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Abstract Bayesian methods are a popular choice for

genomic prediction of genotypic values. The methodology

is well established for traits with approximately Gaussian

phenotypic distribution. However, numerous important

traits are of dichotomous nature and the phenotypic counts

observed follow a Binomial distribution. The standard

Gaussian generalized linear models (GLM) are not statis-

tically valid for this type of data. Therefore, we imple-

mented Binomial GLM with logit link function for the

BayesB and Bayesian GBLUP genomic prediction meth-

ods. We compared these models with their standard

Gaussian counterparts using two experimental data sets

from plant breeding, one on female fertility in wheat and

one on haploid induction in maize, as well as a simulated

data set. With the aid of the simulated data referring to a bi-

parental population of doubled haploid lines, we further

investigated the influence of training set size (N), number

of independent Bernoulli trials for trait evaluation (ni) and

genetic architecture of the trait on genomic prediction

accuracies and abilities in general and on the relative

performance of our models. For BayesB, we in addition

implemented finite mixture Binomial GLM to account for

overdispersion. We found that prediction accuracies

increased with increasing N and ni. For the simulated and

experimental data sets, we found Binomial GLM to be

superior to Gaussian models for small ni, but that for large

ni Gaussian models might be used as ad hoc approxima-

tions. We further show with simulated and real data sets

that accounting for overdispersion in Binomial data can

markedly increase the prediction accuracy.

Introduction

Genomic prediction (Meuwissen et al. 2001) methodology

is now well established for quantitative traits that follow

approximately a Gaussian phenotypic distribution. How-

ever, many important traits in plant breeding are dichoto-

mous. Especially reproductive traits such as haploid

induction ability and spontaneous chromosome duplication

rate, two traits important for doubled-haploid (DH) pro-

duction in maize (Prigge et al. 2012; Kleiber et al. 2012),

seed emergence (Yousefabadi and Rajabi 2012; Goggi

et al. 2007), male and female fertility (Sellamuthu et al.

2011; Dou et al. 2010) and hybrid sterility (Zhao et al.

2006) fall into this category. Using a Gaussian likelihood

function here ignores important features of the data,

namely its restriction to positive values and the dichoto-

mous nature of the observations.

In human genetics, dichotomous traits, such as outbreak

of a disease or not, are commonly observed (Wray et al.

2008) and genomic prediction methodology was already

successfully applied to such data sets (Lee et al. 2011). In

plant breeding, however, phenotypic observations are

usually made on independent, repeated Bernoulli trials.

Thus, the underlying phenotypic distribution of the data

can be characterized as being Binomial. An extension

of the genomic prediction methodology to Binomial
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generalized linear models (GLM) with appropriate link

function is therefore needed.

A common choice of link function is the logit link.

Logistic GLM predict the log-odds ratio of observing a

certain outcome (e.g., a seed being haploid). A great

advantage of logistic GLM is that they allow convenient

and efficient Gibbs-sampling computations also for Bino-

mial data, when using the auxiliary mixture sampling

parametrization developed by Frühwirth-Schnatter et al.

(2009).

A phenomenon commonly associated with Binomial and

other types of count data is overdispersion (Dey et al.

1997). Overdispersion means that the data observed are

more heterogeneous than expected under a Binomial

model, in which case the predicted variance is a direct

function of the conditional mean (conditional on the set of

predictors, e.g., the markers). The linkage disequilibrium

(LD) between markers and quantitative trait loci (QTL) is

seldom complete. Overdispersion can, therefore, always be

a problem in genomic prediction because under incomplete

LD, the Binomial sampling process is not the only source

of uncertainty. This is especially the case when pheno-

typing is done in field trials, where in addition to genetic

differences also non-genetic sources of variation are pres-

ent that cannot be fully accounted for. Under overdisper-

sion, a simple Binomial model will not fit the data

optimally, which can reduce the prediction accuracy.

Genomic prediction methodology for Binomial phenotypes

therefore needs to be able to account for overdispersion for

successful application to real world data sets.

Bayesian methods are a popular choice for genomic

prediction of genotypic values (Kärkkäinen and Sillanpää

2012). They might be coarsely separated into (1) marker

effects methods and (2) polygenic or total genetic effects

methods, where genetic effects are associated directly with

individuals (Kärkkäinen and Sillanpää 2012). The latter

might be understood as Bayesian versions of the popular

non-Bayesian GBLUP method. Numerous results point to a

superiority of GBLUP (both Bayesian and non-Bayesian)

when the trait is controlled by a large number of QTL with

small effects and to a superiority of marker effects methods

for traits with a more oligogenic architecture (Kärkkäinen

and Sillanpää 2012; Hayes et al. 2010; Clark et al. 2011;

Zhong et al. 2009). However, such a comparison is lacking

for traits with a Binomial phenotypic distribution.

Binomial GLM are the only statistically valid way of

analyzing Binomial data. However, practitioners applying

genomic prediction are mostly interested in identifying

superior genotypes for selection purposes. For this, a

standard Gaussian GLM might provide a useful ad hoc

approximation after an appropriate transformation of

the data. Furthermore, Binomial GLM can be associated

with considerable implementational and computational

overhead and complexity. Therefore, it seems worthwhile

to investigate whether and under which circumstances

Gaussian GLM are sufficient for practical applications.

Our objectives were to (1) implement logistic GLM for

genomic prediction of dichotomous traits with Binomial

phenotypic distribution that can account for overdispersion

and (2) compare for these traits the performance of

Bayesian GBLUP and marker effect-based methods.

Thereby we based our investigation on real and simulated

plant breeding data sets.

Materials and methods

We consider a segregating population of genotypes such as

F2 individuals or DH lines from a bi-parental cross, the

genotypes of which are genotyped and progeny of them are

either produced by self-pollination or cross-pollination

with a common tester. Let ni be the number of progeny

derived from genotype i. Each offspring was phenotyped

for a dichotomous trait, receiving a phenotypic value of

either one or zero, depending on which of two possible

events occurred (e.g., seed viable or not, seed haploid or

not). Thus, each offspring can be viewed as an independent

Bernoulli trial. The sum si over all ni offspring is the

phenotypic score of genotype i, which consequently fol-

lows a Binomial distribution.

Marker effects methods

To analyze this kind of data, we first used a Binomial GLM

based on marker effects

si�Bðpi; niÞ

pi ¼Lðb0 þ XiuÞ; ð1Þ

where pi is the probability of observing the ‘‘successful’’

outcome for the ith individual and Lðb0 þ XiuÞ its linear

predictor, with Lð�Þ denoting the logit link function. The

intercept is denoted by b0. The row vector Xi is a known

marker genotype incidence vector of the ith individual, for

the additive marker effects in u: The whole matrix X has

dimensions N 9 M (N = number of individuals, M =

number of biallelic markers). The marker genotypes were

coded with 1 and -1 for the two homozygous genotypes

and 0 for the heterozygous genotype and were scaled and

centered prior to analysis by subtracting the mean and

dividing by the standard deviation, a common practice in

regression models as discussed by de los Campos et al.

(2012). The term Bð�Þ denotes the Binomial probability

function with ni being known.

The auxiliary mixture sampling method (Frühwirth-

Schnatter et al. 2009) was used to facilitate Gibbs-sam-

pling. Briefly, in auxiliary mixture sampling, an aggregated
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latent variable y�i ¼ logðb0 þ XiuÞ þ �i is introduced for

each Binomial observation. The distribution of the resid-

uals �i is a negative log-gamma distribution, which is

approximated by a Gaussian mixture distribution. A second

latent variable ri is introduced as an indicator of the com-

ponent of the mixture. Then, conditional on yi
* and

ri, model (1) reduces to a linear model with Gaussian

likelihood function, yi
* as response and heteroscedastic but

fixed residual variances, which are determined by ri. The

major advantage of this procedure is that then standard

Gibbs-sampling methodology developed for Gaussian

models can be used.

The parameters (i.e., weights, means and variances) of

the components of the Gaussian mixture distributions were

precomputed and remained fixed during Gibbs-sampling.

We used the Matlab function ‘‘compute_mixture’’, obtained

by request to Frühwirth-Schnatter et al. (2009), for pre-

computing these parameters. For convenience, we provide

them tabulated up to ni = 3,500 in supplemental file S1.

The joint hierarchical prior distribution was

pðb0Þ � pðujjr2
uj
Þ � pðr2

uj
jp; m; S2Þ � pðpja; bÞ � pðS2Þ

� pðmÞ:

The priors for b0 and the marker effects were p(b0) � 1 and

pðujjr2
uj
Þ ¼ N ð0;r2

uj
Þ:

The prior variance of the effect of the jth marker (r2
uj

)

was

pðr2
uj
jm; S2Þ ¼ 0 with probability p

¼ v�2ðm; S2Þ with probability ð1� pÞ:

�

ð2Þ

From Eq. (2) follows that our method falls into the class,

the priors for the marker effects of which can be parame-

trized as Student’s t distributions with a non-zero proba-

bility mass over zero. Specifically, because the prior

probability mass over zero is introduced through r2
uj

instead

of through an explicit indicator variable, our method

belongs to the ‘‘BayesB’’ class (Meuwissen et al. 2001).

Therefore, it is referred to as ‘‘Binomial BayesB GLM’’ in

the remainder of this treatise.

Following Yang and Tempelman (2012) and Technow

et al. (2012), the hyperparameters p, m and S2 were asso-

ciated with prior distributions too and, thus, were estimated

from the data. The prior of S2 was a Gamma distribution

with shape and rate parameter equal to 0.1, and for m we

used the uninformative improper prior distribution

pðmÞ / ðmþ 1Þ�2
if 0\m\100

¼ 0 else:

�
ð3Þ

The prior for p was a Beta distribution. Its parameters were

different for each data set and are specified together with

their description given below.

We employed finite mixture models to account for

overdispersion (Frühwirth-Schnatter 2006). Model (1) now

generalizes to

si�
XK

k¼1

gkBðpik; niÞ

pik ¼Lðb0;k þ XiukÞ; ð4Þ

where k indexes the mixture component, K is the number of

components used and gk the weight of the kth component.

The marker genotypes were not scaled and centered,

because the sampling algorithm used would have required

a constant re-centering and re-scaling, which would have

been computationally prohibitive. The number of compo-

nents K is a constant, but we fitted the model with K

ranging from 2 to 12 and report results for the value of K

that gave best results. Further note that for K = 1, model

(4) reduces to the standard Binomial GLM in (1).

The joint prior distribution then is indexed by k as well

and a uniform Dirichlet distribution with concentration

parameter a1; . . .; aK ¼ 4 was used as prior for the weights

gk. We used the data augmentation technique as described

by Fruhwirth-Schnatter (2006, sect. 3.5) for sampling from

model (4). Here, a group indicator Si 2 f1; 2; . . .;Kg; is

introduced as missing data. Then, the parameters and hy-

perparameters for the kth mixture component are sampled

conditional on knowing Si (i.e., from all observations in

group Si = k) and Si conditional on knowing the parame-

ters and hyperparameters. Adopting this data augmentation

method has the advantage that conditional on Si, the

parameters can be sampled with standard Gibbs-sampling

methodology, while sampling Si conditional on the

parameters reduces to a straightforward classification

problem.

As a baseline method for comparison purposes, we also

fitted a Gaussian BayesB GLM commonly used for

Gaussian data in the literature (e.g., Technow et al. 2012;

Yang and Tempelman 2012). The model was

wi�Nðpi; r
2
eÞ

pi ¼ b0 þ Xiu ð5Þ

Here, wi ¼ arcsinð
ffiffiffiffiffiffiffiffiffiffi
si=ni

p
Þ; Nð�Þ denotes the Gaussian

density function and r2
e the residual variance. We scaled

and centered wi prior to the analysis. Note that pi is not

confined to the probability scale as for the Binomial GLM

above. The same joint hierarchical prior distribution as for

the Binomial BayesB GLM was used here. The additional

parameter re
2 was associated with an uninformative scaled

inverse Chi-square prior.

Samples from the joint posterior distribution of the

parameters were drawn by Gibbs-sampling, with a single

chain of 250,000 iterations, of which the first 100,000 were
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discarded as burn-in and only samples from every 50th

iteration were stored. Details on the sampling strategy for

auxiliary mixture sampling can be found in Frühwirth-

Schnatter et al. (2009) and details on data augmentation for

sampling from finite mixture models in Frühwirth-Schnatter

(2006). The fully conditional distributions (FCD) and

Gibbs-sampling strategy for BayesB are described in Yang

and Tempelman (2012). For sampling from the FCD of r2
uj

and m, Metropolis–Hastings algorithms were used as

described by Technow et al. (2012). For the standard

Binomial BayesB GLM as well as the Gaussian BayesB

GLM, the posterior means of b0 and the marker effects uj

were used as point estimates for predicting genotypic values.

In finite mixture models, the estimates of the posterior

means might be sensitive to ‘‘label switching’’ (Frühwirth-

Schnatter 2006). Therefore, we used the mean of the pos-

terior predictive distribution for predicting the genotypic

values of new observations. The posterior predictive dis-

tribution is robust against label switching (Frühwirth-Sch-

natter 2006).

All BayesB algorithms were implemented as C routines

compatible with the R software environment (R Develop-

ment Core Team 2011). The source code is provided in

supplemental file S2. The R package ‘‘coda’’ (Plummer

et al. 2010) was used to estimate effective sample sizes

(ESS) of marker effects for the standard Binomial and

Gaussian GLM. Because of ‘‘label switching’’, there seems

to be no straightforward way to estimate an ESS for our

finite mixture models.

Bayesian GBLUP methods

The Binomial GBLUP GLM was

si�Bðpi; niÞ

pi ¼Lðb0 þ aiÞ; ð6Þ

with ai denoting the total genetic effect of the ith

individual.

We used the JAGS Gibbs-sampling environment

(Plummer 2003) for GBLUP, which allows for convenient

specification and implementation of standard models. The

JAGS environment is very similar to the BUGS/Open-

BUGS environment (Thomas et al. 2006), but platform

independent and designed for integration with R. JAGS

uses auxiliary mixture sampling as well, however, its

implementation might differ somewhat from ours used for

BayesB.

The joint hierarchical prior distribution was

pðb0Þ � pðaijr2
aÞ � pðr2

aÞ ð7Þ

Again we used an uniform prior for b0. The prior for the

total genetic effects was MVNð0;Ar2
aÞ; where A is the

genomic relationship matrix, computed according to

Method 1 of VanRaden (2008) and ra
2 the additive genetic

variance component. We associated 1/ra
2 with an uninfor-

mative Gamma prior with shape and rate parameters equal

to 0.01.

In this case too, we considered a Gaussian GBLUP

GLM version as

wi�Nðpi; r
2
eÞ

pi ¼ b0 þ ai: ð8Þ

The set-up for the joint hierarchical prior distribution was

identical to the Binomial GBLUP GLM, with 1/re
2 also

associated with an uninformative Gamma prior with shape

and rate parameters equal to 0.01.

Sampling was done by running three independent

Gibbs-sampling chains for 10,000 iterations each. The first

5,000 iterations of each chain were discarded as burn-in

and only samples from every 3rd iteration stored after-

wards. The JAGS source code is provided in supplemental

file S3.

Wheat female fertility data set

The data comprises a bi-parental wheat (Triticum aestivum

L.) F2 population of size 243, genotyped with 28 markers.

The Binomial phenotypic scores are the number of seeded

spikelets (si) from a total number of spikelets per plant (ni).

The average si was 19.13, and the average ni was 25.15. For

the majority of plants, the ratio si/ni was around 0.9, some

plants had a ratio close to or exactly zero and there were

only few intermediate observations. We therefore per-

formed the analysis additionally for a subset of the data

with plants for which si/ni [ 0.75 (‘‘high fertility subset’’).

The number of remaining observations was 186, with an

average si of 23.88 and an average ni of 25.04. The phe-

notypic and the marker data were obtained by request to the

authors of Che and Xu (2012), who previously analyzed the

data. A more detailed description of the data set is given in

Dou et al. (2009).

Given the rather small number of markers, the Beta

distribution prior for p was Beta(a = 1, b = 9), meaning

that almost all markers are expected to have an effect a

priori. We used fivefold cross-validation (CV) for assessing

the performance of our models. Here, the whole data set is

split into five distinct subsets and each subset is in turn

predicted by a model fitted using the data from the

remaining four subsets as training set. The statistics of

interest are determined each time and averaged at the end

over the five runs. This whole process was repeated 25

times, with independent random splits each time. All

models were fitted on the same subsets and the differences

between them assessed for significance using standard
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frequentist paired t tests. The recorded statistic was the

Pearson correlation coefficient of predicted and observed

phenotypic values in the prediction set (predictive ability).

We refrained from calculating prediction accuracies com-

monly obtained by dividing the predictive ability by the

square root of the trait heritability (h2) because obtaining

sensible estimates of h2 for dichotomous traits is not trivial

if ni varies.

Maize haploid induction rate data set

In maize (Zea mays L.), DH lines are generated in-vivo by

pollinating source germplasm with pollen from so-called

‘‘inducer’’ genotypes. A proportion of the so obtained seeds

then contain embryos with haploid genome of maternal

origin. The proportion of haploid seeds in the total number

of seeds produced is commonly referred to as the haploid

induction rate (HIR).

Our example data set comprised a bi-parental experi-

mental maize F2 population used in a recently published

study on QTL mapping for HIR (Prigge et al. 2012). The

parents of the population were the European inducer line

UH400 and the Chinese inducer line CAUHOI. UH400 has

a HIR of around 0.08 (Prigge et al. 2012), CAUHOI of

around 0.02 (Li et al. 2009). The N = 185 F2 individuals

were genotyped with 90 polymorphic simple sequence

repeat (SSR) markers. The HIR was determined by polli-

nating a tester genotype with pollen from each F2 indi-

vidual and counting the number of haploid seeds in the

progeny. The average number of pollinated test cross seeds

per F2 individual was 1,108 but ranged from below 166 to

3,279. The average HIR was 0.053. The marker data were

retrieved from the supporting material of Prigge et al.

(2012), and the phenotypic data were obtained by request

to the authors of cited publication.

As previous research suggests an oligogenic or even

monogenic inheritance of HIR (Barret et al. 2008; La-

shermes et al. 1988), we chose Beta(a = 8, b = 2) as prior

for p, which concentrates most of the probability mass

around 0.8. Here, we used 25 times repeated tenfold CV,

which results in larger training sets as compared with

fivefold CV.

Simulated data set

For investigating the influence of factors such as genetic

architecture, population size and number of Bernoulli trials,

we simulated a bi-parental DH population with size 500.

The genome consisted of 10 chromosomes, each of 100 cM

length. There were 50 equally spaced markers and 15 QTL

per chromosome. The meiosis events for generating the DH

lines in silico were simulated according to the Haldane

mapping function, using the R package ‘‘hypred’’ (Technow

2011). The polygenic trait architecture was simulated by

assigning additive effects, defined according Falconer and

Mackay (1996), drawn from a standard Gaussian distribu-

tion to all 150 QTL. To simulate an oligogenic architecture

with small and large QTL, we assigned additive effects

drawn from a Gamma distribution with parameters scale =

1.66 and shape = 0.4 (Meuwissen et al. 2001) to a random

subset of five of the QTL per chromosome and effects of

zero to the remaining QTL. The QTL effects were summed

according to the QTL genotypes of each DH line to create a

raw genotypic score gi, which was additionally scaled and

centered. These scores were then transformed to the prob-

ability scale by computing pi ¼ /ð/ðgi=maxðgiÞi¼1...500Þ �
2:12Þ; where / is the standard Gaussian cumulative distri-

bution function. This transformation assured that the true

probability parameters of the genotypes were within the

interval [0, 0.1]. Phenotypes were simulated by drawing the

number of observed events si from a Binomial distribution

with probability parameter equal to pi. The number of

independent Bernoulli trials ni was ni
* ? 1, where ni

* is a

random number from a Poisson distribution. The rate

parameter k of this distribution was set to 25, 50, 100, 250

and 500. For each combination of trait architecture and

k, we created 50 independent subdivisions of the data into

training and prediction set. The training set was used for

fitting the model. As sizes of the training set, we considered

N = 100, 200 and 300. The true genotypic values pi were

known from simulation. Thus, we could compute the pre-

diction accuracy of the models as the Pearson correlation

between predicted and true pi values for the prediction set

individuals.

To avoid incorporating information on the genetic

architecture that might be unavailable in practice, we used

Beta(a = 0.9, b = 0.9) as prior for p. This prior has its

probability peaks close to zero and close to one. It suggests

that we either expect a polygenic or oligogenic trait

architecture, without completely ruling out anything in

between. We observed better convergent properties with

this prior than with a completely uniform prior. To facili-

tate computations, the number of independent Gibbs-sam-

pling chains for GBLUP was reduced to 1.

The marker and QTL genotypes of the 500 individuals,

their phenotypes and true probability parameters as well as

the simulated QTL effects are provided as supplemental

file S4.

We further performed a simulation to investigate the

effects of overdispersion on the prediction accuracies and

to compare the standard Binomial BayesB GLM with the

finite mixture implementation. For this we used the marker

data described above together with the ni values corre-

sponding to k = 25 and the pi values from the oligogenic
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trait. Overdispersion was simulated according to a Beta-

Binomial sampling process by drawing pi
* from a Beta

distribution with parameters a = j pi and b = j(1 - pi).

Then we redrew si from a Binomial distribution with

probability parameter equal to pi
* and size parameter equal

to ni, as shown above. Thus, pi
* was drawn from a Beta

distribution with mean equal to pi and a standard deviation

(SD) that is determined largely by j. The smaller j, the

higher the SD and thereby the degree of extra-binomial

variation or overdispersion. For the simulations, we con-

sidered j = 10 (100, 1,000). The exact value of the SD

also depends on pi, but to give an example, for pi = 0.05,

j = 10 results in a SD of 0.066, j = 100 in a SD of 0.022

and j = 1,000 in a SD of just 0.007. The simulation was

repeated 50 times for each combination of j and N (for

which we again considered N = 100 (200, 300)).

Identifiability is always a problem in GLM when the

number of parameters is larger than the number of obser-

vation, i.e., when N \ M. However, by using proper,

informative prior distributions, parameter estimation,

Bayesian learning and posterior prediction is still possible

(Gelfand and Sahu 1999). The huge success of Bayesian

marker effects methods for genomic prediction (Kärkkäi-

nen and Sillanpää 2012) shows that especially posterior

prediction seems not to be affected by the lack of identi-

fiability in these cases. However, as discussed by Früh-

wirth-Schnatter (2006), finite mixture regression models

suffer especially from nonidentifiability due to the added

complexity and flexibility. Consequently, trying to fit

model (4) with the full set of M = 500 markers led to non-

convergent Gibbs-sampling chains and non-sense results.

We therefore reduced the number of markers to 250 for

N = 100 to 300 for N = 200 and to 350 for N = 300 by

randomly sampling from the full marker set. For direct

comparison, the standard Binomial GLM (1) was fitted

with these reduced marker sets as well and in addition with

the full set of M = 500 markers.

Results

Wheat female fertility data set

For the full data set, a finite mixture Binomial BayesB

GLM with K = 12 gave the highest average predictive

ability of 0.555. The predictive abilities observed for the

other models were significantly lower at around 0.500

(Table 1).

For the ‘‘high fertility subset’’, the highest average

predictive ability of 0.202 was observed for the standard

Binomial BayesB GLM (Table 1). The Binomial GLM had

generally significantly higher predictive abilities than their

Gaussian counterparts, for both the BayesB as well as the

GBLUP methods. For both the standard Binomial and the

Gaussian GLM, method BayesB had a significantly higher

predictive ability than GBLUP.

Maize haploid induction rate data set

Here, the highest average predictive ability was 0.684

observed for the Gaussian BayesB GLM (Table 1). For this

data set, the Gaussian GLM had significantly higher pre-

dictive abilities than their Binomial counterparts. BayesB

had again a significantly higher predictive ability than

GBLUP, for both the Binomial and the Gaussian GLM. A

finite mixture Binomial BayesB GLM with K = 2 yielded

a slightly but significantly higher predictive ability than the

standard Binomial BayesB GLM.

The ESS for marker effects (BayesB) and total genetic

effects (GBLUP) for the Gaussian models were in most

cases close to the actual sample sizes (3,000 for BayesB

and 5,000 for GBLUP) (Table 2). The ESS for the Bino-

mial models, however, were considerably lower than the

actual sample sizes but always above 400.

Simulated data sets

Results for the polygenic trait architecture showed that the

average prediction accuracy increased with increasing

N, from 0.686 at N = 100, to 0.781 at N = 200 and to

0.819 at N = 300 and with increasing k, from 0.567 at

k = 25, to 0.801 at k = 100 and to 0.898 at k = 500

(Table 3). The increase in prediction accuracy with

increasing k thereby depended on the size of N. For

example, the average increase from k = 25 to k = 100

amounted to 0.282 at N = 100 and 0.230 at N = 200, but

just 0.190 at N = 300. Analogously, the increase in pre-

diction accuracy with increasing N depended on the level

of k. For example, the increase of N from 100 to 200

increased the prediction accuracy by 0.156 at k = 25, by

0.105 at k = 100, but only by 0.050 at k = 500.

Binomial GLM tended to have higher prediction accu-

racies than Gaussian GLM for k\ 250, but for greater

values of k the prediction accuracy of the Gaussian GLM

was equal or higher (Table 3). The superiority of Binomial

over the Gaussian GLM was highest for k = 25. GBLUP

had in most cases a slightly higher prediction accuracy than

BayesB, but there were no obvious trends regarding the

relative superiority of BayesB and GBLUP with respect to

N or k.

Virtually, the same trends with regard to N and k as for

the polygenic trait architecture were observed for the oli-

gogenic trait architecture (Table 3). In the case of BayesB,

the Binomial GLM had always significantly higher pre-

diction accuracy compared with Gaussian GLM, with

greater differences for lower values of k. For GBLUP,
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Binomial GLM had higher prediction accuracy until

k = 100, after which Gaussian GLM had prediction

accuracies of equal or slightly higher size. On average

(across Binomial and Gaussian GLM), BayesB was only

slightly superior to GBLUP. However, the differences

between the Binomial BayesB GLM, which had the highest

prediction accuracy in all cases, and the Binomial GBLUP

GLM were considerably greater than this.

For the simulated overdispersion data sets, by far the

lowest prediction accuracies were observed for j = 10,

i.e., for strong overdispersion (Table 4). The highest pre-

diction accuracies were observed for j = 1,000, but the

average difference to j = 100 was with 0.052 marginal

compared with the average difference between j = 10 and

j = 100, which was 0.288. The average prediction accu-

racies increased with increasing N, from 0.435 at N = 100

to 0.549 at N = 200 and to 0.609 at N = 300 (Table 4).

The standard Binomial BayesB GLM fitted with

M = 500 tended to have slightly higher prediction accu-

racies than the same model fitted with the reduced marker

sets (Table 4). Because the differences were marginal, the

comparison between models will be focused on the com-

parison between the standard GLM with M = 500 and the

finite mixture Binomial GLMs (with K = 2). For j = 10,

the highest prediction accuracies were observed for the

finite mixture Binomial GLM (Table 4). The difference

thereby increased with increasing N, from 0.044 at

N = 100, to 0.130 at N = 200, to 0.171 at N = 300. The

increase in difference thereby mostly came from an

increased prediction accuracy of the finite mixture Bino-

mial GLM. The prediction accuracy of the standard

Binomial GLM changed only marginally. For j = 100 and

j = 1, 000, however, the standard Binomial GLM had

higher (at N = 100 and N = 200) or virtually equal (at

N = 300) prediction accuracies (Table 4).

Discussion

Influence of training set size and number

of Bernoulli trials

Prediction accuracies increased with increasing N, as

expected and already observed in previous research for

Gaussian traits (Zhong et al. 2009). We also observed a

considerable increase in prediction accuracy with increas-

ing k, i.e., ni. The higher ni, the better will si represent the

true probability parameter pi of the individual. Thus, an

increase in k will have the same effect as an increase in h2,

which was previously recognized as major factor influ-

encing prediction accuracy (Villumsen et al. 2009).

Interestingly, a high k could almost compensate for low

N. For example, for N = 100 and k = 500 the prediction

accuracies were as high or even higher than at N = 300

and k = 100. An elaborate study about the optimal allo-

cation of resources, taking the relative costs of increasing N

and k into account, should be conducted to investigate the

optimal combination of N and k under a restricted total

budget. We speculate that k should always be raised to high

values, because this would be absolutely neutral with

respect to genotyping costs. However, we recognize that k
is biologically constrained in many cases, for example by

the number of progeny seeds of a plant. We limited our-

selves to pi within the interval [0, 0.1]. The effect of k will

likely be smaller for values of pi closer to 0.5, where a

Gaussian distribution will be approached already for much

Table 1 Average predictive ability of the wheat female fertility data

set, the high fertility subset of this data set and maize haploid

induction data from 25 replications of fivefold (wheat) and tenfold

(maize) cross-validation for the Binomial and Gaussian BayesB and

GBLUP generalized linear models (GLM)

Data set
BayesB GBLUP

Binomial (K = 1) Binomial (K [ 1) Gaussian Binomial Gaussian

Wheat female fertility 0.511a 0.555b 0.515ad 0.505ed 0.495e

Wheat high fertility subset 0.202a 0.180b 0.177bc 0.168c 0.134d

Maize haploid induction 0.654a 0.667b 0.684c 0.649d 0.666b

For BayesB, the Binomial GLM was fitted both without (K = 1) and with accounting for overdispersion (K [ 1). For the wheat female fertility

data, K = 12, for the high fertility subset from this data set, K = 2, and for the maize haploid induction data set, K = 2. Values within a row with

common letters are not statistically different at an a level of 0.05 in paired t tests

Table 2 Mean effective sample size of marker effects (BayesB) and

total genetic values (GBLUP), for the standard Binomial and

Gaussian BayesB and GBLUP GLM, averaged over cross-validation

runs for the wheat female fertility and maize haploid induction data

sets

Data set
BayesB GBLUP

Binomial Gaussian Binomial Gaussian

Wheat female fertility 870 2,741 532 3,847

Wheat high fertility

subset

1,188 2,872 408 2,399

Maize haploid

induction

433 3,000 407 4,882
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lower values of k. However, while increasing k has the

effect of better representing the information in the data

provided by the N biological replicates, the actual amount

of information can only be increased by increasing N.

Conversely, if N and thereby the information content of the

data becomes too low, the prediction accuracy will inevi-

tably deteriorate strongly, regardless of how high k is.

Therefore, the most critical factor remains N. This is

apparent from the fact that even at very low k, accurate

prediction is possible when N is high. This is in fact the

typical scenario encountered in human genetic studies,

where ni = 1 but often N � 1,000 (Wray et al. 2008; Lee

et al. 2011).

Model comparison based on simulated data sets

As expected, BayesB tended to be superior under an oli-

gogenic trait architecture and GBLUP under a polygenic

trait architecture. Numerous researchers found similar

results for traits displaying a Gaussian phenotypic distri-

bution (Kärkkäinen and Sillanpää 2012; Hayes et al. 2010;

Clark et al. 2011; Zhong et al. 2009). Kärkkäinen and Sil-

lanpää (2012) previously also reported that Bayesian mar-

ker effect models are superior to GBLUP models under an

oligogenic trait architecture for binary traits (i.e., with

ni = 1 for all i). Thus, we can confirm these observations

for Binomial phenotypic distributions, too. However, the

differences between BayesB and GBLUP were rather small,

especially under the polygenic trait architecture. The choice

between BayesB and GBLUP might therefore be driven by

convenience considerations regarding computation and

implementation. However, computational requirements of

Binomial GBLUP GLM were not necessarily lower than

those of Binomial BayesB GLM in our study. We used

MCMC algorithms also for the Gaussian models. We are

aware that approximate but fast expectation–maximization

Table 3 Average prediction accuracy over 50 replications for the

simulated data set with polygenic and oligogenic trait architecture, for

the Binomial and Gaussian BayesB and GBLUP generalized linear

models

N k BayesB GBLUP

Binomial Gaussian Binomial Gaussian

Polygenic architecture

100 25 0.452a 0.420b 0.452a 0.432a

50 0.590a 0.558b 0.623c 0.592a

100 0.726a 0.694b 0.736c 0.727a

250 0.810ab 0.800a 0.820b 0.829c

500 0.863a 0.855b 0.865a 0.868d

200 25 0.609a 0.583bc 0.607a 0.582c

50 0.715a 0.696b 0.729c 0.713a

100 0.829a 0.809b 0.836c 0.830a

250 0.865a 0.856b 0.866a 0.875c

500 0.909a 0.906b 0.908a 0.911c

300 25 0.687a 0.658b 0.674c 0.650d

50 0.762a 0.739b 0.774c 0.749d

100 0.858a 0.848b 0.861c 0.857a

250 0.894a 0.891b 0.893a 0.900c

500 0.925a 0.923b 0.924b 0.926a

Oligogenic architecture

100 25 0.613a 0.537b 0.607a 0.555c

50 0.704a 0.637b 0.693c 0.654d

100 0.803a 0.768b 0.787c 0.790c

250 0.866a 0.805b 0.838c 0.833d

500 0.917a 0.872b 0.878c 0.877c

200 25 0.746a 0.706b 0.738a 0.700bc

50 0.778a 0.731b 0.770c 0.738b

100 0.874a 0.841b 0.844bc 0.846c

250 0.927a 0.879b 0.891c 0.892c

500 0.947a 0.918b 0.918bc 0.919c

300 25 0.796a 0.750b 0.780c 0.740d

50 0.819a 0.790b 0.814a 0.783c

100 0.915a 0.880b 0.880b 0.881b

250 0.946a 0.910b 0.914c 0.915d

500 0.958a 0.936b 0.936bc 0.935c

The training set size is denoted by N, the parameter of the Poisson

distribution used for drawing ni is denoted as k. Values within a row

with common letters are not statistically different at an a level of 0.05

in paired t tests

Table 4 Average prediction accuracy over 50 replications for the

simulated data set with overdispersion using the Binomial BayesB

GLM

N j K = 1 K = 2

M = 500 M \ 500

100 10 0.278ab 0.267a 0.322b

100 0.505a 0.490b 0.420c

1,000 0.577a 0.571a 0.485b

200 10 0.263a 0.266a 0.393b

100 0.665a 0.659a 0.634b

1,000 0.708ac 0.699bd 0.661cd

300 10 0.310a 0.315a 0.481b

100 0.706a 0.703a 0.706a

1,000 0.757a 0.752b 0.751ab

The training set size is denoted by N, the parameter controlling the

overdispersion strength is j. The number of mixture components is

denoted by K, with K = 1 indicating that overdispersion is not

modeled and K = 2 that it is.The value of the rate parameter of the

Poisson distribution used for drawing ni was k = 25. For the K = 2

models, the number of markers was reduced to M = 250 (300, 350) at

N = 100 (200, 300). The K = 1 models were fitted with the full data

set of M = 500 markers as well as with the reduced set of markers

used for the K = 2 models (M \ 500). Values within a row with

common letters are not statistically different at an a level of 0.05 in

paired t tests
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algorithms are available, for which computation times are

almost negligible (Kärkkäinen and Sillanpää 2012). Nev-

ertheless, it seems that our BayesB method, with hyperp-

riors on hyperparameters, cannot be fitted by them

(Kärkkäinen and Sillanpää 2012). We furthermore decided

against their use to be able to compare Binomial and

Gaussian GLM on exactly the same terms. Recently, an

improved auxiliary mixture sampler for logistic GLM was

developed, which has the potential of substantially

decreasing the computation times for the Binomial GLM

due to increased efficiency (Fussl et al. 2012).

The greatest gains in prediction accuracy by using

Binomial GLM were observed for smaller values of

k, where the distribution of the data is definitely non-

Gaussian, and for pi values far removed from 0.5. For

higher values of k, the distribution of the data will rapidly

approach a Gaussian distribution. Consequently, results

from Gaussian and Binomial GLM converged for the

highest values of k considered, at least under the polygenic

trait architecture. Under the oligogenic trait architecture,

the best Binomial model (BayesB) remained consistently

superior over its Gaussian counterparts, albeit with reduced

differences. We speculate that this is so because usage of

the correct model and likelihood function is more impor-

tant when estimating effects of single markers than when

estimating total genetic effects of individuals, because the

latter might be more robust with regard to the distribution

underlying the data. With true probability parameters pi

closer to 0.5, the distribution of the data would approach a

Gaussian distribution earlier, i.e., for lower values of k.

However, the range of pi chosen by us reflects the most

interesting situation of traits deviating substantially from a

Gaussian distribution, where finding better alternatives

than the standard Gaussian GLM is most important. This

range seems also of greatest relevance in practice. For

example, both experimental data sets used in this study

exhibit probability parameters close to 1.0 or 0.0. This will

also be the case for traits such as seed emergence, where

the emergence rate of reasonably well-adapted material

almost always exceeds 0.90 (Goggi et al. 2007).

The standard Gaussian GLM used commonly in genomic

prediction, which we used as baseline for comparison with

our Binomial GLM, make the simplifying assumption of

homogeneous residual variances. Thus, they ignore that

some individuals will have been phenotyped more precisely

than others, depending on the size of ni. Our Binomial GLM

automatically incorporate the differences in ni, via het-

eroscedastic residual variances (Frühwirth-Schnatter et al.

2009). The resulting weighing of the observations in the

training set by ni is therefore another advantage of Binomial

GLM over the standard Gaussian GLM. However, in

Gaussian GLM as well, records could be explicitly weigh-

ted by 1/ni, which could alleviate this disadvantage.

Our results suggest that a Gaussian GLM might indeed

provide a useful approximation on an ad hoc basis when

the phenotypic distribution approaches a Gaussian distri-

bution. However, real-world data are too complex to know

in advance when exactly this will be the case. Therefore,

when dealing with Binomial data, the performance of a

Binomial GLM should always be evaluated before relying

on a Gaussian approximation.

Modeling overdispersion

Our simulations clearly showed that accounting for over-

dispersion with finite mixture models is vital and improves

prediction accuracy considerably, when there is strong

overdispersion present in the data. Nonetheless, noniden-

tifiability still was an issue, especially for N = 100, where

the finite mixture models performed significantly worse

than the standard model under higher values of j, i.e.,

when overdispersion was less pronounced. The better

performance for j = 10, however, showed that under

strong overdispersion the greater flexibility of the finite

mixture models overcompensates for problems due to

nonidentifiability.

Comparing the results for j = 1,000 with the results of

the corresponding scenario in Table 3 (for which concep-

tually j ¼ 1) shows that even low degrees of overdis-

persion can depress prediction accuracies. Thus, finite

mixture models could still be of advantage under low

degrees of overdispersion, but presumably only with very

high N.

How much nonidentifiability depresses prediction

accuracy will depend on the size of N compared with M. At

higher N, we were able to fit more markers without severe

nonidentifiability problems, as long as the increase in

M was under proportional to the increase in N.

Owing to extensive long-range LD in bi-parental pop-

ulations, a high marker density is not required for accurate

genomic predictions. This is apparent from the only very

marginal difference in prediction accuracy between the

standard Binomial GLM fitted with the full and reduced

marker sets. Reducing the number of markers for improv-

ing identifiability of finite mixture GLM therefore does not

reduce the LD between markers and QTL to such an extent

as to negatively affect the performance of the model. In

most other types of populations encountered in animal or

plant breeding, the marker density will be much more

critical. How finite mixture Binomial GLM can be applied

under such scenarios remains to be studied.

Wheat female fertility data set

The typical value of ni observed in this data set corresponds

to our k = 25 scenario in the simulated data. Thus, in line
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with our findings on the clear superiority of Binomial GLM

under low k, we found that Binomial GLM performed better

than the Gaussian alternatives. For the full data set, the best

model was the finite mixture Binomial BayesB GLM, indi-

cating that there indeed was overdispersion present in this

data set. The standard Binomial BayesB GLM was the best

model for the ‘‘high fertility subset’’, however. Thus, either

there was no overdispersion, or it could not be modeled due

the nonidentifiability problems mentioned above.

Che and Xu (2012), who previously analyzed this data

set, also found that using a Binomial GLM (with probit

link, though) delivers considerably better QTL detection

results than a Gaussian GLM. They also strongly argued in

favor of using Binomial GLM for Binomial data, if only for

the sake of statistical rigor, regardless of the quality of the

approximation by Gaussian GLM. The authors also

reported the presence of major QTL, explaining why

BayesB tended to outperform GBLUP.

The low level of the predictive ability generally

observed for the ‘‘high fertility subset’’ is most likely

attributable to the low marker density, which left some of

the chromosomes completely uncovered. The fertility rates

of the full data set are concentrated at very high and very

low values. Therefore, the model mostly captures the dif-

ferentiation between these two groups. Thus, what is pre-

dicted is mainly whether a new observation has a very low

or very high fertility. Doing this correctly is obviously

easier than to predict the right order within any of these two

groups (e.g., within the ‘‘high fertility subset’’) and may be

done with lower marker coverage, which may explain the

higher predictive ability observed for the full data set.

The presence of a number of observations far from the

bulk of the data, with numbers of seeded spikelets very

close to or exactly zero, might be an indication of zero-

inflation, i.e., the presence of more zeros in the data than

expected from the (overdispersed) Binomial model. Thus,

incorporating zero-inflation into the models, as is often

done for Poisson data (Meng 1997), might be worthwhile.

Maize haploid induction data set

Our results for the maize data set indicated that in bi-

parental populations an average of about ten markers per

chromosome is sufficient for obtaining decent levels of

predictive ability. Results of our simulations showed that

Binomial and Gaussian GLM converged for the highest

value of k = 500. Therefore, we did not expect the Bino-

mial GLM to perform notably better than the Gaussian

GLM for this data set, where the typical value of ni was

greater than 1,000. That the finite mixture Binomial

BayesB GLM yielded a higher prediction accuracy than the

standard Binomial GLM is again an indication of over-

dispersion in the data.

Prigge et al. (2012) detected several major QTL within

this data set, again explaining why BayesB outperformed

GBLUP significantly. To generate a sufficient number of

DH lines and to exploit the entire genetic variance present

in the source germplasm, a high HIR of the inducers is

desired, especially because many of the haploid seedlings

will not survive the subsequent chromosomal doubling

process. Currently, the HIR of known inducers rarely

exceeds 8 %. Therefore, breeding efforts are underway for

improving HIR and based on our results, genomic predic-

tion of HIR could be a valuable tool in this process, given

the generally high predictive abilities observed.

In summary, we found that Binomial GLM, based either

on marker effects or on total genetic values, can increase

the accuracy of the predictions considerably as compared

with Gaussian GLM. We further found that accounting for

overdispersion can increase prediction accuracy and is vital

under strong overdispersion.

Acknowledgements This research was funded by the German

Federal Ministry of Education and Research (BMBF) within the

AgroClustEr Synbreed—Synergistic plant and animal breeding (FKZ:

0315528d).

References

Barret P, Brinkmann M, Beckert M (2008) A major locus expressed in

the male gametophyte with incomplete penetrance is responsible

for in situ gynogenesis in maize. Theor Appl Genet 117:581–94

de los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, Calus

MPL (2012) Whole genome regression and prediction methods

applied to plant and animal breeding. Genetics. doi:10.1534/

genetics.112.143313

Che X, Xu S (2012) Generalized linear mixed models for mapping

multiple quantitative trait loci. Heredity 109:41–49

Clark S, Hickey JM, van der Werf JH (2011) Different models of

genetic variation and their effect on genomic evaluation. Genet

Sel Evol 43:18

Dey D, Gelfand A, Peng F (1997) Overdispersed generalized linear

models. J Stat Plan Infer 64:93–107

Dou B, Hou B, Xu H, Lou X, Chi X, Yang J, Wang F, Ni Z, Sun Q

(2009) Efficient mapping of a female sterile gene in wheat

(Triticum aestivum L.). Genetics res 91:337–43

Dou B, Hou B, Wang F, Yang J, Ni Z, Sun Q, Zhang YM (2010)

Further mapping of quantitative trait loci for female sterility in

wheat (Triticum aestivum L.). Genetics res 92:63–70

Falconer DS, Mackay TFC (1996) Introduction to quantitative

genetics, 4th edn. Longmans Green, Harlow
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