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Abstract Genetical genomics, or genetic analysis applied

to gene expression data, has not been widely used in plants.

We used quantitative cDNA-AFLP to monitor the variation

in the expression level of cotton fiber transcripts among

a population of inter-specific Gossypium hirsutum 9

G. barbadense recombinant inbred lines (RILs). Two key

fiber developmental stages, elongation (10 days post

anthesis, dpa), and secondary cell wall thickening (22 dpa),

were studied. Normalized intensity ratios of 3,263 and

1,201 transcript-derived fragments (TDFs) segregating

over 88 RILs were analyzed for quantitative trait loci

(QTL) mapping for the 10 and 22 dpa fibers, respectively.

Two-thirds of all TDFs mapped between 1 and 6 eQTLs

(LOD [ 3.5). Chromosome 21 had a higher density of

eQTLs than other chromosomes in both data sets and,

within chromosomes, hotspots of presumably trans-acting

eQTLs were identified. The eQTL hotspots were compared

to the location of phenotypic QTLs for fiber characteristics

among the RILs, and several cases of co-localization were

detected. Quantitative RT-PCR for 15 sequenced TDFs

showed that 3 TDFs had at least one eQTL at a similar

location to those identified by cDNA-AFLP, while 3 other

TDFs mapped an eQTL at a similar location but with

opposite additive effect. In conclusion, cDNA-AFLP

proved to be a cost-effective and highly transferable plat-

form for genome-wide and population-wide gene expres-

sion profiling. Because TDFs are anonymous, further

validation and interpretation (in silico analysis, qPCR gene

profiling) of the eQTL and eQTL hotspots will be facili-

tated by the increasing availability of cDNA and genomic

sequence resources in cotton.

Introduction

A longstanding goal in plant genetics is to understand the

molecular cause of the variation in complex traits. Quan-

titative trait loci (QTL) mapping, as the most common

approach, has in past years described numerous chromo-

somal regions correlated with a wide array of traits, rang-

ing from biotic/abiotic stress tolerance to yield and quality

components. However, in spite of these considerable

efforts, the underlying genes responsible for particular

quantitative traits remain largely unknown and only in a

few examples has it been possible to identify and clone the

genes responsible for conferring a trait (Salvi and Tuberosa

2005).

The ability to study gene expression variation at the

individual, population, and species level has recently been

enhanced by genomic methodologies such as transcripto-

mics. Jansen and Nap (2001) introduced the concept of
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‘‘genetical genomics’’ whereby different medium and high-

throughput transcriptomic technologies enable the mapping

of expression QTL (eQTL), e.g. of the variability in the

expression levels of a gene(s) over a segregating mapping

population. The gene expression level, quantified by the

abundance of its mRNA, is considered as a ‘phenotype’

(sometimes referred as an e-trait), possibly influenced by

genetic determinants. Classical genetic analysis (comparison of

the mean phenotypic values of the e-trait between the genotypic

classes of the segregating population) is used to map QTLs and

can therefore allow the identification of the genes and/or reg-

ulatory regions that control expression phenotypes.

Beyond single gene expression measurement (northern

blotting, RT-qPCR), different methods of profiling large

numbers of genes have emerged, including cDNA or oli-

gonucleotide microarrays, tag-based methods (SAGE,

MPSS) and PCR-based differential profiling techniques,

including differential display and cDNA-AFLP. The latter

appears as a valuable and cheap alternative for functional

genomics and genetics, as compared to hybridization-based

microarray techniques. cDNA-AFLP was also shown to

increase the resolution of expression pattern detection

using smaller amounts of mRNA (Reijans et al. 2003). In

particular, the expression patterns visualized by cDNA-

AFLP have been shown to correlate well with northern blot

analyses (Albertini et al. 2004; Bachem et al. 1996; Donson

et al. 2002).The quantitative response in the cDNA-AFLP

system therefore seems to be sufficiently precise and

broadly proportional to the input DNA (Bachem et al.

1996; Breyne et al. 2003; Vuylsteke et al. 2006) for

demanding applications like transcriptional profiling and

eQTL mapping. cDNA-AFLP has been used in cotton

previously to compare the transcriptomes of two cotton

lines (one fertile and the other male sterile) (Ma et al.

2008), to identify genes involved in somatic embryogenesis

(Leng et al. 2007) and to study gene silencing (Adams et al.

2004). In a recent report (Liu et al. 2011), cDNA-AFLP

was used for mapping purposes in cotton.

Global analysis of gene expression followed by eQTL

mapping has been reported in human and animal systems

(Gibson and Weir 2005; Gilad et al. 2008; Hubner et al.

2006), in yeast (Brem et al. 2002), and to a lesser extent in

plants (Holloway and Li 2010; Kliebenstein 2008).

Microarray profiling followed by eQTL mapping in plants

has been reported in model crops like Arabidopsis

(Keurenjes et al. 2007; West et al. 2007) and rice (Wang

et al. 2010). Four other eQTL reports from non-model

crops, include barley (Potokina et al. 2008), maize (Shi

et al. 2007), wheat (Jordan et al. 2007), and eucalyptus

(Kirst et al. 2005). In only one case has cDNA-AFLP been

used to map expression polymorphisms over a population

of 50 Arabidopsis recombinant inbred lines (RILs) from the

cross Ler 9 Cvi (Vuylsteke et al. 2006).

Differences in expression of a given gene may result

either from allelic differences in its promoter, non-coding,

or coding regions or from effects of distal regulatory loci.

In other words, an eQTL may map to the genetic position

of the gene itself, indicating that cis changes are respon-

sible for the different levels of expression. In contrast,

genes revealing eQTLs at positions different from the gene

are thought to be regulated by trans-acting factors. Evi-

dence of both cis expression polymorphism as well as

clustered trans-eQTL have been reported in a number of

organisms including yeast and Arabidopsis (Gibson and

Weir 2005; Keurenjes et al. 2007; West et al. 2007).

Several authors have questioned the relevance of the

commonly reported phenomenon of eQTL co-localizing in

hotspots (Breitling et al. 2008; Michaelson et al. 2009;

Pérez-Enciso et al. 2007) recommending caution in inter-

pretation because of inter-correlations between transcript

levels which can be related to interconnected pathways or

to fortuitous associations (interactions with environment or

with technical artifacts, or population structure).

There are two economically important tetraploid species

of cultivated cotton, Gossypium hirsutum (‘‘Upland’’ cot-

ton) and G. barbadense (Caribbean ‘‘Sea-Island’’, Extra

Long Staple ‘‘ELS’’, ‘‘Pima’’ and ‘‘Egyptian’’ cottons).

They display many complementary agronomic features and

are widely interbred in cotton breeding programs.

G. hirsutum (hereafter Gh), the most widely cultivated

species, has higher yield potential than G. barbadense (Gb)

in most environments; however, Gb cultivars are superior

to Gh in most aspects of fiber quality, such as fiber length,

strength and fineness. Molecular data indicate that the two

species share a common allopolyploidization origin (*1–2

MYA) between an A-genome and a D-genome diploid

species (Wendel and Cronn 2003).

Cotton fibers are highly elongated single cells of the

epidermal layer of the ovule. Fiber development spans four

discrete, yet overlapping stages: initiation [-3 to 5 days

post anthesis (dpa)], elongation (3–21 dpa), secondary cell

wall (SCW) deposition (14–45 dpa) and maturation/dehy-

dration (40–55 dpa) (Basra and Malik 1984). Their com-

mercial value is determined by their overall physical

dimensions and the extent of thickening of the internal

walls, properties that affect yarn-spinning and other fabric

manufacturing processes. Although earlier genetic studies

have demonstrated fairly high heritabilities for fiber char-

acteristics (May 1999), the various fiber quality QTL

mapping efforts reported so far indicate a very complex

regulation of cotton fiber quality as a whole (Lacape et al.

2010; Rong et al. 2007). We recently reported the QTL

analysis across 11 environments (meta-analysis) of the

same interspecific Gh 9 Gb RIL population studied here

and its comparison with other fiber QTL reports (Lacape

et al. 2010). Although congruence between environments
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was only partial, evidence was provided for a co-locali-

zation of phenotypic QTLs (phQTL) in some regions of the

genome.

Although considerable functional genomics work on

cotton fiber development has been carried out, it has

essentially been conducted within the G. hirsutum species,

including its derived fiber mutants. Very little information

has been accumulated on the differences in fiber gene

expression between the two species Gh and Gb. It is only

recently that two studies specifically focused on the dif-

ferences between Gh and Gb at the transcriptional level

using microarrays (Al-Ghazi et al. 2009; Alabady et al.

2008). Al-Ghazi et al. (2009) reported that, under the

conditions in which they were grown and despite their final

fiber physical differences, the two species were fairly

synchronous in fiber elongation and cellulose accumulation

during SCW thickening. This last point implies that com-

paring Gh and Gb transcripts at a given time point of fiber

development accounts for differences in gene regulation

rather than differences in fiber phenology.

This report extends our previous studies in which an

interspecific G. hirsutum 9 G. barbadense RIL population

has served for genetic mapping (Lacape et al. 2009) and for

fiber QTL meta-analysis (Lacape et al. 2010). We have

conducted a fiber transcriptome study from a geneticist’s

perspective: we analyzed genome-wide gene expression

variation using cDNA-AFLP on the same RIL population.

The specific objectives were to (1) assess the applicability

of cDNA-AFLP as a technique for population-wide

expression profiling and eQTL mapping of transcripts in

developing fibers, and (2) to conduct comparative mapping

approaches to test the coincidence of expression-derived

QTLs (eQTLs) and phenotype-derived QTLs (phQTLs).

Materials and methods

Plant material

mRNA from developing fibers of an interspecific

G. hirsutum 9 G. barbadense RIL population was used for

gene expression analysis. A hundred RILs in the F6–F8

generation of single seed descent and the two parents,

Guazuncho 2 (G. hirsutum) and VH8-4602 (G. barba-

dense) were grown in a glasshouse at Montpellier (France)

from December 2007 through to August 2008. All geno-

types (RILs and parents) were grown in a 10 l pot as two

plants per pot (2 replicate pots for the 2 parents) and the

104 pots were randomly distributed. Growth conditions in

the glasshouse were non-limiting in terms of nutrition and

water availability (twice daily drip irrigation), while light

was adjusted to simulate normal (tropical) day/night cycles

and a reversible heating/cooling system minimized

temperature variation during the sampling period (variation

25–35�C day/night).

Flowers were tagged on the day of anthesis. Two fiber

developmental time points were chosen: 10 dpa, corre-

sponding to the phase of peak elongation of fibers and 22 dpa

corresponding to the transition phase from primary to SCW

synthesis. Developing bolls (each containing 3–5 locules),

5–10 bolls per plant for 10 dpa and 2–5 bolls per plant for

22 dpa, were harvested between 10.00 am and 2.00 pm from

the three different plants per RIL and parent. Boll coats were

removed and whole locules immediately plunged into liquid

nitrogen before storage at -80�C. Ovules from both parental

lines were also collected to be used as control RNAs.

RNA extraction

Fiber total RNA was extracted for each RIL and parent

from a pooled sample of several bolls from the two plants:

a total of 3–4 (10 dpa fibers) or 2–3 (22 dpa fibers) locules

each from a different boll were randomly selected from

both plants and pooled before grinding. Seeds were sepa-

rated from fibers during the first step of grinding in liquid

nitrogen. Fibers (1–2 g) were ground mixed with 0.5–1 g

polyvinylpolypyrrolidone and the powder kept frozen at

-80�C for no more than one week before processing for

RNA extraction. For the 10 dpa fibers, total RNA was

extracted following the protocol described in Argout et al.

(2008). This protocol, based on MATAB extraction and

LiCl precipitation is rapid and suitable for small scale fiber

RNA extraction but yielded less RNA and was more het-

erogeneous for the 22 dpa. RNA from the 22 dpa fibers

was therefore extracted according to the more labor

intensive protocol from Wan and Wilkins (1994) using the

Hot Borate RNA extraction buffer E.

RNA quality was checked on 1.4% denaturating agarose

gel. Total nucleic acids were quantified by UV absorbance

(DU530, Beckman Coulter, Fullerton, CA, USA) and DNA

contaminations were quantified by fluorescence of the dye

Hoechst 33258 with a Fluoroskan fluorimeter (Ascent,

Labsystems, Finland).

cDNA-AFLP protocol

The cDNA-AFLP protocol used (detailed in Online

Resource ESM1) was a modification of the original pro-

cedure of Bachem et al. (1996). This technique as further

detailed in Vuylsteke et al. (2007) is characterized by

(i) the generation of a single cDNA fragment for each

messenger (‘one-gene-one-tag’) originally present in the

sample (Breyne et al. 2003), (ii) the combination of a five-

cutter and a four-cutter restriction enzymes, (iii) the

production of cDNA-AFLP bands that are derived from the

30-end of the gene. Three enzyme combinations were
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originally tested: ApoI/MseI, TaqI/MseI and BstYI/MseI.

The BstYI/MseI combination was chosen because it pro-

duced an optimal density of bands after polyacrylamide gel

electrophoresis (using BstYI-C ? 1 and MseI ? 2 prim-

ers). The protocol of Vuylsteke et al. (2007) was modified

as follows: cDNA synthesis using the bead anchored oligo

(dT) as primer, reduction of the number of PCR cycles

during pre-amplification and selective amplification runs,

and higher amounts of DNA template (ligation or PCR

product) used in the PCR. After pre-amplification, the

mixture was used for selective amplification with the 62

and 64 selective primer combinations for the 10 and 22 dpa

experiments, respectively.

In order to simultaneously electrophorese all of the

studied RILs and parents on the same gel (94 slots) and to

allow for controls and the marker ladder, only a subset of

88 RILs could be analyzed and these were chosen on the

basis of their genomic content (RILs that were heavily

biased in their allelic content were discarded) as were those

for which the quantity or quality of the RNA were low. The

migration of the cDNA-AFLP bands, later referred to as

TDFs were compared to a 30–330 bp size reference marker

(Invitrogen). The sizes of the fragments larger than 330 bp

were therefore only approximate.

Analysis of digital AFLP gel images and generation

of normalized expression data

Autoradiograms (obtained from 62 and 64 BstYI-CN/MseI-

NN combinations for the 10 and 22 dpa samples, respec-

tively) were scanned at 300 DPI and 16 bits gray format.

All images were then quantified for band intensity using

the QuantarPro software (Keygene N.V., Wageningen, The

Netherlands). For each gel, vertical alignment bands were

automatically defined and then manually adjusted to match

the lanes. As the fiber was removed from whole ovules

during the initial grinding phase there was potential for the

fiber material to be contaminated with small amounts of

ovule tissue. This was checked using parental ovule-

derived cDNA-AFLP profiles as comparisons: the few

bands more intense in the ovule control than in the fiber

samples were then not scored. All the bands were auto-

matically quantified and any misalignments corrected after

visual inspection. Depending on the quality of the gel,

between 50 and 80% of the bands were reliably scored.

Qualitative polymorphisms (segregating as presence–

absence of AFLP bands), probably associated to SNPs/in-

dels, were observed in a limited extent (\3%, not shown).

These bands were not considered for quantification.

The AFLP radiograms of the two series of samples, 10

and 22 dpa, were tentatively aligned to find any transcripts

common between the experiments, but this was only pos-

sible in around 10% of the primer pairs (not shown).

The non-normalized quantitative data were then

imported into an Excel spreadsheet. The mean-normaliza-

tion of the band intensity signals was carried out in two

steps. First, for each TDF, intensity signals for each RIL

were divided by the mean intensity of the TDF over the

whole RIL population (‘‘horizontal’’ normalization). Then,

for a given RIL, the resulting normalized intensity of each

individual TDF was divided by the mean intensity value

calculated from the raw intensity signals of all the TDFs

present on the gel (or gel part) in each individual RIL

(‘‘vertical’’ normalization). Due to differences between the

top and the bottom of the gels (i.e. number and thickness of

bands, background signal), the 10 dpa gels were split in

two parts (above and below 250 bp) and the ‘‘vertical’’

normalization was carried out separately.

Characterization of AFLP fragments: isolation

and cloning of TDFs

Validation of the cDNA-AFLP-based eQTL mapping was

undertaken for some cloned TDFs by quantitative RT-PCR.

TDFs were re-amplified from 10 dpa cDNA samples of

three separate RILs (chosen from among the high-

expressing RILs), and using the same protocol described

above. Five cDNA-AFLP gels were re-run using the five

different AFLP primer pairs appropriate for the particular

TDFs. A total of 29 bands (see ‘‘Results’’) were cut from

the gels and DNA eluted overnight in 100 ll of sterile

water. The TDFs were re-amplified using the same PCR

primers and conditions and ligated in the pCR2-TOPO

vector (Invitrogen), and transformed into Escherichia coli.

For each TDF, three individual clones were isolated and

sequenced. The nucleotide sequences were compared with

publicly available cotton EST databases by BLAST

sequence alignments (Altschul et al. 1990). Lists of cloned

TDFs, primers and other features are summarized in Online

Resource ESM2.

Quantitative RT-PCR analysis

The cDNAs of the same 88 RILs (10 dpa fibers) used in the

cDNA-AFLP profiling experiment were synthesized from

the same RNA samples. For each RIL, 2 lg of total RNA

were dried in a vacuum and resuspended in 12 lL of water

and 2.5 lL oligodT(23)VN 100 lM. The mixture was

denatured for 10 min at 65�C. Then, first strand cDNA

synthesis was performed in 19 Expand Reverse Trans-

criptase buffer, 10 mM DTT, 1 mM dNTP (each), 20 U of

RNAse inhibitor and 50 U of Expand Reverse Transcrip-

tase (Roche). Reactions were incubated at 47�C for 1 h,

and then the cDNAs were diluted tenfold in water to use as

templates for quantitative RT-PCR (qPCR). qPCR was

performed in a LightCycler 480 (Roche). Each qPCR
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reaction was carried out in triplicate in a total volume of

15 lL that contained 1x SYBR Green I Master Mix

(Roche) and 3 lL of tenfold diluted cDNA template per

reaction, plus 500 nM of each forward and reverse gene-

specific primer (Online Resource ESM2). Cycle conditions

were: 95�C for 5 min and then 95�C for 20 s, 60�C for

15 s, 72�C for 20 s (45 cycles). A melting-curve analysis

was carried out to evaluate the specificity of the primers as

recommended (Roche). Primers for qPCR were designed

using Primer3 and default parameters. Whenever possible,

primers were designed to amplify a fragment in the 30UTR

region of the target gene. For some TDFs, for which the

sequence Blast result could not discriminate between sev-

eral putative ESTs, primer pairs were designed for each

EST. The amplification efficiencies of all the primers pairs

were tested on serial dilutions of cDNAs from each of the

two parents. Primer efficiencies were near 100% for both

genotypes. Quantification of gene expression was carried

out using the DDCt method of relative quantification, based

on the differences of Ct values between the reference gene

Ubiquitin ligase and the target gene tested.

Linking cDNA-AFLP and EST sequence data

EST resources from GeneBank (assembly cotton46 from

http://cottonevolution.info/ as a hybrid assembly combin-

ing both Sanger and NGS EST sequences) and from our

own fiber cDNA pyrosequencing project (ESTs from this

study, unpublished data) were assembled together in a new

unigene set using MIRA software (unpublished). The

resulting unigene set, consisting of 38,297 contigs (sin-

gletons excluded), was searched in silico for the presence

of BstYI/MseI AFLP fragments using the cDNA-AFLP

module of the AFLP-in silico program (Rombauts et al.

2003). For each input sequence, only a single fragment

(noted pTDF for predicted TDF) is generated correspond-

ing to the fragment in the most 30-terminal position flanked

by the two restriction sites in 50 (RGATCC for enzyme

BstYI) and 30 (TTAA for enzyme MseI) end positions,

respectively; in accordance with the principle of ‘one-gene-

one-tag’ underlying the cDNA-AFLP method that we fol-

lowed here (Breyne et al. 2003; Vuylsteke et al. 2007). An

Excel VBA program was then used to search for matches

between the TDFs quantified on the cDNA-AFLP gels

using QuantarPro for eQTL mapping and the pTDFs pre-

dicted in silico. The search for matches was based upon

(i) the same combination of flanking nucleotides (64 pos-

sible combinations of BstYI-CN and MseI-NN selective

nucleotides) and (ii) the similar product size in number of

nucleotides. Because band resolution is not uniformly

distributed on a polyacrymalide gel, we allowed for an

error margin depending on the position of the fragment on

the gel: ±1 nt in range 50–149 bp, ±2 nt in range

150–249 bp, and ±3 nt in range 250–340 bp (Qin et al.

2006).

The ESTs developed in our project (unpublished) were

partly derived from the 454 pyrosequencing of four non-

normalized fiber cDNA libraries from the two parents of

the RIL population (Guazuncho 2 and VH8) and for the

two fiber development dates under study for eQTL map-

ping (10 and 22 dpa). The normalized number of reads of

the respective four libraries in each unigene (depth) was

then used to compute digital expression levels (Torres et al.

2010). An absolute fold change greater than 2, associated

with a q value lower than 0.05 (Guo et al. 2010) between

two conditions, either Gh10 versus Gb10 or Gh22 versus

Gb22, was then used to identify digitally differentially

expressed genes and pTDFs; for comparison with cDNA-

AFLP-derived TDFs that mapped eQTLs.

QTL analysis

WinQTL Cartographer software (Basten et al. 2003) was

used to perform simple marker analysis (SMA), interval

(IM) and composite interval mapping (CIM) on the 4,464

TDFs derived from the cDNA-AFLP profiles quantita-

tively scored by QuantarPro and on the genes quantified

by qPCR. These analyses were performed over 88 RILs

using the genotype data from 656 loci chosen from the

original 800 marker data set along the RIL map

(2,044 cM) previously reported (Lacape et al. 2009),

corresponding to an average density of one marker per

3.1 cM. CIM analysis was applied using Model 6, For-

ward Regression Method, 5 control markers chosen as

cofactors by stepwise regression, a 2 cM walking speed

and a window width of 10 cM. The five control markers

were selected by WinQTL Cartographer from a first step

univariate analysis. A genome-wide empirical permutation

test (1,000 permutations) was performed on 2 sets

(10 dpa) and 1 set (22 dpa) of 100 randomly chosen

TDFs each. Average LOD threshold (global risk of 5%)

values were 3.52 ± 0.54 and 3.59 ± 0.88 for the 10 dpa

sets and 3.51 ± 0.43 for the 22 dpa set. LOD3.5 was

therefore used as a common threshold in all analyses. All

peak LOD-positions and their confidence intervals (CI)

were exported from WinQTL Cartographer with following

parameters: (1) peak LOD positions (greater than 3.5)

spaced by at least 5 cM as an exclusion window with a

LOD value from top to valley greater than 1, and (2) the

interval corresponding to a one-LOD drop-off used as a

CI. In addition to the peak LOD positions and their CI,

the percent of variation explained (R2) and the additive

effect values were also exported from WinQTL Cartog-

rapher. This later parameter was used to test putative

transgressive segregation as in West et al. (2007): for

those TDFs exhibiting two or more eQTLs, a transcript
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was reported as showing transgressive segregation when it

mapped at least two eQTLs with parental effects in

opposite directions.

eQTL distribution

The support intervals (one-LOD drop off) of all significant

eQTLs (LOD [ 3.5) were used to calculate the total eQTL

representation along bins of fixed length (2 cM) on the RIL

map. The 1,020 bins along the 2,044 cM long RIL map

were designated by the chromosome name and order on the

chromosome. For example, ‘bin 2_5’ designated the fifth

bin, or segment between 8 and 9.99 cM (inclusive), on

chromosome 2. A permutation (1,000) test, using 0.05 as a

threshold (95th percentile) was performed to determine a

threshold value for which chromosome bins were signifi-

cantly over-populated with eQTLs. These over-populated

bin regions were also referred to as eQTL hotspot (Klie-

benstein et al. 2006; Potokina et al. 2008).

Comparison of eQTL to phenotypic fiber QTL

The QTL analysis of gene expression data and the QTL

mapping of phenotypic fiber data collected from 11 sets of

experiments (Lacape et al. 2010) were conducted using the

same parameters of WinQTL Cartographer and over the

same genotypic data set. However, LOD threshold filtering

was applied differently for eQTLs and for phenotypic QTLs

(phQTLs). Co-incident localization of phQTLs across

experiments was assessed using a low (LOD [ 2) threshold

and meta-clusters of phQTLs were then identified for a

limited number of fiber traits and chromosomes (Lacape

et al. 2010). The chromosome regions delineated by phQTL

meta-clusters, spanning between 10 and 20 cM, were then

used to assess the co-localization with eQTLs using the

overlap with their confidence intervals.

Results

TDF detection

cDNA-AFLP was used to analyze global transcript abun-

dance in developing cotton fibers harvested at two devel-

opmental stages, 10 and 22 dpa. Each of the selective AFLP

primer combinations amplified a range 100–150 fragments.

Image analysis of 126 gel electrophoresis scans allowed

the quantification of transcript abundance variation for 3,263

and 1,201 segregating TDFs for the 10 and 22 dpa fibers,

respectively. For each AFLP primer pair, between 27 and 89

TDFs were quantitatively scored for the 10 dpa samples

(average 54), which represents around 60% of the total

number of bands (not shown), and between 7 and 34 for the

22 dpa samples (average 19), which represents around 30%

of the total number of bands (not shown). Normalized TDFs

signal intensities were then calculated and used in further

analysis as described in the ‘‘Materials and methods’’.

eQTL statistics

The SMA method detected 3,962 (for 10 dpa) and 1,404

(for 22 dpa) significant marker 9 expression significant

associations using Pr(F) \ 0.001 as a threshold. This

Pr(F) value roughly corresponded to a LOD threshold of

3.5 in interval mapping (not shown). The CIM method

detected 3,665 and 1,375 LOD peaks (LOD [ 3.5) or

eQTLs. SMA and CIM methods globally agreed in the

number and location of significant eQTLs (not shown);

only CIM results are presented in detail.

In each of the 10 and 22 dpa data sets, two thirds of all

TDFs detected at least one significant eQTL (LOD [ 3.5):

68% (2,220 out of 3,263) and 67% (803 out of 1,201) of the

10 and 22 dpa TDFs detected between 1 and 6 eQTLs,

respectively (Table 1). As in previously reported whole

genome eQTL studies, a majority (85 and 83%) of the

transcripts displaying at least one significant eQTL were

controlled by just one or two eQTLs (Table 1).

Only a minority had high LOD scores (10% with

LOD [ 7) (Fig. 1). The R2 values were distributed in an

asymmetrical distribution (Fig. 1). The majority (71 and

79%) of eQTLs had an R2 between 0.1 and 0.2, while mean

R2 values were of 0.19 and 0.17 for the 10 and 22 dpa

experiments, respectively. Distribution of the additive

effects as conferred by either G. hirsutum or G. barbadense

parental alleles indicated that 1,670 (45.6%) of all 10 dpa

differentially expressed TDFs were up-regulated by parent

Guazuncho (Gh) and 1,995 (54.4%) by parent VH8 (Gb).

Proportions were similar for the 22 dpa experiment: 679

(49.4%) TDFs were Gh-up-regulated and 696 (50.6%) were

Gb-up-regulated.

Transgressive segregation was indirectly assessed by the

existence, for a given TDF, of eQTLs with opposing

parental allelic effects (West et al. 2007). For the 1,025 and

388 TDFs of the 10 and 22 dpa experiments with at least 2

eQTLs, 54 and 59% (553 and 230, respectively) displayed

transgression, respectively.

Distribution of eQTLs among chromosomes

Table 2 shows the respective total number of LOD peaks

on the 26 chromosomes. The 3,665 and 1,375 eQTLs

detected in the 10 and 22 dpa experiments were spread

throughout the genome but were not evenly distributed

among chromosomes (Table 2). There was a slight

although not statistically significant bias for the 10 dpa

eQTLs in favor of chromosomes of the At sub-genome
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(c1–c13), 1,925, when compared with the Dt sub-genome

(c14–c26), 1,740. The situation was reversed in the case of

the 22 dpa eQTLs (627 and 748 on At and Dt chromo-

somes, respectively).

This study clearly highlighted a few chromosomes with

a higher representation of eQTLs: c21, with 394 and 129

eQTLs at 10 and 22 dpa stages, respectively, c24 (123

eQTL at 22 dpa), and to a lesser extent c2, c5, c9, c12, and

c15 ([190 eQTLs at 10 dpa) (Table 2).

Distribution of eQTLs within chromosomes

and eQTL hotspots

In order to obtain a more realistic representation of the

distribution of eQTLs within chromosomes, the CI of the

LOD peaks and their overlap over fixed map segments

were considered, preferably to their exact peak position.

This also buffered for any local map inaccuracies. The total

length of the 26 chromosomes of the RIL map, i.e.

2,044 cM (Lacape et al. 2009), was divided into 1,020 bins

of 2 cM bins and the position of an eQTL was defined by

the bins upon which its one-LOD drop off CI overlapped.

The CI of the 3,665 and 1,375 significant eQTLs in the 10

and 22 dpa experiments were on average 6.6 and 5.8 cM,

respectively, indicating that an eQTL on average over-

lapped with four bins of 2 cM; i.e., the 3,665 LOD peak

positions of the 10 dpa samples converted into 15,687 hits

with a 2 cM bin and the 1,375 LOD peak positions of the

22 dpa samples converted into 5,375 hits. This mode of

visualization (Fig. 2) smoothed the variation in eQTL

frequency within chromosomes as compared to a strict

consideration of the eQTL peak positions (not shown).

eQTLs were clearly non-randomly distributed (Fig. 2).

Within a single 2 cM bin, the maximum number of over-

lapping CI reached 140 for bin 21_36 in the 10 dpa

experiment (with 73 LOD peaks effectively mapping

within this same bin). Using 33 and 17 eQTLs (overlapping

CI) per bin as thresholds (P \ 0.01), there was an excess of

eQTLs over 91 and 41 of the individual bins in the 10 and

22 dpa experiments, respectively. Considering adjacent

significant bins, or in 5 cases nearly significant bins, 33

chromosomal segments further referred as eQTL hotspots

were identified. Summary details of the 33 hotspots (21 and

12 for the 10 and 22 dpa experiments, respectively) are

given in Table 3. The highest number of overlapping eQTL

support intervals in a given hotspot was 1,038 eQTLs at

10 dpa mapped on c21 spanning 32 cM, or 16 significant

adjacent bins (from bin 21_32 to 21_47). For the 10 dpa

experiment, the 21 hotpots contained 1,468 eQTLs (40% of

all 3,665 eQTLs), or 4,306 overlapping CI, and covered 91

bins (9% of all 1,020 bins). For the 22 dpa experiment,

the 12 hotpots contained 366 eQTLs (27% of all 1,375

eQTLs), or 849 overlapping CI, and covered 41 bins (4%

of all 1,020 bins).

Mean LOD and mean R2 of the eQTLs within hotspots

were not different from overall values (Table 3). Within a

given hotspot, the direction of additive effects was most

often balanced between the two parents (Table 3): only 5

of the 33 were significantly (P \ 0.05) biased for an over-

representation conferred by either Gh (4 cases) or Gb (1)

alleles. Three additional cases (all with an over-represen-

tation by Gb) were close to significance (P \ 0.1).

As with the total numbers of significant eQTLs per

chromosome, there was also a tendency for the At chro-

mosomes (c1–c13) to map more 10 dpa eQTL hotspots

than the Dt chromosomes (c14–c26), 13 versus 8, and for

the Dt chromosomes to map more 22 dpa eQTL hotspots (9

vs. 3) (Table 3). There was no evidence for homoeologous

Table 1 Number of significant eQTL (LOD [ 3.5) detected per TDF

across the 10 and 22 dpa experiments

Number of

eQTL per

TDF

10 dpa 22 dpa

Observed

number of

TDFs

Percentage Observed

number of

TDFs

Percentage

0 1,043 32.0 398 33.1

1 1,195 36.6 415 34.6

2 689 21.1 250 20.8

3 266 8.2 103 8.6

4 57 1.7 26 2.2

5 12 0.4 7 0.6

6 1 0.03 2 0.2

Total 3,263 1,201
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Fig. 1 Frequency distribution of eQTLs. Distribution of significant

(LOD [ 3.5) fiber eQTLs among R2 (a) and LOD classes (b) for the

10 and 22 dpa experiments
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At/Dt relationship between the localizations of multiple

individual eQTLs derived from the same TDF (not shown)

or between eQTL hotspots on the different genomes.

Although eQTL hotspots were less numerous in the

22 dpa experiment than in the 10 dpa experiment, the

comparison of the distribution of the eQTL in the two data

sets showed few instances of conservation in the locations

of eQTL hotspots along chromosomes (Figs. 2, 3): bins

17–21 on c2 (slightly shifted) (Fig. 3), bin 11 (possibly also

bin 12) of c5, bins 27 and 28 (possibly also bin 29 close to

significance) of c9, and bins 75–77 (possibly also bins 74

and 78) of c21 (Fig. 3). However, some of the most sig-

nificant hotspots were clearly stage-specific: on c2 (bot-

tom), c11, c12, c15, c19 and c21 (central region) for the

10 dpa hotspots, or on c19 and c24 for the 22 dpa eQTL

hotspots (Table 3).

Correspondence between eQTLs and phQTLs for fiber

quality traits

The fiber quality QTLs from the same RIL population

described here, from 3 back-cross generations from the

same parents, and from the literature were earlier analyzed

in a meta analysis (Lacape et al. 2010). A small number

(26) of regions of QTL coincidence, so-called meta-clus-

ters, of phQTLs were further delineated by a 10–20 cM

(except for FIN_21A framed by 27 cM) window on the RIL

map, depending on the support intervals of individual

QTLs within the clusters. The overlap between these

phQTL meta-clusters and eQTLs was assessed by the direct

comparison of their genomic distribution on the RIL map

and using the one-LOD drop off confidence intervals of the

eQTLs. Comparative distribution of phQTL meta-clusters

and eQTLs along the 26 chromosomes are shown in Online

Resource ESM3 (2 chromosomes, c2 and c21 shown in

Fig. 3 as examples).

There was no bias in the localizations of the eQTLs with

higher LOD values (10% of LOD [ 5) from the 10 and

22 dpa experiments as compared to the meta-clusters of

phQTLs (not shown). Because TDFs are anonymous and

because eQTLs are widely distributed throughout the

genome (only 20% of all bins mapped no eQTL), we

concentrated on the co-localization of meta-clusters of

phQTLs and the hotspots of eQTLs, rather than the indi-

vidual eQTLs themselves. In each data set, the density of

eQTLs within meta-clusters of phQTLs was significantly

higher than random (Chi2 probability \E-10 and\E-12 for

the 10 and 22 dpa data sets). In several instances, the meta-

clusters of fiber QTLs overlapped with regions significantly

enriched in eQTLs (hotspots) for either, or both, the 10 and

22 dpa samples. Interestingly, the region most highly

populated in eQTLs for the 10 dpa samples along a central

region of c21 corresponded fairly well with two co-local-

ized meta-clusters of phenotypic QTLs (Fig. 3), for fiber

strength (STR_21) and fineness (FIN_21A). For both traits,

the Gb parent contributed positively (higher strength, lower

fineness). Including c21, coincident enrichment in eQTLs

(hotspots) within phQTL meta-clusters were encountered

in nine cases. Three involved both 10 and 22 dpa eQTL

hotspots (c2 containing a meta-cluster for fiber elongation,

c9 and c21-lower for fineness), four involved only the

10 dpa eQTLs (c3 and c21-upper for fineness and strength,

c4 for length, and c12 for fineness) and two involved only

the 22 dpa eQTLs (c17 for fineness and c24 for length)

(Table 3; Fig. 3, Online Resource ESM3).

Two chromosomes particularly rich in phQTLs clusters

that were only reported as indicative in Lacape et al. (2010)

because of imperfect clustering and which co-localized

with hotspots of eQTLs, were c5 and c19. An upper region

of c5 rich in fiber fineness and strength phQTLs coincided

with eQTL hotspots detected in both 10 and 22 dpa along

bins 11–14. On chromosome 19, although eQTL hotspots

Table 2 Number of eQTLs per chromosome in the 10 and 22 dpa experiments

Chromosome 1 2 3 4 5 6 7 8 9 10 11 12 13 Total for

A

10 dpa No. eQTL 119 190 151 181 203 111 126 93 216 65 134 207 129 1,925

% 3.2 5.2 4.1 4.9 5.5 3.0 3.4 2.5 5.9 1.8 3.7 5.6 3.5 52.5

22 dpa No. eQTL 44 46 60 32 96 40 38 34 67 27 33 69 41 627

% 3.2 3.3 4.4 2.3 7.0 2.9 2.8 2.5 4.9 2.0 2.4 5.0 3.0 45.6

Chromosome 14 15 16 17 18 19 20 21 22 23 24 25 26 Total for D Total

10 dpa No. eQTL 151 192 113 68 110 175 163 394 57 84 99 76 58 1,740 3,665

% 4.1 5.2 3.1 1.9 3.0 4.8 4.4 10.8 1.6 2.3 2.7 2.1 1.6 47.5

22 dpa No. eQTL 54 21 39 40 56 87 37 129 31 60 123 42 29 748 1,375

% 3.9 1.5 2.8 2.9 4.1 6.3 2.7 9.4 2.3 4.4 8.9 3.1 2.1 54.4
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were detected at different locations in each 10 dpa (along

bins 2–7) and 22 dpa (bins 22–29) series, none were

co-located with the putative fiber phQTL clusters for

elongation and fineness that occur on those chromosomes.

Quantitative RT-PCR

As AFLP bands are anonymous, 29 selected TDF frag-

ments were isolated from gels and sequenced to tentatively
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Fig. 2 Localization of eQTLs along chromosomes. Distribution of

significant (LOD [ 3.5) eQTLs along chromosomes of the A (c1–

c13) and D (c14–c26) sub-genomes of tetraploid cotton according to

bins of 2 cM of the Guazuncho 29 VH8-RIL map. eQTLs detected

from fibers of two different developmental ages are presented: 10 dpa

(blue) in the upper panels and 22 dpa (red) in the lower panels. The

horizontal lines represent the 1,000 permutation-based (P \ 0.05)

thresholds, as 33 and 17 eQTLs per bin in the 10 and 22 dpa

experiments, respectively. Individual bins with total eQTLs higher

than threshold are indicated (arrow heads) (color figure online)
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confirm by qPCR the population-wide quantitative cDNA-

AFLP profiling. Ten TDFs were selected based on the

following criteria: (1) the correlation of the TDF expres-

sion data with the fiber phenotype (length, strength, or

fineness), and (2) the coincident chromosome localization

of the TDF-derived eQTL and fiber trait-derived phQTLs.

In addition, 19 other TDFs were selected based on the high

LOD score (LOD [ 5) of at least one of their associated

eQTL(s). The sequences of these 29 TDFs were aligned

against the cotton sequence databases using a Blast algo-

rithm. Out of the 29 TDFs, 15 were subsequently tested by

qPCR (Online Resource ESM2). Sequence homology of

the TDFs with cotton EST sequences allowed the design of

gene-specific primers. Expression profiling over the same

88 RILs was carried out using qPCR. For three TDFs, for

which the sequence blast result could not discriminate

between several possible database accessions, primers pairs

were designed for each accession and tested independently

by qPCR (Online Resource ESM2).

Gene expression qPCR values over the 88 RILs were

analyzed by WinQTL Cartographer. Those gene expression

data sets that deviated from a normal distribution were log-

transformed before analysis. LOD peak values were in

general lower for the qPCR data so we used LOD2.5 as a

threshold for the comparisons with the cDNA-AFLP

eQTLs. All candidate genes tested mapped at least one

eQTL ([LOD2.5). The comparison of the position of the

qPCR-derived eQTLs with the AFLP-derived eQTLs of

the corresponding TDF showed six cases of a common

location of at least one LOD peak (position\10 cM) on the

same chromosome. However, for half of those cases, the

additive effects were in opposite directions. The only three

congruent cases are shown in Fig. 4 (LOD and additivity

profiles). The first TDF (Fig. 4a), BCTMGA_95.6, puta-

tively encoding a UDP-glucose pyrophosphorylase

(accession DT050294), tested by qPCR mapped an eQTL

(LOD2.5) on c24 at a similar location as a cDNA-AFLP

peak of lower LOD value (LOD1.2), while conversely an

AFLP-based eQTL on c5 (LOD3) was corroborated by a

lower LOD peak in the qPCR-based eQTL mapping

(LOD1.1). The profiles of the additive effects along c5 and

c24 were fairly similar for both techniques (Fig. 4a).

The second TDF, BCGMCT_399, had a Blast hit with a

D-ribulose-5-phosphate 3-epimerase (accession EX167

888), and showed congruent eQTL localization in a middle

region of c21 (Fig. 4b). An additional LOD peak (LOD2.5)

on the same chromosome detected by the qPCR was not

detected in the AFLP experiment. The third TDF,

BCTMGA_133.9, had a blast hit with an unknown protein

(EX166831), and showed congruent LOD and additivity

profiles (Fig. 4c) on two chromosomes, c5 and c21;

although, as for the previous TDF, some LOD peaks were

not clearly confirmed with the two methods.T
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Linking cDNA-AFLP and EST sequence data

The AFLP in silico digestion of the 38,297 contigs from

the global EST assembly (unpublished) resulted in

11,421 predicted TDFs (a unigene predicts a single TDF)

of size range between 6 and 2,150 nt. Because of the

lower and upper limits imposed by the DNA ladder used,

the search for matches was limited to the range

50–340 nt that were scored on our cDNA-AFLP gels. As

a result, subsets of 1,970 and 661 cDNA-AFLP TDFs,

were selected among the 3,665 and 1,375 TDFs mapped

in the two eQTL experiments, 10 and 22 dpa, respec-

tively. Similarly 8,087 pTDFs in the range 50–340 bp

were used for comparisons. The search for matches of

pTDFs with TDFs quantified on the cDNA-AFLP gels

indicated that 1,237 and 448 TDFs (or 63 and 68%) in

the 10 and 22 dpa eQTL experiments, respectively, could

be predicted by one or several annotated unigenes. The

AFLP in silico analysis of a global transcriptome

assembly constitutes a valuable tool (Qin et al. 2006)

that could be used to identify digitally interesting

expression patterns, or used in a preliminary step of

mining of pre-existing EST data in order to optimize

choice(s) of enzymes in cDNA-AFLP studies (Rombauts

et al. 2003; Vuylsteke et al. 2007).

Among the 265 unigenes with significant differential

digital expression (fold change larger than 2) between the 2

genotypes at 10 dpa (not shown) and which predicted a

TDF in silico, 167 corresponded to a TDF mapping at least

one eQTL among the RILs at 10 dpa. A similar number of

265 unigenes, although the 2 lists are essentially different,

predicting a TDF in silico showed significant differential

digital expression between the 2 genotypes at 22 dpa (not

shown); however, only 64 of them mapped at least one

eQTL among the RILs at 22 dpa. All these 227 unigenes

and their putative annotations by Blast2Go are listed in

Online Resource ESM4. Among the interesting annotations

that were detected in this list, some proteins are known for

their pivotal role in cotton fiber biogenesis and elongation

and in explaining differences between the two species

G. hirsutum and G. barbadense, like kinases, beta galac-

tosidase, cellulose synthases, tubulins, or endo-beta glu-

canases (Online Resource ESM4).

Discussion

We here report a cotton fiber transcriptome study by

cDNA-AFLP in a segregating RIL population of interspe-

cific origin (G. hirsutum 9 G. barbadense), and thus have

provided the first demonstration of an eQTL analysis in

cotton.
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Fig. 3 Comparative localization of eQTLs with meta-clusters for

fiber phenotypic QTLs. Localization of eQTLs from fibers at 10 (blue
bars) and 22 dpa (red bars) are compared with regions containing

meta-clusters of fiber phenotypic QTLs (phQTLs) for major fiber

quality trait categories, including fineness (FIN), length (LEN),

strength (STR), elongation (ELO) and color (COL) as reported in

Lacape et al. (2010). The observed parental effect (either Gh or Gb) of

each meta-cluster of phQTLs, as indicated in the legends, corresponds

to an improvement of the trait value, higher length, strength, and

elongation or lower fineness and yellowness. The horizontal lines

represent the 1,000 permutation-based (P \ 0.05) thresholds in the 10

and 22 dpa experiments. Examples of chromosomes c2 and c21 are

shown (complete set of 26 chromosomes are shown in Online

Resource ESM3) (color figure online)
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Fig. 4 LOD and additivity

profiles from cDNA-AFLP and

qPCR experiments. The three

examples of comparative LOD

(upper panels) and additivity

(lower panels) profiles derive

from gene and TDF expression

data as profiled in quantitative

RT-PCR and cDNA-AFLP

experiments. Dotted line TDF

profile from cDNA-AFLP, solid
line gene profile from qRT-

PCR. Horizontal line indicates a

LOD2.5 threshold. Examples

show cases of co-localizations

of LOD peaks and/or parallel

profiles:

a TDF = BCTMGA1_95.6 and

gene DT050294 on c5 and c24,

b BCGMCT_399 and gene T19

on c21; c BCTMGA_133.9 and

gene FT6-unk on c5 and c21

(color figure online)
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Quantitative cDNA-AFLP is efficient for gene

expression profiling

While the small population size (88 individuals) used in this

study and the unbalanced parental representation (distorted

segregation) present in these RILs (Lacape et al. 2009), could

be viewed as limitations (Beavis 1998), the use of environ-

mentally controlled growth facilities, standardized times of

collection of samples and a relative stringent QTL detection

threshold are all factors in favor of increased rigor in the

identification of eQTLs. Our LOD threshold, LOD3.5

(equivalent to a 5% genome-wide risk) was fairly stringent

when compared to similar eQTL studies [LOD2.6 in West

et al. (2007), or LOD2.9 in Potokina et al. (2008), and

LOD3.1 in Wang et al. (2010)]. Gene expression may also be

influenced by the environment. Although our experiment did

not include separate biological replicates as such, our sam-

pling (each RNA originating from several bolls harvested

from two different plants), may have at least partly mini-

mized this environmental component. We expected that the

eQTLs detected through our design would be more related to

differences in fiber development processes than to variation

of environmental conditions and genetic background.

Two key fiber development time-points were studied,

whereby RNA of developing fibers at 10 and 22 days after

anthesis were profiled over the segregating RILs. 4,464

transcripts were profiled, thus representing only a modest,

10–14%, part of the total fiber transcriptome [75–94% of

the 40,000 genes of the genome are expressed in cotton

fibers (Hovav et al. 2008c)]. Using a 5% genome-wide

permutation-based threshold and a global risk of 5%

(LOD [ 3.5) 5,040 significant eQTLs at the two key times

of fiber development were identified, deriving from 3,023

different TDFs. As expected from previous classical fiber

QTL mapping studies and from functional genomics work,

the genetical genomics approach and the eQTL networks of

developing fibers identified here confirmed the complexity

of the transcriptional regulation leading to the contrasting

fiber qualities of the two species G. hirsutum and G. bar-

badense. The majority of the eQTLs were associated with

relatively small effects: only 7 and 3% of the eQTLs had an

R2 [ 0.3 in the 10 and 22 experiments, respectively. This is

similar to findings in yeast and other higher plant species

for expression traits (Keurenjes et al. 2007; West et al.

2007). This also implies that most of the gene expression

variation in our experiment may be linked to interactions

with the environment, the particularly heterogeneous

genetic background of those RILs, or to non-controlled

technical bias. Although all RILs were grown in the same

glasshouse environment, considerable variability in their

growth (including fruit maturation kinetics) and develop-

ment (including earliness and possible delays in fruit and

fiber maturation) was observed (not shown).

The cDNA-AFLP profiles of 10 and 22 dpa fibers were

different in terms of the total number of scored TDFs

(3,962 against 1,404), although they had very similar basic

statistics: including information content (two-third of all

TDFs mapped at least 1 eQTL), similar mean R2 and

additivity. The main reason for the difference may be

technical as there was a greater difficulty in choosing

quantitatively segregating bands in the 22 dpa radiograms

that had more ‘‘background noise’’. RNA from older

(22 dpa) fibers was generally lower in quantity and quality

and those fibers may also be less synchronous material in

physiological development compared to younger (10 dpa)

fibers. Boll size, boll locks and seed size observed at

22 dpa did display more variability than at the 10 dpa

sampling date (although not formally measured).

Sub-genomic distribution of eQTLs

Quantitative trait loci mapping reports for fiber traits in

tetraploid cotton have indicated that the contribution of the

Dt sub-genome to fiber quality is far from negligible

(Lacape et al. 2010; Rong et al. 2007), despite the fact that

the modern diploid species from the D sub-genome pro-

duce only very rudimentary short fibers compared to the

long fibers of the A and AtDt species. The numbers of

eQTLs mapping to the At (1,925) and Dt (1,740) chromo-

somes of tetraploid cotton in this study were quite similar.

However, the distribution of the eQTL hotspots between At

and Dt chromosomes as identified from the 22 dpa fibers

seemed to favor the Dt chromosomes (3 hotspots vs. 9 for

the At and Dt chromosomes, respectively), while the ten-

dency was opposite for the 10 dpa hotpots (13 vs. 8,

respectively). This agrees with the observations of Hovav

et al. (2008b) that noted a preference for expression of the

Dt genome copies within homoeologous gene pairs com-

pared to the At genome, and this difference increased

during fiber development. Hovav et al. (2008b) used a

microarray platform of 1,500 duplicated At/Dt gene pairs

and showed that changes in the expression levels of

duplicated At/Dt genes, including their temporal differential

partitioning, was a common phenomenon. That neither

phQTLs [or phQTL meta-cluster as in Lacape et al. (2010)]

nor eQTLs (or eQTL hotspots, herein) were detected at

homoeologous locations on At and Dt chromosomes is in

favor of a decoupling (i.e. lack of coordination) of the

expression of homoeologous duplicated genes, or gene

regulators, in fibers of tetraploid AtDt cotton.

Existence of hotspots of eQTLs

eQTLs can be considered as either cis-acting or trans-

acting types according to their distance to the corre-

sponding structural gene (Hansen et al. 2007). Although
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trans-eQTL hotspots have emerged as an important aspect

of genetic architecture of transcription and interpreted by

the location of a transcription regulator with pleiotropic

effects on a large set of genes (Gibson and Weir 2005;

Kirst et al. 2005), the interpretation of the clustering of

eQTLs at a particular hotspot should at the same time be

considered with some caution. In the absence of a genome

sequence for cotton, we are as yet unable to clearly define

which of our eQTLs are cis or trans, although the occur-

rence of highly populated hotspots is clearly suggestive of

trans eQTLs. Another interpretation is that they may reflect

regions of the map with little recombination, and hence

may have more genes per cM than elsewhere, as had been

reported in the case of barley (Potokina et al. 2008). In our

case, we found no relationship between the map position of

eQTL hotspots and the position of marker-dense regions in

the RIL map (Lacape et al. 2009). Another factor leading to

an over-estimation of trans-eQTL occurrence could be

artificially or environmentally induced inter-sample corre-

lations (Kang et al. 2008; Pérez-Enciso et al. 2007), In such

cases, the existence of false eQTL hotspots generated by

highly correlated genes can be assessed using a permuta-

tion strategy (Breitling et al. 2008), that was applied to the

10 and 22 dpa data matrix. The genotypic data of the 88

individual RILs were permuted maintaining the expression

matrix and an SMA was re-run with QTLCartographer.

Using Pr(F) \ 0.001 as a threshold to filter the highest

gene 9 marker correlations, and following two runs of

permutations for each of the 10 and 22 dpa data sets, it was

found that none of the individual hotspot loci (25 loci in the

10 dpa data and 9 loci in the 22 dpa data) in the real data

(observed hotspots) was among the hotspot loci in the two

permuted data sets (false hotspots). The observed eQTL

hotspots identified in this study (Table 3) are therefore

unlikely to be explained by simple gene expression corre-

lations and may represent true trans eQTLs.

Our results on the mean statistics amongst the eQTLs

mapped within hotspots as compared to all eQTLs (mean

R2 and LOD value for hotspots and bias of parental addi-

tive effects) differ from the literature. The most common

observation for eQTL hotspots is that (1) significantly

lower LOD scores and lower R2 values are associated with

trans-eQTLs hotspots (Gibson and Weir 2005; Potokina

et al. 2008; Vuylsteke et al. 2006; West et al. 2007),

although we observed very similar values (Table 3), and

(2) a directional bias of additive effects for trans-eQTL

hotspots was strong for Arabidopsis (West et al. 2007), and

moderate for eucalyptus (Kirst et al. 2005) or barley

(Potokina et al. 2008), but we observed only a slight bias in

parental additive effects (Table 3).

The distributions of our eQTL hotspots were compared

with the position of fiber ‘‘gene-rich islands’’ identified in

Xu et al. (2008). They identified a strong and significant

bias in the map location of fiber gene-derived markers in

favor of a few chromosome regions, specifically on c5, c10,

c14 and c15. Among those 4 regions, a 10 cM region on

top of c5 mapped 460 genes and putatively corresponded to

the region of the RIL map (bins 5_11 to 5_14) where an

eQTL hotspot common to the 10 and 22 dpa data sets

occurs (Online Resource ESM3). In this particular region

of c5, the eQTL hotspots may therefore reflect the presence

of a gene-rich region rather than of a pleiotropic trans-

acting factor. It should be noted that the genes listed by Xu

et al. (2008), although expressed in fibers, are not neces-

sarily differentially expressed between G. hirsutum and

G. barbadense. Those genes will not necessarily underlie

or be causal for the strong phenotypic QTLs clusters earlier

described (Lacape et al. 2010) or the eQTLs targeted by the

cDNA-AFLP method described herein.

Integration of fiber phQTLs and eQTLs

Important practical applications of global scanning of the

variation in transcript abundance and eQTL mapping

includes the correlative analysis of trait variation and the

comparative mapping of eQTLs with phQTLs.

Because of the lack of sequence data and because of the

limited number of cDNA-AFLP-derived transcripts pro-

filed in this study, our data could not be used to identify

cis-acting factors putatively influential in the variation of

phenotypic traits. A concordant localization of eQTL hot-

spots (presumably associated with trans-acting factors)

with regions rich in phenotypic fiber QTL (meta-clusters)

was observed in at least 15 different cases related to the

various fiber traits (Table 3; Fig. 3 and Online Resource

ESM3) the majority of which related to fiber fineness and

to a lesser extent to fiber elongation, strength and length. It

is generally accepted that among the main fiber quality

parameters, fiber length and fineness are determined in the

early stages of growth and development, while strength–

stage relationships need to be further studied (Hsieh 1999).

However, there was no clear correspondence of eQTL

hotspots detected for the two fiber development stages with

any specific type of fiber quality parameter, in terms of co-

localization with meta-clusters of phQTLs (Table 3). An

eQTL may therefore involve pleiotropic factors or modu-

late in an unexpected way the output of physiological

processes involved in fiber development (e.g. length can be

modified by an extended elongation phase, and fiber

strength can also depend on early structures of fiber cells

that might determine fiber diameter).

Other studies have sometimes seen a co-localization

between eQTLs and phQTLs, but this is not always the

case. In Arabidopsis, a summation approach combining

phenotypic QTLs from unrelated studies (62 traits) did not

reveal any significant co-localization with trans-eQTL
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hotspots (Kliebenstein et al. 2006), except for two shoot

growth QTLs. In barley, a number of comparative mapping

studies in relation to rust resistance concluded that there

was either an association or an independence between

specific traits and some eQTLs (Chen et al. 2010; Druka

et al. 2008). In an Eucalyptus hybrid progeny, two trans-

acting eQTLs common to 11 genes from the lignin bio-

synthesis pathways were shown to be co-localized with

growth phQTLs (Kirst et al. 2004).

Our study may have been an unusual case of eQTL

mapping since we mapped expression polymorphisms

between two independently domesticated tetraploid species

rather than between different cultivars or ecotypes of the

same species normally used in genetic studies. Molecular

studies on the domestication of G. hirsutum and G. bar-

badense have already suggested that human selection has

acted on different components of the fiber developmental

genetic program and that convergent evolution rather than

parallel evolution has affected fiber traits in both species

(Hovav et al. 2008a).

Nevertheless, the genomic co-localization of phQTL

and eQTL hotspots that we observed may also partly reflect

the consequences of domestication. Sequences data from

cloning of domestication-related genes and diversification-

related genes strongly suggest that domestication is asso-

ciated with changes in transcriptional regulatory networks,

whereas crop diversification involves a larger proportion of

enzyme-encoding loci (Doebley et al. 2006). As Gh and Gb

have experienced separate domestications the RILs should

segregate for domestication related traits. As domestica-

tion-related genes may be transcription factors and act in

trans, some of the highlighted regions showing co-locali-

zation of eQTL hotspots and phQTL meta-clusters may

therefore reflect the genomic consequences of domestica-

tion in both species (e.g. c3, c21 or c24 for Gb, c2 or c4 for

Gh) (Fig. 3 and Online Resource ESM3).

The few TDFs showing higher R2 values, good corre-

lations with fiber trait parameters and localized within

phQTL hotspots will be a useful starting point to investi-

gate the importance of trans- versus cis- regulations in the

determination of fiber trait parameters. Such sequences

could also constitute good candidate genes that have been

targeted by human selection in each of the two species.

With the future sequencing of the cotton D genome

(Paterson et al. 2010), map-based candidate sequences for

selection underlying phQTL or eQTL should also be

available. As a first example, a R2R3-MYB transcription

factor showing the highest number of haplotypes (in four

Gossypium species) among 12 MYB genes studied has

been mapped on c21 (An et al. 2008) near the marker

JESPR251, i.e., in the center of where we mapped an

important hotspot of eQTLs as well as a cluster of fiber

phenotypic QTLs (Fig. 3).

Validation of TDFs

Because of the large number of eQTLs identified, valida-

tion was only undertaken for a small set of 15 cloned TDFs

that were tested by quantitative RT-PCR across the same

RILs. The eQTLs derived from the 2 approaches (cDNA-

AFLP and qPCR) were only partly coincident, as only 3

clear cases of congruence were detected among the 15

examined. To our knowledge, there have been no previous

reports in plants of validation by quantitative RT-PCR of

eQTLs mapped from microarray or from AFLP profiling.

Only recently, in a report on eQTL mapped from micro-

array, 13 genes from porcine muscle were tentatively val-

idated by qPCR (Ponsuksili et al. 2010). As a result, 3 of

the 5 cis-acting eQTL were validated and none of the 15

trans-eQTLs was commonly detected in the 2 methods.

Possible explanations for our modest level of validation

may be several. The isolation of the PCR fragments from

AFLP gels (used for cloning the TDF) is technically dif-

ficult and may have selected a different band of the same or

similar size from that identified in the original gels used for

eQTL mapping. Alternatively the choice of primers for

qPCR may have amplified a transcript for a different gene

to the one corresponding to the TDF. The Genbank EST

collection, while extensive, is by no means complete and

Gb ESTs in particular are significantly under-represented.

After Blasting our sequences against Genbank ESTs,

primers were designed to the 30 UTR region, sometimes

outside the sequence region overlapping with the TDF and,

so could possibly correspond to a different (homoeologous,

paralogous) gene copy. The three cases (Fig. 4), where

congruent profiles were found for LOD position and

additivity, could not happen by chance and constitute a

validation of cDNA-AFLP as a technique to quantitatively

monitor the segregation of transcript abundance across a

population (Vuylsteke et al. 2006).

The cross-matching between virtual TDFs predicted by

in silico AFLP digestion of a EST unigene and AFLP-

based TDFs allowed the identification of 227 cases where

an annotated unigene, with differential digital representa-

tion of the 2 parents, predicted a TDF matched with a

AFLP-based TDF fragment also mapping an eQTL for the

same developmental time point (Online Resource ESM4).

These annotated unigenes are all candidate sequences for

validation of the cDNA-AFLP technique. The identified

unigenes could be screened by qRT-PCR for verification of

quantitative changes in transcript abundance (gene

expression) both for the cDNA-AFLP and for the digital

estimates from EST sequence assembly. The positioning of

these genes on the cotton genome, when available (Lin

et al. 2010; Paterson et al. 2010), will provide an aid for the

interpretation of cis- (same position of the gene and of the

eQTL) and trans-acting (different positions) eQTLs.
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Conclusion

In conclusion, we have not only validated the concept of

genetical genomics (Jansen and Nap 2001) for the first

time in cotton but also demonstrated that cDNA-AFLP is

a cost-effective and highly transferable alternative for

genome-wide and population-wide gene expression pro-

filing (Reijans et al. 2003). The cDNA-AFLP technique

can thus be used in a cost-effective way in any biolog-

ical system. While it is not practical to sequence all of

the TDFs we have mapped, their sequence identity could

be determined through in silico prediction (Rombauts

et al. 2003) using the increasing number of Gossypium

cDNA sequence data. For that purpose and as a con-

tinuation of the present report, we have undertaken a

series of large-scale sequencing of cDNA from the same

material, including the two parental species and the two

fiber development time points. As the genome sequence

of the D species G. raimondii should be available in the

next few years (Paterson et al. 2010), the identification

of candidate genes underlying phQTLs or eQTLs and the

classification of eQTL as cis- or trans- eQTLs will also

be facilitated (Wang et al. 2010).

The identification of putative trans-eQTL hotspots con-

trolling large numbers of fiber transcripts has been an

important output and has been observed in many eQTLs

studies in other organisms and plants (Brem et al. 2002;

Schadt et al. 2003; West et al. 2007). How those eQTL

hotspots may highlight effects of human selection on plant

genomes is an exciting question raised by this study. Can-

didate genes could then be tested as fiber quality markers in

G. hirsutum and G. barbadense collections, including their

native wild and domesticated forms (Zhu et al. 2008) or in

introgressed near-isogenic lines, or tested for footprints of

domestication in Gossypium species. Finally, a better

knowledge about the molecular control of cotton fiber

quality will allow breeders to choose better genomic targets

for improvement of this crop species through marker-

assisted selection and genotypic construction.
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Pérez-Enciso M, Quevedo JR, Bahamonde A (2007) Genetical

genomics: use all data. BMC Genomics 8:69

Ponsuksili S, Murani E, Phatsara C, Schwerin M, Schellander K,

Wimmers K (2010) Expression quantitative trait loci analysis of

genes in porcine muscle by quantitative real-time RT-PCR

compared to microarray data. Heredity 1:1–9

Potokina E, Druka A, Luo Z, Wise R, Waugh R, Kearsey M (2008)

Gene expression quantitative trait locus analysis of 16 000 barley

genes reveals a complex pattern of genome-wide transcriptional

regulation. Plant J 53:90–101

Qin L, Prins P, Helder J (2006) 8. Linking cDNA-AFLP-based gene

expression patterns and ESTs. In: Liang P, Meade JD, Pardee

AB (eds) Methods in molecular biology, vol 317: differential

display methods and protocols. Humana Press Inc., Totowa,

pp 123–138

Reijans M, Lascaris R, Groeneger AO, Wittenberg A, Wesselink E,

van Oeveren J, de Wit E, Boorsma A, Voetdijk B, van der Spek

H, Grivell LA, Simons G (2003) Quantitative comparison of

cDNA-AFLP, microarrays, and GeneChip expression data in

Saccharomyces cerevisiae. Genomics 82:606–618

Rombauts S, Van de Peer Y, Rouzé P (2003) AFLPinSilico,
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