Martin, La Mare, Vue-Belle, and Le Gol. In 
Guadeloupe, the GUA panel was phenotyped in three loca-
tions: Roujol-1, Roujol-2, and Godet. The La Mare trial 
was planted during the austral summer (October 2010), 
while the Bassin-Martin (April 2010), Vue-Belle (April 
2010), and Le Gol (June 2006) trials were planted before 
austral winter. All three locations in Guadeloupe were 
planted before winter (September) in different years (Rou-
jol-1: 2005; Roujol-2: 2007; Godet: 2010). Standard culti-
vation practices (fertilization, weeding) were used. All tri-
als were irrigated to avoid water stress. The Reunion Island 
trials used an alpha-lattice design with three replications 
and 20 blocks in each replication. In Guadeloupe, we used 
complete randomized block designs with three replications.

Phenotypic data

Details on the trials and crop cycles used to phenotype 
each trait are given in online resource 1. The two panels 
were phenotyped for a total of ten agronomic traits related 
to cane yield (morphological and technological traits): lig-
nocellulose composition of the bagasse, and disease resist-
ances. Morphological traits measured were stalk diameter 
(SD) and number of millable stalks (SN) both measured 
at harvest. However, stalk height could not be measured 
because the majority of our accessions flowered at har-
vest which prevented this trait measurement without bias. 
Stalk diameter was the mean of three measures (taken at 
the bottom, mid-height, and top of the stalk) made on nine 
randomly chosen stalks per plot. The number of stalks was 
counted in one row per elementary plot and expressed as 

the number of stalks per square meter. Technological traits 
were juice brix (BR) and bagasse content (BC). Brix is a 
measure of soluble solids in the sugarcane juice, expressed 
as a percentage of solids by weight (% w/w). In Gua-
deloupe, BR was measured in the field with a handheld 
refractometer on the juice of a sampling punch taken at 
half-height of seven randomly chosen stalks per elemen-
tary plot. In Reunion Island, nine randomly chosen stalks 
were crushed in eRcane laboratories. A 500-g sample of 
pulp was then pressed using the hydraulic press method 
(Hoarau 1969). BR was measured with a refractometer on 
the collected juice. In both islands, bagasse content was 
estimated using the same hydraulic press method (Hoa-
rau 1969) on the basis of the ratio of the fresh weight of 
the cake (after juice extraction) to the fresh weight of the 
pulp. The sequential method of Van Soest et al. (1991) was 
used to describe the fiber fractions. This method provides 
an estimate of total fiber (NDF, neutral detergent fiber), 
lignocelluloses (ADF, acid detergent fiber), and lignin con-
tent (ADL, acid detergent lignin). In our study, we used the 
variables ADF and ADL expressed as a proportion of total 
fiber (NDF), to characterize the quality of the fiber rather 
than the absolute values of these compounds which rely 
on sucrose content (Barrière et  al. 2010). In addition, in 
vitro NDF digestibility (IVNDFD) was determined using 
an enzymatic method with pepsin and cellulase (Aufrère 
et al. 2007). IVNDFD represents the potential degradation 
of fiber in ruminants and is, therefore, used as an index of 
biomass quality.

ADF, ADL, and IVNDFD were determined using near-
infrared spectroscopy (NIRS) after calibration with refer-
ence analyses, as described in Sabatier et  al. (2012). The 
data for both REU and GUA panels were obtained using 
the same analytical procedures and NIRS equations.

Disease resistance phenotyping focused on three of the 
main sugarcane diseases in the world: the fungal smut dis-
ease, caused by Sporisium scitaminea, brown rust, caused 
by Puccinia melanocephala, and yellow leaf disease 
caused by sugarcane yellow leaf virus (SCYLV, Polerovi-
rus). Smut resistance (SM) was assessed in trials on which 
plants were artificially inoculated, whereas rust resistance 
(RST) and yellow leaf disease resistance (SCYLV) were 
assessed under natural infection. Scoring of the rust reac-
tion was performed according to the method of Costet et al. 
(2012b). Based on these results, only accessions that do not 
carry the major resistance gene Bru1 that confers complete 
resistance were used in the analysis: 111 accessions from 
the GUA panel and 85 from the REU panel. This selection 
was made to allow prediction of quantitative resistance, 
independently of resistance conferred by Bru1. SCYLV 
was detected by tissue blot immunoassay (Schenck et  al. 
1997) on the first fully emerged leaf of ten stalks randomly 
sampled in each elementary plot and used to compute the 
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incidence of SCYLV. To evaluate SM, accessions were 
inoculated at planting by dipping the cuttings in a suspen-
sion of 5 × 106 spores ml−1 for 20 min. Spores were iso-
lated from whips collected in fields in Reunion Island or in 
Guadeloupe. Smut incidence was measured by the cumu-
lated number of whips per elementary plot during three 
crop cycles.

Genotypic data

Accessions were genotyped using DArT markers (Heller-
Uszynska et al. 2011). DNA of the 334 genotypes was sent 
for genotyping to the private company Diversity Arrays 
Technology Pty Ltd. A total of 1,758 markers were com-
mon to the two panels. Low-, or high-frequency mark-
ers (<0.05 and >0.95) or with more than 10  % missing 
data were removed. Each marker’s within panel marker 
frequency was used to impute missing data (Heslot et  al. 
2012). The number of DArT markers after edition was 
1,499.

Statistical methods

Analyses of quantitative traits

The phenotypic data of each panel were analyzed sepa-
rately using mixed linear models and generalized mixed 
linear models to estimate variance components and genetic 
values (GV). The general mixed linear model was used for 
morphological (SD, SN), technological (BR, BC), and lig-
nocellulose traits (ADL, ADF, IVNDFD) traits and can be 
written as follows:

where y is the vector of phenotypic observations for each 
trait, β a vector of fixed effects related to the experimental 
design including the fixed effects of location, crop cycle 
and replication, b the vector of random incomplete block 
effects within each replication ∼ N

(

0, Iσ 2
b

)

, c the vector 
of random effects of clones ∼ N

(

0, Iσ 2
c

)

, cl the vector 
of random effects of interaction between genotypes and 
location or crop cycle ∼ N

(

0, Iσ 2
cl

)

, and e the vector of 
residual error of the model ∼ N

(

0, Iσ 2
e

)

. X, Z1, Z2, and 
Z3 are incidence matrix, and I the identity matrix. Lin-
ear mixed models were fitted using the lme4 package 
(Bates et al. 2011) and convergence was checked for each 
analysis. Because of their non-Gaussian distributions, 
the three disease-related traits (RST, SCYLV and SM) 
could not be analyzed using linear models. We, therefore, 
used the MCMCglmm package for R (Hadfield 2010) 
that implements Markov Chain Monte Carlo routines to 
fit multi-response generalized linear mixed models. For 
rust resistance, which is an ordinal response, we used the 

y = Xβ + Z1b + Z2c + Z3cl + e

standard threshold model (Sorensen and Gianola 2002). 
For SCYLV resistance, we used a binomial response with 
a logit link function, and for smut resistance an over-
dispersed Poisson response with a log link function. An 
inverse Wishart prior was used for the variance compo-
nents. This prior distribution takes two scalar parameters 
V and ν. Because we do not have any prior knowledge, 
a non-informative prior was used, for both genetic and 
residual variances, by putting V = 1 × 10−16 and ν = −2 
(Hadfield 2012). Each model was run for 50,000 Markov 
chain Monte Carlo (MCMC) simulation iterations. We 
discarded the first 15,000 cycles as burn-in after check-
ing the stability of posterior values. We checked for con-
vergence of model parameter estimates by inspecting 
trace plots of the MCMC iterations and autocorrelations 
plots. We chose a thinning interval of 10 iterations, which 
resulted in 3,500 posterior distribution samples of model 
parameter estimates. Most of genomic prediction models 
used in this study rely in the normality assumption. His-
tograms of estimated genetic values were drawn in order 
to assess normality. Broad sense heritability at the experi-
mental design level and coefficients of genetic variation 
were calculated for the normally distributed traits accord-
ing to Gallais (1990). Because the variance components 
of the three diseases traits were transformed in the link 
function scale (log for SM, logit for SCYLV or probit for 
RST), heritabilities of these traits were not estimable. We 
extracted the random vector of genotypic effects from the 
models for each accession panel and considered these 
data as the genetic values for the rest of the study.

Linkage disequilibrium and genetic diversity in the panels

The polyploidy of sugarcane associated with the dominant 
nature of the markers used prevented the computation of 
allele frequency on which the classical measures of LD 
(D′, r², d²) are based. Following Raboin et al. (2008), we, 
therefore, used pairwise Fisher exact tests to detect associa-
tions among markers. The probabilities of these tests were 
plotted between the two panels to compare the association 
pattern of markers. The genetic diversity of the panels was 
compared by principal component analysis (PCA) per-
formed on the whole 334 accessions using the 1,499 mark-
ers previously standardized.

Models used for genomic selection

Four predictive models were compared: two parametric 
models, ridge regression (RR) (Hoerl and Kennard 1970) 
and bayesian LASSO (BL) (Park and Casella 2008); one 
semi-parametric model, reproducing kernel Hilbert spaces 
(RKHS) (Schölkopf and Smola 2002); and a non-paramet-
ric model, partial least square regression (PLSR) (Wold 
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2001). These models were fitted using the R software  
(R Core Team 2013).

The penalized method RR and the Bayesian method BL 
are two shrinkage methods commonly used for genomic 
selection. They differ by the extent and the kind of shrink-
age: in RR, the shrinkage is homogenous across mark-
ers while in BL it is heterogeneous. A clear description 
of these methods and their equivalences is given in de los 
Campos et al. (2013). We assessed BL using the BLR pack-
age version 1.3 (de los Campos and Perez 2010). The BL 
method shrinks more estimates of marker effects that are 
close to zero and less those with high effects. The marginal 
prior distribution of marker effects is a double exponential. 
Estimates of marker effects (β̂) are obtained by solving the 
constrained optimization problem below:

where yi is the observed value of individual i, xi is the ith 
row of the markers matrix, β is the corresponding vector of 
regression coefficients, λ the regularization parameter con-
trolling the trade-offs between goodness of fit, t is an arbi-
trary positive constant, and βj the estimate effect of the jth 
marker. Hyper-parameters were chosen based on the guide-
lines of Pérez et al. (2010). The regularization parameter λ 

β̂ = min
β

{

n

Σ
i=1

(

yi − x ′
iβ

)2
+ λ(t)

p

Σ
j=1

∣

∣β j

∣

∣

}

and the scale parameter of the residual variance (Se) were 
computed as follows:

where x̄ j denotes the average value of the jth column of X 
the genotyping matrix. Ve and V correspond to the residual 
and genetic variance, respectively, obtained using mixed 
models described in a previous section (Table  1). Degree 
of freedom was chosen at d fe = 4 (Resende et al. 2012b) to 
guarantee finite variances (Pérez et al. 2010).

The Gibbs sampler was run for 30,000 cycles and the 
first 5,000 cycles were discarded as burn-in. Posterior of 
genetic and residual variances were checked and autocorre-
lations plots were drawn to ensure that models converged. 
The thin parameter was chosen at 10.

The package rrBLUP version 3.8 (Endelman 2011) was 
used to perform the RR and RKHS methods.

RR was first proposed for marker-assisted selection by 
Whittaker et  al. (2000). This penalized method performs 
an extent of shrinkage that is homogeneous. Estimates of 
marker effects (β̂) are obtained as follows:

λ̂ =

√

√

√

√2VeV −1

p
∑

j

x̄2
j

Se = Ve(d fe + 2),

Table 1   Summary statistics 
from linear mixed models 
of phenotypic data used for 
genomic selection

– not estimated

SN stalk number, SD stalk 
diameter, BR brix, BC bagasse 
content, ADL acid detergent 
lignin as a percentage of 
neutral detergent fiber, ADF 
acid detergent fiber as a 
percentage of neutral detergent 
fiber, IVNDFD in vitro neutral 
detergent fiber digestibility of 
the bagasse, RST rust resistance, 
SCYLV yellow leaf disease 
resistance, SM smut resistance, 
SEM standard error of the mean
a  Genetic variance
b  Residual variance
c  Broad sense heritability at the 
experimental design level
d  Coefficient of genetic 
variation

Traits Panel σ̂ 2

G

a σ̂ 2
e

b H² c CVg
d Mean ± SEM

Morphological traits

 SN (stalk/m²) REU 79.16 99.13 0.80 23 39.21 ± 0.40

GUA 118.48 51.14 0.90 26.1 41.66 ± 0.42

 SD (mm) REU 6.29 3.52 0.89 9.8 25.93 ± 0.10

GUA 7.85 0.54 0.96 10.2 26.86 ± 0.07

Technological traits

 BR (%) REU 0.98 1.29 0.83 5.4 17.94 ± 0.05

GUA 1.63 0.58 0.88 6.2 20.49 ± 0.06

 BC (%) REU 2.04 1.59 0.89 8.3 17.52 ± 0.05

GUA 1.81 0.88 0.71 8.1 15.98 ± 0.07

Lignocellulose traits

 ADL (%) REU 0.32 0.37 0.84 4.9 11.77 ± 0.03

GUA 0.68 0.092 0.87 6.9 11.88 ± 0.04

 ADF (%) REU 1.2 1.9 0.78 1.7 62.62 ± 0.06

GUA 2.1 0.22 0.86 2.3 62.01 ± 0.07

 IVNDFD (%) REU 2.84 4.97 0.79 19.4 8.70 ± 0.13

GUA 6.99 0.84 0.87 27.8 9.52 ± 0.15

Disease traits

 RST (score) REU 4.12 0.51 – – 2.95 ± 0.08

GUA 13.17 0.48 – – 3.19 ± 0.08

 SCYLV (%) REU 28.58 0.03 – – 72.33 ± 1.85

GUA 10.90 0.12 – – 76.57 ± 1.12

 SM (whip/m²) REU 5.06 1.13 – – 5.91 ± 0.69

GUA 5.99 1.76 – – 5.48 ± 0.51
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where β̂ is the vector of estimates of marker effects, X is 
the matrix allocating all genotypes to phenotypes, I the 
identity matrix, y is the vector of phenotypes, and λ is the 
ridge parameter. Choice of λ was made using a fast spectral 
algorithm for mixed models, included in the rrBLUP pack-
age. For these two parametric methods (BL, RR), predicted 
genetic values (PGV) were obtained as follows:

where β̂ is the vector of estimates of marker effects and X 
the genotyping matrix.

The RKHS method is supposed to capture non-additive 
effects (Endelman 2011). PGV were obtained using the 
exponential kernel Ki,j included in the package rrBLUP. 
This kernel can be expressed as Ki , j = exp

(

−
Di , j

θ

)

, where 
Di,j is the Euclidian distance between genotype i and j nor-
malized to the interval [0, 1], and θ is a scale parameter that 
controls how genetic covariance decays with genetic dis-
tance. Restricted maximum likelihood was used to identify 
the optimal scale parameter.

For the PLSR method estimations, we used the R pack-
age pls (Mevik et al. 2011). The PLSR method maximizes 
the empirical covariance between predictors and response 
vectors by searching for linear combinations (considered 
as latent variables or components) of the predictors. These 
latent variables are orthogonal to avoid the problem of mul-
ticollinearity. The model can be written as follows:

where g(xi) is the predicted genetic values (PGV) of geno-
type i, til is the lth latent variable of the ith genotype, and 
βl is the effect associated with the lth latent variable. We 
used the kernel algorithm of Dayal and MacGregor (1997) 
to calculate latent variables. The number of latent vari-
ables k, used in the predictive model, can be determined 
by cross validation: the training panel is randomly split 
into five segments of which four serve as the training panel 
to predict the remaining fifth. We repeated the cross vali-
dation for k =  1–50, 5,000 times and computed the root 
mean square error of prediction (RMSEP) for each k value. 
Ultimately, the number of components k chosen to predict 
the other panel was the one that gave the lowest average 
RMSEP.

Accuracy of genomic selection predictions

We considered the accuracy of genomic selection pre-
diction as the correlation between the genetic values 

β̂ =

(

XX
′

+ λI
)−1

X
′

y

PGV = Xβ̂

g(xi ) =

k
∑

l=1

tilβl

predicted by genomic selection (PGV) and the observed 
genetic values (GV). We used the Pearson correlation 
coefficient as the measure of the prediction accuracy. The 
first approach used to evaluate the accuracy of genomic 
selection was a fivefold cross-validation within each 
panel. For each data set, the 167 accessions were ran-
domly split into five subsets of which four were used as 
the training set to predict the remaining fifth. The random 
sampling of the training and validation sets was repeated 
500 times. Models were compared using the median, the 
fifth, and the 95th percentiles of the correlation coefficient 
values.

The second approach used to evaluate the accuracy of 
genomic selection was cross-validation between panels. 
For each model, predictions were made by interchanging 
the training and validation panels: the Guadeloupe panel 
for training to predict the Reunion Island panel and vice 
versa. The four GS methods were compared with both 
cross-validation methods. Hyper-parameters and number of 
iterations were similar for each approach.

Estimates of marker effects were compared with two dif-
ferent genomic selection methods: BL and RR. We focused on 
four different traits: BR, SN, ADL as a percentage of neutral 
detergent lignin, and SCYLV incidence. These estimates were 
plotted to compare homogeneous shrinkage by ridge regres-
sion with the selective heterogeneous shrinkage made by BL.

Results

Phenotypic data

A broad range of variation was observed. For all traits, 
genotypic variance was significantly higher than zero 
within both panels (p  <  0.01). Broad sense heritabilities 
(H2) were high and varied from 0.71 to 0.96 for traits ana-
lyzed with general linear mixed models (Table  1). Coef-
ficients of genetic variation (CVg) revealed marked differ-
ences among traits: ADF in percent of neutral detergent 
fiber, ADL in percent of neutral detergent fiber, BR, and 
BC had the lowest values, below 10 %, while fiber digest-
ibility estimated with IVNDFD had the highest coeffi-
cient with 27.8 %, suggesting a large variability available 
for this biomass quality trait. Histograms of GV exhibit a 
Gaussian distribution for most of the traits except for dis-
ease resistance traits (Online resource 2). For all traits, 
mean values and coefficients of genetic variation were 
similar between the two panels.

Linkage disequilibrium and genetic diversity of the panels

Probabilities of pairwise marker associations exhibited a 
similar pattern in the two panels (Fig. 1). This suggested 
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that associations between markers were similar in the two 
panels, indicating a similar pattern of LD in the two pan-
els. The principal component analysis of the global sample 
led to major eigenvectors that bore a small proportion of 
the variation, in accordance with the large number of vari-
ables. Axis 1 bore 3.6 % of the total inertia, while the fol-
lowing axes showed a slow and continuous decrease. The 
first three axes of the principal component analysis sum-
marized about 10  % of the total marker inertia (Fig.  2). 
The projection of the 334 accessions on the first three 
components revealed no disjunction of the two panels and 
a similar organization of the genetic diversity in the REU 
and in the GUA panels.

Accuracy of genomic selection predictions

In the within-panel cross validation, the four genomic 
selection methods used exhibited similar median correla-
tion values between predicted and observed genetic values  
whatever the trait (Fig. 3, Online resource 3). Median cor-
relations between predicted and observed genetic values 
ranged from 0.29 to 0.62 for the REU panel and from 
0.11 to 0.50 for the GUA panel. Seven traits were better  
predicted in the REU panel than in the GUA panel: SN, 
BR, BC, ADF, RST, SCYLV, and SM. Two traits were 
better predicted in the GUA panel than in the REU panel: 
ADL and IVNDFD. The best accuracy was observed for 
the BR with a correlation of 0.62 between observed and 
predicted genetic values. The medians of the correlation 
values within the 5th—95th percentiles, obtained with 500 
random samplings, covered a wide range of values (Online 
resource 3).

In the cross validation between panels, all four pre-
dictive models yielded similar correlations between pre-
dicted and observed genomic selection whatever the trait 
(Fig.  4, Online resource 4). Marked differences were 
observed between traits, with correlations ranging from 
0.13 (non-significant) to 0.55 (significant). Morphologi-
cal traits (SD and SN), were predicted with correlations 
ranging from 0.31 to 0.47. Accuracy of predictions of 
bagasse lignocellulose traits was generally low to mod-
erate (ranging from 0.16 to 0.33) with best accuracies 
observed for the ADL in percent of neutral detergent 
fiber. Technological traits show low to moderate accura-
cies. BC was predicted with correlations ranging from 
0.24 to 0.34 and the BR with correlations ranging from 
0.42 to 0.55. Among the three disease resistances stud-
ied, SM was predicted with the lowest accuracy, from 

Fig. 1   Comparison log10 (P values) of pairwise Fisher exact tests 
between 1,499 markers within each panel

Fig. 2   Principal component analysis of 334 accessions genotyped 
with 1,499 independent DArT markers. a Biplot of the first two com-
ponents. b Biplot of the first and the third components. c Biplot of the 

second and third components. Genotypes of the GUA (Guadeloupe) 
panel are identified by circles and genotypes from REU (Reunion 
Island) panel by dots
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0.13 (non-significant) to 0.21. SCYLV was predicted 
with a correlation ranging from 0.27 to 0.39. For RST, 
the quantitative part of the resistance was predicted with 
a correlation ranging from 0.43 to 0.51. All correlation 
coefficients are detailed in Online resource 4. Estimates 
of marker effects obtained with BL and RR were com-
pared (Fig.  5). Marker effects were closely correlated 
between the two methods. For three of the four traits 
studied here (BR, SN, and ADL), the BL method has 

marker effects more shrunk toward zero than the RR 
method.

Discussion

Our results show that the level of genomic characterization 
that we applied allows the prediction of several agronomic 
traits between two sugarcane populations evaluated in two 

Fig. 3   Median correlations (Pearson’s coefficient) between observed 
genetic values (GV) and predicted genetic values (PGV) in a fivefold 
within-panel cross validation. Four genomic selection methods were 
compared. From darkest to lightest: bayesian LASSO, reproducing 
kernel Hilbert space, partial least square regression, and ridge regres-
sion. Ten traits were predicted: stalk diameter (SD), stalk number 
(SN), brix of the juice (BR), bagasse content (BC), acid detergent 
lignin as a percentage of neutral detergent fiber (ADL), acid detergent 
fiber as a percentage of neutral detergent fiber (ADF), in vitro neutral 
detergent fiber digestibility of the bagasse (IVNDFD), rust resistance 
(RST), yellow leaf disease resistance (SCYLV), and smut resistance 
(SM). a Cross validation within the GUA panel. b Cross validation 
within the REU panel. For RST, we focused on accessions which do 
not carry the major resistance gene Bru1. Vertical lines over the bars 
represent absolute value of the standard deviations

Fig. 4   Correlation coefficients (Pearson’s coefficient) between 
observed genetic values (GV) and predicted genetic values (PGV) 
obtained using cross validation between two independent panels. 
Four genomic selection methods were compared. From darkest to 
lightest: bayesian LASSO, reproducing kernel Hilbert space, par-
tial least square regression and ridge regression. Ten traits were 
predicted: stalk diameter (SD), stalk number (SN), brix of the juice 
(BR), bagasse content (BC), acid detergent lignin as a percentage of 
neutral detergent fiber (ADL), acid detergent fiber as a percentage of 
neutral detergent fiber (ADF), in vitro neutral detergent fiber digest-
ibility of the bagasse (IVNDFD), rust resistance (RST), yellow leaf 
disease resistance (SCYLV), and smut resistance (SM). a The GUA 
panel was used as training population to predict the REU panel. b 
The REU panel was used as training population to predict the GUA 
panel. For RST, we focused on accessions that do not carry the major 
resistance gene Bru1
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different geographic regions. This is a striking result for 
such a complex genome crop.

The conclusions are unlikely to be the result of a choice 
of statistical model. We assessed four models representative 
of the range of methods currently available for genomic 
selection, including a diverse statistical backgrounds (para-
metric, semi-parametric and nonparametric models, fre-
quentist versus bayesian approaches) and validation meth-
ods (cross validation within or between panels). No major 
difference in prediction accuracy was observed between the 
methods, while we observed marked differences between 
traits, with accuracies ranging from 0.11 (non-significant) 
to 0.62 (highly significant). The congruence between mod-
els confirms the general observations of Moser et al. (2009) 
and Heslot et al. (2012). The study of Moser et al. (2009) 
compared five regression methods applied for two traits: 
least square regression, bayesian ridge regression, random 
regression best linear unbiased prediction, PLSR, and non-
parametric support vector regression. They showed that 
the accuracy of these methods was similar except for least 
square regression which does not use information from all 
markers but from a subset of selected single-nucleotide pol-
ymorphisms (SNP). Heslot et al. (2012) tested 11 genomic 
selection methods on eight empirical datasets (Arabidopsis 
thaliana, wheat, barley and maize datasets). They observed 
that the accuracies of genomic selection models were sim-
ilar whatever the trait and the population used. However, 
they showed that empirical Bayes and elastic net methods 
produced a marker effect distribution with an extremely 
high kurtosis, whereas the ridge regression methods pro-
duced marker effect distribution that rarely departed from 
a normal distribution excess kurtosis. In our study, BL has 
shrunk estimated marker effects more toward zero than RR, 
as expected (Lorenz et al. 2011). Despite these differences, 
both methods give similar results. When a trait is controlled 
by more than 20 QTLs, the advantages of heterogene-
ous shrinkage over homogeneous shrinkage can disappear 
(Zhong et al. 2009). In sugarcane, genetic studies revealed 
a large number of small effect QTLs for yield components 

(Hoarau et  al. 2002; Aitken et  al. 2006; Wei et  al. 2010) 
and for quantitative disease resistance such as resistance 
to smut (Raboin et  al. 2001, 2003). The large number of 
QTLs controlling the traits we analyzed may explain why 
bayesian methods did not outperform RR method. Moreo-
ver, as pointed out by Jannink et al. (2010) in his review, 
bayesian methods are able to improve the accuracy of pre-
dictions only when markers were strongly associated with 
QTLs. Considering the important size of the sugarcane 
genome, we could believe that our marker coverage do not 
permit strong associations between markers and QTLs.  
A thousand and a half markers is certainly insufficient for 
a genome that can over 17,000 cM (Hoarau et  al. 2001). 
RR, RKHS, and BL rely on normality assumption whereas 
the partial least square does not. Histograms of genetic val-
ues for disease resistance traits (Online resource 2) deviate 
from normality, which, therefore, could have disadvantaged 
methods based on this assumption. Despite this deviation, 
we did not observe significant differences in prediction 
accuracy of PLSR and others methods.

Our levels of accuracy are of the same order of magni-
tude as those of other studies based on empirical data with 
conditions close to ours (Crossa et al. 2010; Rutkoski et al. 
2012). We observed correlations ranging from 0.13 to 0.55 
for cross validation between panels and from 0.11 to 0.62 
for cross validation within each panel.

Diverse features may be important for the success of a 
trait-prediction experiment through genome-wide geno-
typing. Persistence of LD across panels is an important 
prerequisite that affects prediction accuracy (Meuwis-
sen et al. 2001; De Roos et al. 2008). As demonstrated by 
simulation studies, marker density relative to population’s 
effective size (Ne) and LD in breeding material are main 
factors determining accuracy levels of genomic selection 
prediction (Calus et  al. 2008; Solberg et  al. 2008). The 
accuracy of genomic selection increased with the average 
r² between adjacent markers. We have shown that our two 
sugarcane panels shared a similar genetic diversity pattern. 
Linkages between marker pairs displayed a similar pattern 

Fig. 5   Comparisons of marker effects estimated with ridge regres-
sion (RR) and bayesian LASSO (BL) for the GUA panel. Biplot of 
estimates of marker effects (β̂) with ridge regression (RR) and bayes-

ian LASSO, for a stalk number (SN), b brix of the juice (BR), c acid 
detergent lignin (ADL) and d yellow leaf disease resistance (SCYLV)
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in the two panels. The recent bottleneck in the sugarcane 
breeding history suggests a small Ne value and may be the 
cause of the high level of LD (5 cM) (Jannoo et al. 1999; 
Raboin et  al. 2008). The second well-known factor influ-
encing accuracy of genomic selection prediction is the type 
of markers used. Solberg et al. (2008) showed that marker 
type and density determine the accuracy of predictions. In 
a simulated population, these authors observed that SNP 
density has to be two to three times greater than microsatel-
lite density to achieve comparable accuracy. Poland (2013) 
used a recent genotyping-by-sequencing (GBS) method in 
a set of 254 advanced wheat breeding lines. They compared 
the accuracy of genomic selection using these markers with 
the accuracy obtained with DArT markers at an equivalent 
density. Their results showed that GBS gives more accurate 
results than DArT. Despite the relative extensive LD in sug-
arcane, we believe that our marker coverage (1,499 DArT 
markers) is not sufficient to densely cover the large sugar-
cane genome (about 120 chromosomes) and to apprehend 
the totality of the haplotype diversity existing in our panel 
that represent a core sampling of elite germplasm from 
numerous current breeding programs. According to Raboin 
et al. (2008), in sugarcane, the minimum number of multi-
allelic locus-specific markers required to achieve a den-
sity of one or two markers every 5 cM should be between 
300 and 600. Genomic selection prediction for sugarcane 
could be improved by increasing marker density using 
multi-allelic markers like microsatellites or GBS markers. 
Ultimately, we could expect genomic selection predictions 
to be improved using pedigree information. The work of 
Crossa et  al. (2010) has shown that pedigree added with 
molecular information can improve predictions accuracy.

In this study, we used two populations that represent 
a core sampling of elite germplasm more or less recently 
bred that was picked up from about 30 different sugarcane 
breeding programs around the world. Our main purpose 
was to get an insight into the potential of genomic selec-
tion relative to complex traits in the context of sugarcane 
breeding, before possible future implementations applied 
to local selection programs. Regarding the modest number 
of markers so far used and the dominant nature of mark-
ers, the accuracy of genomic predictions between our two 
panels seems already very promising, since the ranges of 
accuracies are similar to those of several genomic selection 
experiments published for different plant or animal species. 
These results represent the first concrete illustration of the 
potential of genomic selection applications relative to com-
plex traits for sugarcane and also for polyploidy crops. The 
fact that the panels were evaluated in two distant islands, in 
several environments in both of them, and during several 
crop cycles for the majority of the traits gives credit to the 
potential value of genomic selection for concrete perspec-
tives in a particular sugarcane breeding program. The next 

step will be to experience the efficiency of genomic selec-
tion applied to a breeding program. Therefore, it would 
be interesting to test the performance of genomic selec-
tion applied to the hardly selected populations which are 
encountered in the first stages of breeding programs.
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