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Abstract Recent progress in genotyping and resequenc-

ing techniques have opened new opportunities for deci-

phering quantitative trait variation by looking for

associations between traits of interest and polymorphisms

in panels of diverse inbred lines. Association mapping

raises specific issues related to the choice of appropriate

(i) panels and marker-densities and (ii) statistical methods

to capture associations. In this study, we used a panel of

314 maize inbred lines from the dent pool, composed of

inbred material from public institutes (113 inbred lines)

and a private company (201 inbred lines). We showed that

local LD was higher and genetic diversity lower in the

material of private origin than in the public material. We

compared the results obtained by different software for

identifying population structure and computing relatedness

among lines, and ran association tests for earliness related

traits. Our results confirmed the importance of the mite

polymorphism of Vgt1 on flowering time, but also showed

that its effect can be captured by zmRap2.7 polymorphisms

located 70 kb apart. We also highlighted associations with

polymorphisms within genes putatively involved in lignin

biosynthesis pathway, which deserve further investigations.

Introduction

Association mapping, also referred to as linkage disequi-

librium (LD) mapping, has been proposed to dissect the

genetic basis of quantitative traits in plants. After pre-

liminary attempts in the 1990s (Bar-Hen et al. 1995), it

really developed in the early 2000s thanks to new statistical

models (Thornsberry et al. 2001). It has been since then

increasingly used for dissecting traits of interest, for

example in barley (Lorenz et al. 2010), maize (Thornsberry

et al. 2001; Flint-Garcia et al. 2003), or Arabidopsis tha-

liana (Atwell et al. 2010; Aranzana et al. 2005). Compared

to linkage based QTL detection, association mapping

addresses the relationship between genetic marker poly-

morphism and phenotypic variation within a population

composed of diverse genotypes, ideally non-related by

pedigree to each other. It is expected that the recombina-

tion events accumulated over the generations leading to

such a population have broken the associations (or LD)

between loci except for those that are physically close.

Hence, compared to conventional QTL detection experi-

ments, where confidence intervals of the estimated QTL

positions often exceed 10 centimorgans (cM), association-

mapping studies are expected to provide a much higher

resolution, depending on the extent of LD (Rafalski 2002).
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Organizing panels of materials and understanding their

properties is of major importance in order to optimize the

genotyping strategies and refine the analysis of traits.

Panels assembled from existing material might not be

ideal for association mapping. First, population structure

within a panel causes LD between distant and physically

unlinked loci and may therefore generate false-positive

associations, if not controlled properly. The control of

population structure was first applied in a human genetics

context (Pritchard et al. 2000) and then widely spread to

animals and plants studies (Thornsberry et al. 2001). Sec-

ond, relatedness among lines creates correlations between

the performances of the individuals. Yu et al. (2009)

showed that the correction for pair wise relatedness in a

mixed model significantly decreased false positives as

compared to corrections for population structure only.

Price et al. (2006) suggested that structure and relatedness

could be both taken into account by including principal

component analysis (PCA) axes as covariates in the anal-

ysis. Several software using different methods and algo-

rithms are available to evaluate population structure with

molecular data, (STRUCTURE (Pritchard et al. 2000),

Locus Miner (Veyrieras, personal communication, used by

Stracke et al. (2009))) or relatedness among lines (Eigen-

soft (Price et al. 2006), SPAGeDi (Hardy and Vekemans

2002), Emma (Kang et al. 2008)). These aspects are par-

ticularly important in maize for which climatic adaptation

was accompanied by population differentiation (Camus-

Kulandaivelu et al. 2006). This initial trend was further

reinforced by hybrid breeding, which led to the definition

of heterotic groups. Finally, high intensity selection led to

highly related inbred lines with complex pedigree structure

(Mikel and Dudley 2006; Van Inghelandt et al. 2010).

In order to find associations, it is necessary to have

sufficient LD between QTL and polymorphisms that are

analyzed. Depending of the LD extent (Rafalski 2002), two

approaches are being used in association studies: (i) can-

didate gene approach, where the objective is to validate the

effect of a specific gene and ideally identify within this

gene the polymorphisms underlying trait variation, or (ii)

genome-wide association (GWA) approach, using markers

whose function is not known a priori to cover the whole

genome (Salvi et al. 2007). Linkage disequilibrium patterns

vary according to the species, the population which is

considered (Flint-Garcia et al. 2003; Tenaillon et al. 2001),

and among the chromosomal regions (Thornsberry et al.

2001). In maize, LD decays to less than 20 % (as measured

with r2 statistics) within 1 kb in maize landraces (Tenaillon

et al. 2001). It decays below 10 % after approximately 2 kb

in diverse inbred lines (Remington et al. 2001; Wilson et al.

2004). These cases are all appropriate for a candidate gene

approach if the causal polymorphism is located within the

gene sequence or very close nearby, but necessitate a high

marker density if no candidate gene is available. In con-

trast, LD can extend to 100–500 kb in commercial inbred

lines (Ching et al. 2002; Jung et al. 2004; Van Inghelandt

et al. 2011) and Belo et al. (2007) suggested that GWA in a

maize panel including elite material is possible with 8,590

marker loci. This number is already achievable with high

throughput genotyping techniques. Such LD levels can also

be interesting in candidate gene approach if causal poly-

morphisms are distant regulators. This situation is high-

lighted by Salvi et al. (2007), who demonstrated that the

allelic variation responsible for the flowering time QTL

Vgt1 was confined to a 2 kb intergenic region located

70 kb upstream from zmRap2.7, an AP2-like flowering

time gene, supporting a cis-acting transcription-regulatory

role of Vgt1 on this gene (confirmed by expression studies).

It is thus of high interest to understand the LD extent in a

given panel in order to evaluate the resolution one may

expect and the marker density needed to find associations.

In this context, we wanted here to analyze an association

panel mainly composed of elite material from a breeding

company, in a connected way with a sample of publicly

available material representing a broader diversity. This

material was a selection of inbred lines from the dent group

released during the last 30 years by the public sector and

Syngenta Seeds (for the most recent ones), which enabled

us to include an historical perspective in the analysis of this

panel. Diversity and LD were analyzed for the two dif-

ferent sets of lines and for the whole panel. So far, no

association mapping study including both types of germ-

plasms simultaneously has been reported in the literature.

We used flowering time related traits, evaluated per se and

at the hybrid level, as model traits to run the association

tests. We studied polymorphisms located within genes

a priori non-candidates for flowering time with the objec-

tive of using these genes to estimate the LD extent in our

panel. We studied as well sequences within the Vgt1

region, known to be involved in flowering time, to compare

our results with those from Ducrocq et al. (2008) and Salvi

et al. (2007) obtained with panels of lines of public origin

and belonging to different heterotic groups. We tested

linear mixed models with different calculations of structure

and kinship matrices, showing differences that might

appear for a panel mixing different sources of germplasm.

Materials and methods

Plant material

In this study, 314 lines were considered (Supplementary

material 1). All were dent lines representing a pool of

material complementary to early flint materials to produce

hybrids for Northern Europe. To facilitate the trial designs
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and harvest, they were selected within a restricted earliness

window, with sum of temperatures (base 6 �C) at flowering

varying from 835 to 1,145 degree-days, based on previous

studies. A subset of 113 lines was selected from the panel

used by Camus-Kulandaivelu et al. (2006) and subsequent

investigations (e.g., Ducrocq et al. (2008)), considering the

above mentioned flowering time window and a sum of

admixtures of at least 0.572 for Iowa stiff stalk (ISS) and

corn belt groups defined in Camus-Kulandaivelu et al.

(2006) (‘‘exotic’’ and ‘‘flint’’ lines were excluded from the

panel). Syngenta Seeds provided 201 elite lines, which

represented the diversity of the dent germplasm used for

Northern European breeding program over the last

15 years. This germplasm included mainly stiff-stalk and

iodent lines.

Molecular data

DNA extraction: plants were grown in Klasmann growing

medium for seven days in chamber at 24 �C day and 18 �C

night. Leaves samples were taken from plants at 1–2 leaves

stage. DNA was extracted from leaves using the Mache-

rey–Nagel method (Düren, Germany). Fresh material was

sampled from two plants in separate plates (30 mg each)

and five repetitions were made. The DNA quantity was

amplified using the Genomiphi Kit V2.

To evaluate the relatedness among lines and the popu-

lation structure, we used a GoldenGate� genotyping assay

(1,536 SNP chip, Illumina, San Diego, USA) provided by

Syngenta Seeds. These SNPs corresponded to 665 ampli-

cons, all located in coding regions, with one to 12 SNPs per

amplicon (with a mean of 3.2 SNPs per amplicon). One

thousand two hundred and forty SNPs could be scored with

appropriate quality based on laboratory experience fol-

lowing Illumina guidelines (Gunderson et al. 2004). Out of

these, 770 were issued from Syngenta Seeds internal pro-

jects and 470 SNPs from the HapMap project (SNP origi-

nating from Pioneer Hibred) (http://www.panzea.org).

When SNPs from the same amplicon were in complete LD

(r2 = 1, 90 pairs), we kept only the SNP with the lower

percentage of missing data. Monomorphic markers (47

markers) and markers with minor allele frequency (MAF)

less than 3 % (124 markers) were discarded in further

analyses, yielding a total of 979 markers representing 422

amplicons. The global rate of missing data for these 979

SNPs was 3.75 %. These SNPs are later referred as SNP-

array data.

To further investigate diversity, analyze local LD and

run association tests, we sequenced 101 amplicons in

specific regions. These corresponded to two categories:

(i) the Vgt1 region known to have a major impact on

flowering time and (ii) 13 regions chosen for their interest

in digestibility (Truntzler et al. 2010) but with no a priori

effect on flowering time. The 13 regions selected for the

digestibility will be analyzed for the variation of digest-

ibility related traits in another study, but we wanted to use

them here to assess LD in our panel and take the oppor-

tunity to look at the associations for earliness related traits.

For the Vgt1 region, 12 amplicons were sequenced

within bins 8.05–8.06. Gene sequences were chosen to be

distributed at exponential distance from the targeted QTL

Vgt1, considered as a reference due to its major impact on

earliness trait (50, 100, 250 then 500 kb from the ampli-

cons highlighted by Ducrocq et al. (2008)). Sequences of

these genes were retrieved from MaizeSequence.org

(http://maizesequence.org). For the Vgt1 region itself,

primers from Ducrocq et al. (2008) were also tested. Two

amplicons were sequenced; the first amplicon contained a

mite polymorphism, and the other an insertion deletion,

further referred to as CGindel587. Both polymorphisms

were shown to be associated with flowering time in

Ducrocq et al. (2008). PCR reactions were performed as

described in supplementary material 2a. Four other

amplicons from Ducrocq et al. (2008), called K42,

ZmRap2.7, K45 and K46 were also sequenced in the Vgt1

region but using a slightly different protocol (described in

supplementary material 2b). The 13 other chromosomal

regions were selected from the results of a meta-analysis of

QTL involved in digestibility related traits by Truntzler

et al. (2010). Five other genes were targeted even though

they were not positioned in a meta-QTL region, as they

were strong functional candidate genes for cell wall

digestibility. Two of the five genes are involved in lignin

biosynthesis: cinnamyl alcohol dehydrogenase 2 (CAD2)

on bin 2.02; trans-cinnamate 4-hydroxylase (C4H) on bin

8.03 and the remaining three are transcription factors:

Geo27 on bin 1.10, Geo16 on bin 5.01 and Lim1 on bin

6.01. We preferentially chose to develop amplicons within

candidate gene sequences retrieved in this case from the

MAIZEWALL database (Guillaumie et al. 2007), then

blasted on MaizeSequence.org in order to design primers.

Additional genes were selected with the objective to have

at least one amplicon every 250 kb, including the candidate

genes in our 13 regions of interest. They were retrieved

from MaizeSequence.org. Primers for each amplicon were

designed from the transcripts using Primers3 software, and

then blasted against BAC sequences to check the speci-

ficity of the primers for a single maize gene. We selected

only those primers pairs that had a unique amplicon

product size less than 2,000 bp and which included intronic

regions to increase the probability of detecting SNPs.

Several primer pairs for each gene were screened on a mini

panel of 16 lines, before choosing the ones used on the

whole panel. A total of 101 amplicons were developed over

the 13 regions. PCR reactions for these amplicons and the

other ten in the Vgt1 region (see above) were performed as
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described in supplementary material 2b. The primer pairs

giving the best sequencing result for each targeted gene

were selected to amplify and sequence all 314 lines.

Sequencing was performed on an Applied Biosystem

3730XL, using BigDye terminator chemistry, according to

manufacturer’s instructions. The amplicons were on aver-

age 611 bp long, ranging from 254 to 1,102 bp.

Alignments were performed using Staden package

(Staden et al. 1998). For the gene sequences, the alignments

were loaded into the software package Tassel in order to

extract the polymorphisms (http://www.maizegenetics.

net/) (Bradbury et al. 2007). Single nucleotide polymor-

phisms with minor allele frequency (MAF) of less than 3 %

and/or more than 20 % of missing data were removed.

When two or more polymorphisms within a same amplicon

were in complete LD (r2 = 1), only one (with the lowest

rate of missing data) was considered for further analyses.

The extracted polymorphisms are later referred as POLseq.

Phenotypic evaluation

Inbred lines were evaluated for their per se and test-cross

(hybrid) values in separate field trials.

Per se trials

Inbred lines were evaluated for their per se values at three

locations in 2008. These locations were Le Moulon

(MOU), Lusignan (LUS) and Les Pas (LPA), in France. All

the lines were replicated twice in every trial in order to

form a complete block design. Within a given block, the

panel was divided into three maturity sub-blocks based on

the sums of temperature required at flowering, in order to

limit potential competition between late and early lines. Six

lines were duplicated in the adjacent sub-blocks to estimate

the sub-block effect. Plant height (PHT) was measured

from soil to the first branch, ear height (EARHT) from soil

to the node bearing the ear. Male and female flowering

time (MFLW and FFLW) were estimated as days since

planting, when 50 % of the plants were shedding pollen or

extruding silks, respectively.

Hybrids trials

All 314 lines were crossed with a flint inbred line tester and

the resulting F1 hybrids were evaluated for two years (2008

and 2009) on one location (Wadersloh, Germany). In each

trial, the panel was divided into three blocks, based on the

expected performance of the lines (mainly based on the

year of release and the expected yield of each hybrid), in

order to limit competition effects. Two checks (Syngenta

Seeds commercial hybrids) were repeated twice in each

block, and two hybrids were repeated 24 times in each

field, with eight replicates in each block. The other hybrids

(i.e., almost all the hybrids) were not replicated within a

given trial. PHT and EARHT were measured in the 2008

trial (WA08) only, whereas FFLW and MFWL were

measured in the two years (WA08 and WA09). The traits

were measured with the same procedure as for the per se

trials.

Molecular data analyses

Gene diversity was calculated using PowerMarker (Liu and

Muse 2005) on the SNParray data and on the POLseq.

Diversity was estimated for the whole panel and for public

and Syngenta lines separately. Hundred bootstrap runs

were performed using PowerMarker to estimate the preci-

sion of gene diversity (Hexp).

Test of neutrality was calculated for the sequences from

the Vgt1 region using DNAsp software (Librado and Rozas

2009) with Tajima’s D (Tajima 1989).

Panel structure and kinship matrix

To infer the structure of the population, we used

‘‘STRUCTURE’’ (Pritchard et al. 2000) and ‘‘Locus

Miner’’ (Veyrieras et al. 2006) on the SNParray data. Ten

independent runs were performed with ‘‘STRUCTURE’’

for two to 15 subpopulations, using the admixture model

with the ‘‘haploid’’ option, and a burn-in of 200,000 fol-

lowed by 100,000 iterations. To infer the most likely

number of groups within the population, we used the

Evanno transformation method (Evanno et al. 2005) on the

STRUCTURE outputs. The algorithm used in ‘‘Locus

Miner’’ is described in Stracke et al. (2009). This software

implements an Expectation–Maximization (EM) algorithm

based on a multivariate model close in spirit to the simple

mixture/admixture model of STRUCTURE. The program

uses a PCA based approach to evaluate the remaining

amount of LD between markers once the estimated popu-

lation structure has been taken into account (Veyrieras,

personal communication). Structure analysis was comple-

mented by the PCA approach implemented in Eigensoft

(Price et al. 2006).

Kinship matrices were calculated using SPAGeDi

(Hardy and Vekemans 2002) and Emma (Kang et al. 2008).

Using the software SPAGeDi, we evaluated two different

kinship coefficient estimators, defined by Loiselle (Loiselle

et al. 1995) and Ritland (Ritland 1996), respectively. Both

estimators give more weight to similarity for rare alleles,

proportional to 1/fa for Ritland’s estimator vs. (1-fa)
2 for

Loiselle’s estimator, fa being the allele frequency. Loi-

selle’s estimator is expected to be unbiased with respect to

allelic frequencies (Hardy and Vekemans 2002).
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We used the Emma package to estimate identity by state

(IBS), which corresponds to the genetic similarity, between

lines based on marker data (Kang et al. 2008). To compare

the different estimates of kinship, we calculated the cor-

relation coefficients between the different kinship matrices

and tested their significance following Mantel (Mantel

1967), using the ade4 R-package in R (Dray and Dufour

2007; R development core Team 2011).

To estimate whether 979 SNPs gave enough information

to estimate IBS or not, 20 bootstraps based on the SNP-

array data were performed using R randomization proce-

dures, yielding 20 kinship matrices with the Emma

package.

LD analyses

Linkage disequilibrium between pairwise polymorphisms

identified on the sequences was studied using Tassel

(Bradbury et al. 2007). We used r2, which is the squared

correlation between alleles at two loci, as a measure of LD.

To investigate the effect of allele frequencies we computed

LD for polymorphisms belonging to three classes of allelic

frequencies: all frequencies, balanced allelic frequencies

(both markers of the pair with MAF[0.2) and unbalanced

frequencies (at least one marker of the pair with MAF\0.2).

Phenotypic data analyses

Estimation of lsmeans

For per se trials, we used PROC GLM (SAS 1989) to test

the block and sub-block effects within each trial, consid-

ering the genotypic effect of the lines as a fixed effect. The

sub-block effect was not significant; therefore, it was not

included in the final models. For each trial, the following

model was used:

Yikl ¼ lþ ai þ ck þ eikl

where Yikl is the field plot value observed for inbred line i

in sub-block l of block k, l is the general mean, ai the fixed

effect of the genotype i, ck the fixed effect of block k, eikl

the random residual error. We also analyzed jointly all the

trials by adding to the above model a location and a

genotype 9 location interaction effects, considered as

fixed.

For hybrid trials, we used PROC GLM in SAS to test the

different effects. For each trial, the following model was

used:

Yik ¼ lþ ai þ ck þ eik

where Yik is the value for the trait of interest, l is the

general mean, ai the fixed effect of the genotype i, ck the

block k (fixed effect), eik the residual error. For the joint

analysis of all trials, the location and the genotype 9

location interaction effects were added as fixed. When the

block effect was not significant for a given trait and a

given trial, it was removed from the model. Due to our

experimental design, we had a confounding effect

between the genotypic value of the lines and the block

effect. By considering genotypes as fixed effects in our

model, block effects were estimated based on the only

hybrids (mainly checks) that were replicated between

blocks. Therefore, block effects did not reflect the

genotypic differences between hybrids grown in the dif-

ferent blocks but only environmental differences among

blocks.

These models were used to compute the adjusted means

of the genotypes that were further used to run association

tests. Using the different lsmeans, we computed Pearson

correlations between traits for a given trial and for the

whole trials, and between trials for a given trait. For a given

trait, we also computed the correlation between per se and

hybrid values for the whole trials.

Analysis of genetic variation and traits heritability

We then used the mixed linear model in ASReml-R to

estimate the genetic and residual variances (for a given

trial, and jointly for the whole experimental design). In

these models, we considered checks as fixed effects and

genotype and genotype 9 location interaction (for the

whole trials analysis) as random effects.

Broad sense heritability for each trait on each location

(for per se and hybrids trials separately) was computed

using the following formula:

h2
F ¼

r2
g

r2
g þ

r2
e

K

with r2
g being the genetic variance of the lines, and r2

e the

residual variance (within trial) estimated with ASReml-R,

K the number of replicates. For each per se trial, K was

equal to two; for each hybrid trial, K was equal to one.

Broad sense heritability for each trait on the whole

experimental design (for per se and hybrids trials sepa-

rately) was then computed using the following formula:

h2
F ¼

r2
g

r2
g þ

r2
g�e

J þ
r2

e

J�K

with r2
g being the genetic variance of the lines, r2

g�e the

variance of genotype x environment interactions and r2
e

the residual variance (over several trials) estimated with

ASReml-R. J is the number of locations and K the number

of replicates per location. For the global hybrid trials
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analysis, J was equal to two for MFLW and FFLW and one

for PHT and EARHT. For the global per se trials analysis,

J was equal to three, the total number of locations and

K was equal to two.

Association tests

To assess the effect of the population structure on the trait

variability, we performed linear regression in R (R devel-

opment core Team 2011) of the lsmeans of the different

traits over the covariates issued from STRUCTURE and

Eigensoft outputs. We compared the global percentage of

variance explained (R2) and p value of the models as well

as the Akaike information criterion (AIC) (Sakamato and

Kitagawa 1987) to assess which model gave the most

parsimonious correction for population structure.

Loiselle and Ritland matrices (KLoiselle and KRitland)

were modified after computation, with diagonal set to two

in order to have a semi-definite positive matrix (Kang et al.

2008) and negative values set to zero. Negative values

indicate that the two lines are less related than two lines

taken at random. Keeping negative values in the kinship

matrix would impose a negative correlation between the

genetic values of these lines, which is not realistic (Yu and

Buckler 2006).

Association tests were performed using Tassel (Brad-

bury et al. 2007), ASReml-R (Butler et al. 2007) and

Emma package (Kang et al. 2008). Association tests were

conducted using a linear mixed model, following the

approach of Yu et al. (2006). In ASReml-R and Tassel, we

used the mixed linear model with Eigenstrat 10 axes and

KLoiselle. With Emma package we ran a mixed linear model

with KEmma (no Q matrix).

Considering that the 979 SNPs revealed by the Illumina

chip were a priori not associated with flowering time

related traits, we used these polymorphisms to identify the

model best controlling false-positive associations (Yu et al.

2006). Using Tassel, we thus first ran association tests for

FFLW with the 979 SNPs revealed by the Illumina chip,

with various structures (Q matrices) and K matrices. For

each model, we plotted the cumulative proportion of tests

considered as significant as a function of the type one error

risk considered. The model giving the least false-positive

associations was then used to run association tests for

flowering time and height related traits, using Tassel and

ASReml-R, on the polymorphisms extracted from the

sequences. In order to control the false discovery rate

(FDR) of multiple association tests, we corrected the

p values of each polymorphism with the procedure from

Storey and Tibshirani (2003).

Tests were also performed for the Vgt1 region (the four

amplicons obtained with the primers from Ducrocq et al.

(2008), and the two markers individually genotyped (mite and

CGindel857)) for flowering time and height related traits. To

compare the association results on the public and Syngenta

lines, association tests were compared on the two sub-groups

of lines, in addition to the whole panel. In that case, kinship

matrices were calculated again within each sub-group.

In order to discriminate the effect of sample size from

the origin of inbred lines (Syngenta vs. public), we sampled

50 times 113 lines (number of lines in the public panel)

from the 211 Syngenta lines and performed association

tests on these 50 samples for the Vgt1 region.

Results

Molecular diversity

Considering the 979 polymorphic SNPs from the Illumina

chip, the average gene diversity was 0.30 ± 0.004,

0.33 ± 0.004 and 0.25 ± 0.005 for the whole panel, the

public lines and Syngenta lines, respectively. Of the 101

amplicons sequenced, 11 did not show any polymorphisms.

A total of 890 non-redundant polymorphisms was identi-

fied, including 156 indels and 734 SNPs. On average, there

were ten polymorphisms per amplicon, composed of eight

SNPs and two indels. Gene diversity over the 890 poly-

morphisms from the amplicons was 0.29 ± 0.005,

0.33 ± 0.005 and 0.23 ± 0.006 for the whole panel, public

lines and Syngenta lines, respectively.

Tajima’s D was calculated in the Vgt1 region and was

not significant for any of the amplicons.

Population structure

STRUCTURE and Locus Miner provided similar log

likelihood values with the 979 Illumina SNPs, the second

being twice faster in terms of computation time (48 h for

STRUCTURE versus 24 h for Locus Miner with Intel 1.0-

GHz mono Core CPU). Evolution of the likelihood

according to the number of groups showed that a plateau

was reached since two groups for STRUCTURE and Locus

Miner (Supplementary material 3). STRUCTURE and

Locus Miner outputs were quite similar in terms of distri-

bution of lines within groups from k = 2 to 6 populations.

Different runs of STRUCTURE for the same group number

showed stable results for the distribution of the lines in

each group. Evanno criterion supported the choice of k = 2

for STRUCTURE as the highest level of structure (Evoldir

Community 2008). Using Eigenstrat to assess the popula-

tion structure, we obtained ten axes significant at the 0.05

type I error rate. They accounted for 25.6 % of the genetic

variation (data not shown). The first axis accounted for

8.8 % of the variation, whilst the nine others axes

accounted from 3 to 1.4 %. This suggested further
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significant levels of stratification beyond k = 2 (Patterson

et al. 2006). Figure 1 showed that the main trend of

diversity organization can be interpreted as a differentia-

tion between Syngenta versus public pools, although a few

lines of Syngenta remained close (in terms of PCA position

or group assignation) to the public ones and vice versa.

Beyond k = 2, group assignation was in close agreement

with the pedigree of the lines and mostly differentiated sub-

groups within Syngenta lines. Based on the log likelihood

results and expert knowledge on genetic organization of

Syngenta lines, we selected k = 3 for further tests in

association mapping.

Relatedness

Mantel tests were performed for the comparison of the 20

KEmma matrices (obtained after 20 bootstraps based on the

SNParray data). Pairwise comparisons led to correlations

values from 0.94 to 0.97 with an average of 0.95 (signifi-

cant at a 0.05 level).

Mantel test between Kloiselle and KEmma (significant at

0.05 level) gave a correlation of 0.64, whereas it was

equal to 0.98 between KLoiselle and KRitland. The relat-

edness coefficients varied from -0.29 to 1.24 with a

mean of 0.003 for KLoiselle and from 0.59 to 1 with a

mean of 0.63 for KEmma. The kinships showed a uni-

modal distribution for KLoiselle matrix, whereas the distri-

bution appeared more bimodal for KEmma (Fig. 2a and b),

indicating that the distribution of kinship was different for

the two methods. The correlation graph between Loiselle

and Emma coefficients showed three different subsets of

points (Fig. 2c). These were clearly separated based on the

membership of the lines to the first or second group of

structure. For KLoiselle, the relatedness coefficients

within groups were reduced to the same variation range,

whereas they showed two different ranges of variation for

KEmma.

Local LD investigations

For local LD studies, we removed any polymorphic

markers with a MAF inferior to 3 % and more than 20 %

of missing data but considered the polymorphisms in

complete LD within the same amplicon. According to these

criteria, 1,128, 1,067 and 1,155 polymorphisms were kept

for the whole panel, the public lines, and for the Syngenta

lines respectively. Figure 3a shows the mean r2 for pair-

wise comparisons of markers distant from 0 to 1,000 bp.

Over this distance, the number of pairwise comparisons

was high enough to give reliable means of r2 and the LD

was higher for Syngenta lines (0.61) than for public lines

(0.39). From 1 to 5 kb, r2 was decreasing (Fig. 3b). Only a

few pairwise comparisons were available for marker dis-

tant between 5 to 100 kb; however, it can be noted that

some high r2 values were observed. In particular, LD

estimated between (i) the mite and CGindel587 located in

Vgt1 itself and (ii) 18 polymorphisms within ZmRap2.7,

distant from 73 kb, included r2 values above 0.72. From

100 to 200 kb, mean r2 was 0.19, 0.08 and 0.21 for the

whole panel, public lines and Syngenta lines respectively,

with maximal r2 values reaching 0.37 for the public lines

and 0.66 for Syngenta lines. From 200 to 1,000 kb, mean r2

was 0.12, 0.06 and 0.19 for the whole panel, public lines

and Syngenta lines respectively. For 1,000 kb to 10 Mb,

mean r2 was 0.04, 0.03 and 0.04 for the whole panel, public

lines and Syngenta lines, respectively.

Phenotypic variation

For the per se and hybrids trials, the genetic effect was

significant for all the traits in each location at a 0.05 level

risk. Genotype x environment interactions were significant

for all the traits at 0.05 level (results not shown). Despite

this interaction effect, correlations between locations for

the per se trials were superior to 0.8 for all traits (data not

shown). Correlations between locations were lower for the

Fig. 1 Plot of the first two axes

of principal component analyses

for the lines of the panel based

on the 979 SNPs from the

Illumina chip. a Projection of

the Public lines in white and the

Syngenta lines in black.

b Projection of the two groups

of population structure from

STRUCTURE output for k = 2

populations (first group in white,

second in black)
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hybrid trials (from 0.36 to 0.60 depending on trait, results

not shown). Heritability was higher for per se trials than

for hybrids trials: it ranged from 0.65 to 0.93 for PHT in

per se trials, but was 0.63 for hybrids at the single

location where this trait was scored (Table 1). Male and

female flowering times showed high heritabilities for per

se trials, from 0.92 to 0.95. For hybrids trials, heritabil-

ities were very low for these traits at location WA09:

0.26 for FFLW and 0.38 for MFLW but higher at WA08

(0.69).

Correlation between FFLW and MFLW was 0.93 in per

se trials and 0.58 in hybrids trials. Positive correlations

were also observed for height traits. Correlation between

EARTH and PHT was 0.76 for per se trials, but only 0.34

for hybrids trials. Correlations between hybrids and per se

performances on the whole experimental design were 0.65

for MFLW and 0.70 for FFLW (Supplementary material 5).

For heights, correlations were lower: 0.36 for EARTH and

0.53 for PHT.

Association tests

The effect of the structure obtained from STRUCTURE

with k = 3 and Eigenstrat (5 and 10 axes, PCA5 and

PCA10, respectively) was significant for the 21 traits

(Table 2). Among the three models, PCA10 had the most

significant effect on the trait variation, and the lowest AIC

for 17 traits out of 21 (data not shown). Using PCA10, the

structure accounted for 21 % for FFLW and 32 % for

MFLW of the trait variability in the hybrid trials. For

k = 3, the structure accounted for 2 (FFLW) to 11 %

(MFLW) of the phenotypic variation in the hybrid trials,

showing that the three groups were not highly differenti-

ated for earliness.

Fig. 2 Relatedness coefficients of the kinship matrices. a KLoiselle

similarity distribution, b KEmma similarity distribution, and c compar-

ison of KEmma (X axis) and KLoiselle (Y axis). White points correspond

to pairwise kinships between lines attributed to the group one (mainly

public lines) defined by STRUCTURE, dark gray symbols correspond

to pairwise kinships between lines attributed to the group two (mainly

Syngenta lines) defined by STRUCTURE, black symbols correspond

to pairwise kinships between lines attributed to two different groups

defined by STRUCTURE
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Fig. 3 Linkage disequilibrium

extent (r2) using the whole

polymorphisms, over different

distances. a Mean r2 for each

100 bp. The shapes represent

the average r2, the lines the

standard deviation of the r2

values, b mean r2 for distances

increasing on a logarithmic

scale, for markers distant from 0

to 1 Mb. In gray diamond-
shaped are the values for the

public lines, in gray squares the

values for the Syngenta lines

and in black triangles the values

for the whole panel (right
vertical axis). The dark gray
area represents the number of

pairwise marker comparisons

(left vertical axis)

Table 1 Mean and heritabilities for female and male flowering time (in days after sowing, FFLW and MFLW), ear and plant heights (in cm,

EARHT and PHT), for all the locations in per se and hybrids trials

Per se trials

Trait Les Pas Lusignan Le Moulon All

mean ± SD h2 mean ± SD h2 mean ± SD h2 h2

EARHT 52.29 ± 11.91 0.81 0.81

PHT 122.59 ± 16.17 0.81 141.82 ± 20.51 0.88 151.33 ± 21.37 0.92 0.90

FFLW 96.22 ± 4.77 0.90 84.27 ± 3.97 0.94 87.95 ± 4.93 0.91 0.89

MFLW 94.06 ± 4.11 0.90 83.74 ± 3.80 0.94 86.71 ± 4.96 0.89 0.89

Hybrids trials

Trait Wad08 Wad09 All

mean ± SD h2 mean ± SD h2 h2

EARHT 104.73 ± 12.32 0.50 0.50

PHT 226.73 ± 12.88 0.63 0.63

FFLW 78.73 ± 2.60 0.79 88.39 ± 2.19 0.26 0.59

MFLW 78.74 ± 2.42 0.69 87.97 ± 2.33 0.38 0.55
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Association tests with SNPs from the Illumina chip

(assumed to have a neutral effect on the traits of interest)

were performed in TASSEL with FFLW for hybrids trials

to assess which kinship and Q matrices corrected best for

false positive associations (Supplementary material 6). The

two models that corrected best for false positives were the

model with PCA with ten axes and the KLoiselle matrix and

the model including only the KEmma matrix.

Over the 18,711 association tests, after corrections with a

FDR of 5 %, around 100 associations remained significant

for each method (ASReml-R, Tassel and Emma, data not

shown). As expected, ASReml-R and Tassel gave similar

results. Pearson’s correlations between Emma and ASReml-

R p values, and Emma and Tassel ones were 0.94 and 0.95,

respectively, for all the associations, and 0.92 and 0.94 for

the associations still significant after FDR correction.

Among the 100 associations from ASReml-R still sig-

nificant after multiple-testing correction, 68 associations

were found for polymorphisms located on 5 amplicons on

the Vgt1 region (K42, K46, ZmRap2.7 and the two

sequences including the mite and CGindel587 polymor-

phisms). Additional 32 associations corresponded to eight

genes located in other regions.

In the Vgt1 region, association tests were performed on

the whole panel and also separately on the public and

Syngenta lines (Fig. 4). On the whole panel, K42, the two

Vgt1 amplicons, ZmRap2.7 and K46 were significantly

associated with EARHT, PHT, MFLW and FFLW. Over

all the polymorphisms tested, the lowest p value was

attributed to the association between the mite and FFLW

(p value of 7.74 9 10-9) (Fig. 4; Table 3). Stronger

associations were observed for per se trials than for hybrids

trials, which can be explained by the higher heritability of

the traits in the per se trials. No significant association was

found within the public lines panel (Fig. 4). When con-

sidering the Syngenta lines only, the CGindel587 poly-

morphism was no longer significant but the mite and two

polymorphisms from ZmRap2.7 (ZmRap2.7-6 and

ZmRap2.7-8) remained associated with FFLW. The asso-

ciation tests performed on the 50 samples of 113 Syngenta

lines, corresponding to the public lines panel size, were not

significant (p values superior to 5 9 10-3).

Analysis of Vgt1 region was complemented by mul-

tilocus analyses. The polymorphisms significantly associ-

ated with per se FFLW, jointly explained 6 % of the trait

variation.

Table 2 Comparison of structure models for k = 3 from STRUCTURE and principal component analysis (PCA 5 and 10 axes) from Eigensoft

through linear regression: adjusted R2, F test p value and Akaike information criterion of the linear regressions

Trait R2 F test p value AIC Best match

based on AIC
K3 PCA5 PCA10 K3 PCA5 PCA10 K3 PCA5 PCA10

FFLW.PERSE 0.03 0.15 0.21 1.1E-02 1.6E-10 8.8E-13 1181.3 1138.2 1099.7 PCA10

MFLW.PERSE 0.07 0.23 0.29 9.3E-06 1.2E-16 4.9E-19 1130.7 1073.8 1034.2 PCA10

MFLW.HYB 0.11 0.32 0.32 3.7E-08 2.4E-24 4.6E-22 717.6 638.1 626.7 PCA10

FFLW.HYB 0.02 0.18 0.21 1.6E-02 8.6E-13 4.7E-13 744.9 693.1 671.3 PCA10

EARHT.PERSE 0.02 0.04 0.04 1.9E-02 2.9E-03 1.6E-02 1716.1 1706.7 1677.8 PCA10

EARHT.HYB 0.00 0.10 0.12 3.4E-01 1.8E-06 1.5E-06 1770.6 1742.2 1706.0 PCA10

PHT.HYB 0.03 0.17 0.22 1.2E-02 6.3E-12 1.5E-13 1795.2 1748.4 1702.2 PCA10

PHT.PERSE 0.19 0.23 0.26 7.0E-14 1.7E-16 5.8E-17 1978.0 1957.5 1912.6 PCA10

Fig. 4 The p values for

association tests run in

ASReml-R for female flowering

time (FFLW) per se on bin 8.05.

Black triangles are p values for

the whole panel, gray diamonds
for the public lines, and gray
squares for the Syngenta lines
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Considering Vgt1 itself, we noted that the mite effect on

flowering time remained significant when tested with

CGindel587 as a covariate, whereas the reverse was not

true. When considering the haplotype formed by mite/

CGindel587 polymorphisms, associations were not signif-

icant anymore with EARHT and PHT, and less significant

for MFLW and FFLW than for the separate analysis of

these polymorphisms. We noted that the CGindel587 was

present in more than 80 % of the lines and the mite in 50 %

of the lines of the panel. Every line carrying the mite

carried as well the CGindel587, except for 2 % of them.

Results, therefore, suggested that the main effect at Vgt1 is

due to earliness contributed by a haplotype that can be

tagged by either the mite only or the mite/CGindel587

Table 3 Summary of the sequences distribution over the genome

Bin Amplicons

nb

Nb of

SNPs

Nb of

indels

Associated gene Accession p value Effect Trait

1.03 1 – – No polymorphism in this gene AC201745 – – –

1.04 4 24 6 Unknown gene function AC205149 1.83E-03 – PHT.per se

1.07 11 52 12 Cinnamoyl-coA reductase (CCR) AC192360 6.88E205 7.18 cm PHT.per se

CCR AC192360 2.41E204 0.96 d FFLW.LUS

1.08 9 139 24 Homology with Ricinus Root phototropism

protein

AC207561 4.17E206 3.16 d FFLW.per se

1.10 1 3 – Geo27 transcription factor AC186341 1.65E-01 – PHT.LPA

2.02 1 4 1 Cinnamyl alcohol dehydrogenase 2

(CAD2)

AC209430 2.25E-03 – FFLW.WA09

2.04 3 34 12 Hydroxycinnamoyl-CoA transferase (HCT) AC200505 9.74E204 4.37 cm PHT.MOU

2.06 3 15 7 Hypothetical Cellulose synthase AC204617 6.04E-03 – FFLW.LUS

2.07 1 5 1 Putative unknown protein AC212972 3.97E-02 – PHT.MOU

2.08 2 51 7 Histone H2A AC212972 5.39E-03 – FFLW.LUS

3.04 7 34 5 Glucosidase AC194956 1.90E-03 – EARHT.WA08

3.05 7 35 6 Sucrose synthase AC183783 1.00E204 2.58 d FFLW.MOU

3.06 1 3 – Unknown protein close to calmodulin-like

protein mRNA

AC209209 4.36E-02 – EARHT.LUS

3.07 1 3 4 MYB transcription factor AC185227 7.23E-03 – FFLW.MOU

3.09 1 2 – Aldehyde deshydrogenase (ALDH) AC191038 5.8E-04 – EARHT.WA08

4.08 4 11 4 Leucine-rich repeat receptor-like protein

kinase

AC205702 1.54E-03 – EARHT.WA08

5.01 1 4 2 Geo16 transcription factor AC231388 7.77E-03 – EARHT.WA08

5.03 7 27 5 Putative dihydroflavonal-4-reductase AC208363 4.07E-03 – FFLW.WA09

5.04 3 11 4 Sucrose synthase AC214244 2.81E-04 – FFLW.WA09

6.01 4 28 13 Caffeoyl-CoA 3-O-methyltransferase

(CCoAOMT)

AC204946 9.12E204 5.57 cm PHT.MOU

Lim1 transcription factor AC202978 2.78E204 0.86 d FFLW.HYB

7.02 1 37 3 CAD2 AC197840 2.94E205 2.53 d MFLW.LUS

8.03 1 8 2 Trans-cinnamate 4-hydroxylase (C4H) AC195798 4.3E-03 – EARHT.WA08

8.05 5 20 6 K42 (Ducrocq et al. 2008) AC199474 2.85E204 1.54 d MFLW.per se

Vgt1 7.74E209 1.47 d MFLW.LPA

ZmRAP2.7 AC199316 2.88E206 1.52 d MFLW.MOU

K46 (Ducrocq et al. 2008) AC219006 9.07E205 1.04 d FFLW.LUS

8.06 5 30 7 60S ribosomal protein L18a, putative AC209070 1.63E-03 – PHT.MOU

9.02 9 88 18 MAP kinase kinase (MKK1) AC212086 4.32E-03 – PHT.per se

9.04 2 15 1 4-Coumarate: coenzyme A ligase (4CL) AC212872 3.73E204 5.40 cm PHT.MOU

10.03 7 22 3 Cinnamoyl-coA reductase (CCR) AC204873 2.22E-03 – PHT.WA08

Number of genes and polymorphisms (SNPs and indels) per bin are given, as well as the most significant association (highest p value for the

couple polymorphism-trait) per bin and the corresponding associated trait

The associations significant after false discovery rate corrections have their p value highlighted in bold

For each significant association is indicated the absolute value of the effect in centimeter (cm) or days (d)
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combination. We also tested models including the mite in

Vgt1 and each of the two ZmRap2 polymorphisms,

ZmRap2.7-6 and ZmRap2.7-8, which showed significant

associations when tested individually. In both cases, mite

was strongly associated with flowering time related traits

when tested with either ZmRap2 polymorphisms as

covariate. Conversely, ZmRap2 polymorphisms were not

associated with any trait anymore when tested with the mite

as covariate. This suggested that the effect of ZmRap2.7

polymorphism on flowering time was mainly due to LD

with the causal factor in Vgt1, which is more tightly tagged

by the mite.

Concerning the 13 selected regions potentially involved

in the variation for digestibility (Truntzler et al. 2010),

significant associations with an FDR \5 9 10-2 were

found for two amplicons from Cinnamoyl-coA reductase

(CCR) on bin 1.07 with PHT and FFLW (p values of

6.88 9 10-5 and 2.41 9 10-4, respectively, see Table 3),

for a homologous gene with Ricinus root phototropism

protein on bin 1.08 with FFLW (4.17 9 10-6), for one

copy of Hydroxycinnamoyl-CoA transferase (HCT) on bin

2.04 with PHT (p value of 9.74 9 10-4), for a copy of

sucrose synthase with FFLW on bin 3.05 (p value of

1 9 10-4), for a copy of Caffeoyl-CoA 3-O-methyltrans-

ferase (CCoAOMT) with PHT on bin 6.01 (p value of

9.12 9 10-4), for a Lim1 transcription factor with FFLW

in bin 6.01 (p value of 2.78 9 10-4), for the Cinnamyl

alcohol dehydrogenase 2 (CAD2) on bin 7.02 with MFLW

(2.94 9 10-5) and for 4-coumarate:coenzyme A ligase

(4CL) on bin 9.04 with PHT (3.73 9 10-4).

Discussion

Gene diversity

Gene diversity for the studied polymorphisms was 0.29 on

the whole panel, higher for the public lines (0.33) and

lower for the Syngenta lines (0.23). These results are

comparable to those reported for SNPs in other studies.

Hamblin et al. (2007) found a diversity of 0.32 on a set of

259 maize lines from the USA that was representative of

global diversity; Lu et al. (2009) found gene diversity from

0.27 to 0.34 on a set of 770 maize lines from six countries;

Van Inghelandt et al. (2010) estimated a diversity of 0.32 in

a set of 1,537 elite lines representing European and North

American diversity. Yang et al. (2010) found a higher gene

diversity value (0.39) in a set of 527 lines from very broad

origins. This illustrates that gene diversity increases when

broadening origins. The lower diversity of the subset of

lines from Syngenta is probably due to the fact that elite

inbred lines traced to a relatively narrow set of founders

lines and have passed through intense selection pressure, as

it is frequently the case in private elite breeding programs

(Mikel 2008). Furthermore, the private inbred lines used

here are restricted to a specific heterotic pool (dent here)

and represented only part of the germplasm used by Syn-

genta in Europe. The gene diversity we observed for this

material is similar to the one found by Van Inghelandt et al.

(2010) for panels of iodent and stiff-stalk germplasms (0.23

in each case).

Diversity estimation based on POLseq data followed the

same trend, although these gene/region sequences were

heterogeneous in term of polymorphisms. It was not pos-

sible to highlight a pattern based on their physical position

or the gene function.

In terms of neutrality test, Tajima’s D values computed

in the Vgt1 region did not show any significant evidence of

selection or population expansion for this chromosomal

region.

Population structure and relatedness

We showed that the first level of structure obtained by

STRUCTURE and Locus Miner (k = 2) mostly corre-

sponded to a separation between Syngenta and public lines.

This is consistent with the results of PCA analysis. Fifteen

lines from the Syngenta lines (most of them are stiff stalk)

are grouped with public lines. This isolated group of

Syngenta lines has probably not been the principal source

of Syngenta germplasm. Reciprocally five public lines are

grouped with the Syngenta lines (all of them are iodent)

and were probably used as (or were related to) founders of

Syngenta lines. This differentiation between a representa-

tive pool of public lines and recent corresponding material

from a company illustrates that breeding reshapes perma-

nently population structure. Note that this level of stratifi-

cation, supported by Evanno criterion, can be interpreted as

the minimal number of groups that can be considered as

independent and does not preclude significant subdivision

of these groups (as discussed by Evoldir community

(2008)). Indeed, although the evolution of likelihood was

limited for further levels of population structure, Eigenstrat

analysis suggested that approximately up to ten groups

could be defined. Comparison of STRUCTURE runs for a

same k value showed stable results until k = 6 and illus-

trated a subdivision of the Syngenta lines into sub-groups,

globally in agreement with pedigree. Such a subdivision

according to families of related lines was consistent with

observations reported by Camus-Kulandaivelu et al.

(2006). In particular, classification of the panel into three

sub-groups was highly consistent with expert knowledge

from Syngenta germplasm.

By using bootstrap procedures, we showed that 979

SNPs was enough to obtain an accurate estimation for the

kinship matrices. It is in agreement with simulation of Yu
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et al. (2009), which showed that 200 SNPs was enough to

estimate Kinship matrix. To date, molecular data used in

maize for these purposes have mostly been SSR markers

(Lübberstedt et al. 2005; Camus-Kulandaivelu et al. 2006;

Yang et al. 2010). Van Inghelandt et al. (2010) compared

population structure on 1,537 elite maize inbred lines with

359 SSR and 8,244 SNP markers. They showed that both

marker types give same results regarding the population

structure and gene diversity, although SSR gave more

information. Nowadays with the easy access for SNPs

arrays with several thousand of markers, it becomes easier

to get as much information as SSR would give.

We showed that kinship matrix KEmma and KLoiselle

were partially correlated. This difference for KEmma and

KLoiselle coefficients can be interpreted by the fact that

KEmma is an IBS allele-sharing matrix, whereas KLoiselle

estimates a ‘‘relative kinship’’, which can be defined as

ratios of differences of probabilities of identity in state

(Rousset 2002; Vekemans and Hardy 2004) and increases

the weight of rare alleles in similarity estimation. We

observed that the relationship between the two estimators

diverged for the two main groups determined by

STRUCTURE software (Fig. 2). Group2, mostly com-

posed of Syngenta lines, displayed higher KEmma similarity

levels than group1, which was mostly composed of public

material. This is consistent with the lower diversity

observed in Syngenta lines. Conversely, KLoiselle displayed

the same range of variation for the two groups. This can be

interpreted as the effect of the higher weight given to

similarity for rare allele in KLoiselle. Indeed, group 2, which

is both the most represented and the less diverse group, is

expected to yield similarities for alleles that display higher

frequencies (in the global population) and, therefore,

receive less weight in the computation of KLoiselle.

LD magnitude

We compared LD in centromeric and telomeric regions but

no particular pattern was observed, possibly because we

did not have enough segments for comparing these two

types of regions, or that the globally high LD magnitude at

short distances within our material masked such effects.

Patterns of r2 appeared dependent on the MAF considered

(see supplementary material 4). We observed higher LD for

MAF[0.2, suggesting that LD tends to increase when both

polymorphisms have balanced frequencies.

Major differences in LD were observed between the

whole panel, the public and the Syngenta lines. Mean r2

over 1 kb was 0.45, 0.40 and 0.60 for the whole panel,

public and Syngenta lines respectively. The higher r2 for

Syngenta lines was consistent with the lower diversity

observed for this material, and the higher LD levels for less

diverse genetic pools reported by Rafalski (2002). This r2

values were higher than in some previous studies (Tenail-

lon et al. 2001, Stich et al. 2005, Remington et al. 2001).

For example, Yan et al. (2009) observed a rapid decline of

r2 in their panel since r2 ranged from 0.16 to 0.24

(depending on gene) for distances reaching 2 kb in their

panel of 632 breeding inbred lines. It was expected since

these studies have been performed on public lines repre-

senting a broad diversity of maize germplasm. On the

contrary, Syngenta lines had low diversity due to strong

selection of founders and subsequent breeding materials,

which caused a higher level of LD (Ching et al. 2002; Jung

et al. 2004). This trend towards longer LD extent in groups

displaying the highest relatedness and/or lowest diversity

was observed as well by Van Inghelandt et al. (2011) and

Yan et al. (2009).

Our experiment was not well adapted to global LD

investigations in the 100 kb range but high values were

nevertheless observed for polymorphisms within this range

of distance. In the Vgt1 region, two polymorphisms of

ZmRap2.7 were in stronger LD (r2 [ 0.72) with the mite

than previously observed (Ducrocq et al. 2008). Mean r2

for distances between 100 and 200 kb were 0.19. Ersoz

et al. (2009) suggested that association mapping could be

performed with r2 values as low as 0.10 so that we can

envisage performing GWA with one marker every 100 kb

in our panel. This confirms observations from Belo et al.

(2007) for similar elite materials.

Association studies

False discovery rate correction was used to correct for

multiple tests. As discussed in Müller et al. (2011) the FDR

is difficult to interpret when several tests are performed

within the same gene. Moreover, this error rate does not

control for the genome-wide type I error rate (GWER). In

linkage analysis, GWER is often obtained from permuta-

tions (Churchill and Doerge 1994). This process is not

possible in association mapping studies where one needs to

consider both the structure and the pedigree relationships

among the different lines. Recently, Müller et al. (2011)

proposed a new method to estimate genome-wide error rate

that fully takes into account population structure and

relatedness through simulations. We hope that this method

could be implemented soon in software commonly used for

association mapping.

Associations with low p values were more observed

with per se values than hybrids, for which no test passed a

FDR correction. Previous studies were mainly performed

on per se values for maize (Andersen et al. 2008; Chen

et al. 2010; Yang et al. 2010). Trait heritabilities were

lower in hybrids trials, which hampered the power of

association mapping. Part of the explanation for these

lower heritabilities may come from the use of a tester line
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that may have masked part of the genetic variability of our

panel. The other explanation may be related to the exper-

imental design itself that was different for the two types of

trials. For hybrid data we had two locations only, with one

showing very low heritability. Furthermore, we used un-

replicated design for the hybrids trials, whereas two rep-

licates of each line were set in the per se trials. This

illustrated if needed the importance of high-quality phe-

notypic data in association genetics studies (Myles et al.

2009).

We compared different models to control for spurious

association (false positive) due to population structure and

relatedness (Supplementary material 6). We showed that

the best model to control false positive rate is

PCA10 ? KLoiselle. This was in agreement with Zhao et al.

(2007) and Zhu and Yu (2009), who showed that PCA

performed similarly or better than STRUCTURE to control

for spurious associations, even if it does not always reflect

population structure, but may reflect family relatedness,

long-range LD or assay artifacts (Price et al. 2006). Prin-

cipal component analysis based approaches are computa-

tionally fast and thus a valuable solution to face very large

datasets. This might explain why Eigensoft is frequently

used for genome-wide association in many species as

exemplified by loblolly pine (Eckert et al. 2010), cattle

(Porto Neto et al. 2010), etc. New methods have been

proposed recently that were not investigated in our study.

Zhu and Yu (2009) compared nonmetric multidimensional

scaling (nMDS) and PCA to control population structure in

genome. They showed that nMDS maintained a lower

false-positive rate than using PCA as Q matrix. Jombart

et al. (2010) used discriminant analysis of principal com-

ponents (DAPC), a multivariate method designed to iden-

tify clusters of genetically related individuals to account for

population structure. Through simulations, they showed

that this method performed better than STRUCTURE at

characterizing population subdivision. Our dataset was still

manageable with the common software but these methods

deserve consideration for bigger datasets. Evaluation of

population structure remains a central issue, as illustrated

by Mezmouk et al. (2011), where different population

structures used as cofactors in association tests gave dif-

ferent results in terms of polymorphisms associated with

the trait of interest.

Among the most significant polymorphisms associated

with flowering time in our study, we highlighted the Vgt1

region localized on bin 8.05. It is probably one of the

flowering time QTL that is the more documented in the

literature. In their extensive and very complete review on

flowering time in maize, including the recent nested asso-

ciation mapping design of Yu et al. (2008), Salvi et al.

(2009) showed that bin 8.05 was within the regions with

the highest number of QTL detected in different studies.

The two polymorphisms mite and CGindel587 as well as

the gene Zmrap2.7, found strongly associated with flow-

ering time traits in our study, were previously shown to be

involved in flowering time adaptation for maize by Salvi

et al. (2007), and their major effects were confirmed by

Ducrocq et al. (2008). However, compared to Ducrocq

et al. (2008), the mite appeared more significant in our

study than CGindel587. Furthermore, Ducrocq et al. (2008)

tested the associations with the haplotype mite/CGindel587

and found a higher p value than with each single poly-

morphism independently, which was not the case in our

study. The mite effect still remained significant on flow-

ering time when tested with CGindel587 and ZmRap2.7

polymorphisms separately, suggesting that the mite

polymorphism is the causal factor or is in higher LD with

the causal factor than CGindel587. This difference in

results is probably related to the higher frequency of the

CGindel587–mite absence haplotype in the Syngenta pool

compared to the public pool, which is consistent with the

specificity of this haplotype in the iodent group (Ducrocq

et al. 2008), well represented in the Syngenta pool.

Compared to Ducrocq et al. (2008), we also had two

significant polymorphisms associated in ZmRap2.7, one in

K42 and one in K46. The polymorphisms from ZmRap2.7

captured the effect of the mite on flowering time variation,

which was not the case in Ducrocq et al. (2008). This

shows that for LD mapping, the density of markers needed

in this dent panel is probably lower than the density that

would be needed in the panel used by Ducrocq et al.

(2008).

It can be noted that we observed more significant

associations in this region when considering the Syngenta

inbred lines only compared to the public inbred lines only.

Based on the results of the association tests performed on

the 50 samples of 113 Syngenta lines, the difference of

results originated mainly from differences in their sample

size, showing that 113 lines give limited power for asso-

ciation tests (Yu et al. 2006) compared to the size of our

whole panel (316 lines), and not from a difference of effect

within each subset.

Association mapping also revealed significant associa-

tions for genes that have not been highlighted in previous

studies for their role in flowering time variation but in

digestibility variation (Barrière et al. 2007). Sibout et al.

(2008) suggested that flowering induction is the condition

for xylem expansion in hypocotyl and root secondary

growth in Arabidopsis thaliana. They showed as well that

flowering time and lignin biosynthesis were linked, as

major QTL for fiber and xylem expansion were correlated

with flowering time QTL.

Further analyses are needed to validate the biological

roles of the different genes associated to earliness related

traits in our study.
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Conclusion and perspectives

Joint analysis of lines from public and private origins

within a same genetic group illustrated a major evolution of

elite materials, with lower gene diversity accompanied by a

higher extent of LD, with average r2 values of approxi-

mately 0.2 between polymorphisms located 200 kb apart.

As a consequence, fewer markers will be needed to conduct

GWA for this panel and its elite component than for the

broader dent gene pool available to public research.

Although this necessitates confirmation, this suggests that

the use of 50 kb SNP (approximately one SNP marker

every 60 kb) deserves consideration for a first GWA study

of this panel. This density seems appropriate to detect QTL

explaining at least 10 % of the phenotypic variance (Van

Inghelandt et al. 2011). For the identification of QTL with

smaller effect, higher density genotyping approaches such

as sequencing (Elshire et al. 2011) (genotyping by

sequencing) might be necessary to identify polymorphisms

associated with trait variation without any prior

information.

Even if flowering time can be considered as being a

simpler trait than yield, several results highlighted that

even if some loci such as Vgt1 seem to play an important

role in this trait variation, the number of loci involved

certainly exceeds 50 (Chardon et al. 2004; Salvi et al. 2009;

Buckler et al. 2009). Genome-wide predictions (Meuwis-

sen et al. 2001; Bernardo and Yu 2007), which use all

markers as predictors of performance rather than trying to

identify specific loci significantly associated with a trait

can be considered as a complementary approach to asso-

ciation mapping to deal with QTL with moderate effects.

Our panel, which presents a high level of LD and includes

both historical inbred lines and elite material, might be well

suited for this kind of approach if the objective is to val-

orize results in breeding programs.
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végétaux: Méta-analyse de QTL et études d’association. PhD

thesis, Agroparistech, Paris

Wilson LM, Whitt SR, Ibanez AM, Rocheford TR, Goodman MM,

Buckler IE (2004) Dissection of Maize kernel composition and

starch production by candidate gene association. Plant Cell

16(10):2719–2733

Yan J, Shah T, Warburton ML, Buckler ES, McMullen MD, Crouch J

(2009) Genetic characterization and linkage disequilibrium

estimation of a global Maize collection using SNP markers.

PLoS ONE 4(12):e8451

Yang X, Gao S, Xu S, Zhang Z, Prasanna B, Li L, Li J, Yan J (2010)

Characterization of a global germplasm collection and its

potential utilization for analysis of complex quantitative traits

in Maize. Mol Breed. doi:10.1007/s11032-010-9500-7

Yu JM, Buckler ES (2006) Genetic association mapping and genome

organization of Maize. Curr Opin Biotechnol 17(2):155–160

Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley J,

McMullen MD, Gaut BS, Nielsen D, Holland JB, Kresovich S,

Buckler ES (2006) A unified mixed-model method for associ-

ation mapping that accounts for multiple levels of relatedness.

Nat Genet 38(2):203–208

Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design

and statistical power of nested association mapping in Maize.

Genetics 178(1):539–551

Yu J, Zhang J, Zhu C, Tabanao D, Pressoir G, Tuinstra MR,

Kresovich S, Todhunter RJ, Buckler ES (2009) Simulation

appraisal of the adequacy of number of background markers for

relationship estimation in association mapping. The Plant

Genome 2:63–77

Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C (2007) An

Arabidopsis example of association mapping in structured

samples. PLoS Genet 3(1):e4

Zhu C, Yu JM (2009) Nonmetric multidimensional scaling corrects

for population structure in association mapping with different

sample types. Genetics 182(3):875–888

Theor Appl Genet (2012) 125:731–747 747

123

http://dx.doi.org/10.1007/s11032-010-9500-7

	Diversity and linkage disequilibrium features in a composite public/private dent maize panel: consequences for association genetics as evaluated from a case study using flowering time
	Abstract
	Introduction
	Materials and methods
	Plant material
	Molecular data
	Phenotypic evaluation
	Per se trials
	Hybrids trials

	Molecular data analyses
	Panel structure and kinship matrix
	LD analyses

	Phenotypic data analyses
	Estimation of lsmeans
	Analysis of genetic variation and traits heritability

	Association tests

	Results
	Molecular diversity
	Population structure
	Relatedness
	Local LD investigations
	Phenotypic variation
	Association tests

	Discussion
	Gene diversity
	Population structure and relatedness
	LD magnitude
	Association studies

	Conclusion and perspectives
	Acknowledgments
	References


