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Abstract Detection of QTL in multiple segregating

populations is of high interest as it includes more alleles

than mapping in a single biparental population. In addition,

such populations are routinely generated in applied plant

breeding programs and can thus be used to identify QTL

which are of direct relevance for a marker-assisted

improvement of elite germplasm. Multiple-line cross QTL

mapping and joint linkage association mapping were used

for QTL detection. We empirically compared these two

different biometrical approaches with regard to QTL

detection for important agronomic traits in nine segregating

populations of elite rapeseed lines. The plants were inten-

sively phenotyped in multi-location field trials and geno-

typed with 253 SNP markers. Both approaches detected

several additive QTL for diverse traits, including flowering

time, plant height, protein content, oil content, glucosino-

late content, and grain yield. In addition, we identified

one epistatic QTL for flowering time. Consequently, both

approaches appear suited for QTL detection in multiple

segregating populations.

Introduction

Oilseed rape (Brassica napus L.) is grown in many parts of

the world and is the most important source of vegetable oil

in Europe and second most important worldwide, after

soybean. It is used both, for human nutrition and for

industrial products. Yield is the most important breeding

goal in rapeseed breeding, and high seed oil and protein

content are additional breeding goals depending on the

country. After the extraction of oil from the seeds, the

residual meal is commonly used in livestock feeding and is

thus desired to contain high levels of protein. Glucosino-

lates are secondary plant metabolites that restrict the use of

this protein-rich feed supplement, and the goal for plant

breeders is to decrease the glucosinolate content. In addi-

tion, yield and yield-related traits, such as flowering time

and plant height, are also traits under intense selection in

breeding programs. Linkage mapping and more recently

association mapping approaches have identified QTL for

all the above-mentioned quantitative traits (Delourme et al.

2006; Mahmood et al. 2006; Qiu et al. 2006; Hasan

et al. 2008; Mei et al. 2009; Chen et al. 2010; Smooker

et al. 2011).

B. napus is an amphidiploid (AACC) and originated by

the hybridization of B. rapa and B. oleracea (Kimber and

McGregor 1995). The genepool of elite oilseed rape has

been selected for high yield and oil content and more

recently went through a strong genetic bottleneck due to

the selection for the desired zero seed erucic acid and low

glucosinolate content. Both traits were introduced into the

elite breeding material in the 1960s and 1970s and each
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originate from single genotypes (Becker et al. 1999). This

breeding history potentially has implications on the linkage

disequilibrium (LD) structure of current elite oilseed rape.

In a first study of LD in rapeseed, Ecke et al. (2010)

investigated LD in 85 elite rapeseed genotypes and

observed that LD is high between closely linked markers

and decays within a few centimorgan.

In plant breeding programs, segregating populations are

routinely generated and phenotyped. The decreasing costs

for molecular marker analyses have paved the way for a

routine genotyping of the same plants. Thus, both pheno-

typic and genotypic data are available and can be exploited

to detect QTL segregating in elite germplasm for a later

implementation in knowledge-based breeding programs.

Different approaches have recently been suggested to dis-

sect the genetic architecture of complex traits in multiple

segregating populations. Multiple-line cross QTL (MC-

QTL) mapping is based on linkage mapping methodology

(Blanc et al. 2006; Steinhoff et al. 2011), whereas joint

linkage association mapping (JLAM) is an association

mapping approach and is based on LD (Yu et al. 2008; Reif

et al. 2010).

The main goal of this study was to use phenotypic and

genotypic data from several populations derived from an

applied breeding program to dissect the genetic architec-

ture of agronomically important traits in oilseed rape. In

particular, the objectives of our study were to use a large

population of 391 elite rapeseed lines to (1) examine cor-

relations between agronomic traits, (2) investigate LD

structure in this panel of elite lines, (3) identify main and

epistatic QTL for important agronomic traits and (4)

empirically compare two different biometrical approaches

for QTL detection in multiple segregating populations.

Materials and methods

Plant materials and field trials

Our study was based on 391 doubled haploid (DH) rape-

seed (Brassica napus L.) progenies, which were derived

from nine crosses among 10 parental lines (Supplementary

Table 1). The parents were elite breeding lines from the

breeding pool of Limagrain bred for release as varieties in

Central Europe. The relationship among the parental lines

is shown in the principal coordinate plot (Supplementary

Figure S1). The number of progenies from each cross

ranged from 9 to 93. All material used in this study was

provided by the breeding company Limagrain GmbH. The

391 progenies and nine of the ten parents were tested in 4

environments representing the Central European Mega

environment. The four environments were RSRS (Germany,

75 m asl, loamy sand texture, mean annual temperature

8.2�C, mean annual precipitation 660 mm), RSBE

(Germany, 262 m asl, loamy sand texture, mean annual

temperature 9.0�C, mean annual precipitation 630 mm),

VRVR (France, 91 m asl, loamy sand texture, mean annual

temperature 9.4�C, mean annual precipitation 671 mm),

and ROLN (UK, 65 m asl, loamy sand texture, mean

annual temperature 9.6�C, mean annual precipitation

599 mm).The experimental design at each environment

was an a-lattice design with two replicates per environ-

ment. Plant density was 500.000 plants ha-1.

Data were recorded for flowering time (FT visual rating

from 1 to 9 at one time point to assess how advanced the

plants were in flowering), plant height (PH; cm), protein

content (PROT; %), oil content (OIL; %), glucosinolate

content (GLU; lmol g-1), dry matter content (DMC%),

and grain yield (GY; Mg ha-1). PROT, OIL and GLU were

determined by near-infrared reflectance spectroscopy

(FOSS XDS XD-1000, calibrations by Limagrain). Two

technical replications were done for each measurement.

Phenotypic data analyses

The phenotypic data of each environment were first ana-

lyzed separately based on the statistical model

yikl = l ? gi ? rk ? blk ? eikl, where yikl was the pheno-

typic observation for the ith rapeseed line in the lth

incomplete block of the kth replication, l was an intercept

term, gi was the genetic effect of the ith genotype, rk was

the effect of the kth replication, blk was the effect of the lth

incomplete block of the kth replication, and eikl was the

residual. Except blk, all effects were regarded as fixed. We

estimated the variance of the residuals in single environ-

ments and calculated the average across environments,

which was denoted in the following as r2
e.

A combined analysis across locations based on the

BLUE values from the above model was performed using

the following statistical model Yim = l ? Gi ? Em ? eim,

where Yim was the best linear unbiased estimate (BLUE)

for the ith rapeseed line in the mth environment, l was an

intercept term, Gi was the genetic effect of the ith geno-

type, Em was the effect of the mth environment, and eim was

the residual, which equals GEim þ �e. Variance components

were determined by the restricted maximum likelihood

(REML) method assuming a random model. The estimate

of r2
e reflects the sum of r2

G�E and r2
e divided by the

number of replications, which was two in our study.

Variance component due to genotype 9 environment

interactions was, therefore, calculated as r2
G�E = r2

e -r2
e /2

following standard procedure (Cochran and Cox 1957).

Heritability on an entry-mean basis was calculated as the

ratio of genotypic to phenotypic variance according to

Melchinger et al. (1998). In addition, BLUEs across envi-

ronments were estimated assuming fixed genetic effects.
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Molecular data

The 10 parents and their 391 progenies were fingerprinted

with 253 single nucleotide polymorphism (SNP) markers.

These markers were validated single-locus markers which

were randomly distributed across the rapeseed genome with

an average marker distance of 11.6 cM (Supplementary

Figure S2). 62% of the adjacent markers had a genetic map

distance of\10 cM, 50% had a distance\5 cM, and 33%

of \2 cM. We used the accepted chromosome nomencla-

ture A1–A10 and C1–C9 (http://www.brassica.info) and

map positions of all markers were based on the linkage

map of Limagrain (unpublished data). Associations among

the 10 parents and their 391 genotypes were analyzed

by applying principal coordinate analysis (PCoA) (Gower

1966) based on the modified Rogers’ distances of the

individuals (Wright 1978). Extent of LD between all pairs

of loci was determined estimating r2 as described by Hill

and Robertson (1968). LD analyses and PCoA were per-

formed using software Plabsoft (Maurer et al. 2008).

Multiple-line cross QTL mapping

QTL mapping was performed using the connected model

suggested by Blanc et al. (2006), which accounts for

relationships between the parents. Details are given in

Steinhoff et al. (2011), in brief the model used was

Y ¼ 1lþ XPMP þ X�qB�q þ
X

c 6¼q

X�c B�c þ e

where Y was an N 9 1 column vector of BLUE values

across environments of N progenies (here N = 391), l was

an N 9 1 column vector of 1, l was the intercept, Xp was

an N 9 P matrix whose elements were 0 or 1 according to

whether or not progeny i belonged to population p, MP was

a P 9 1 vector of population effects, X�q X�c
� �

was an

N 9 K matrix containing the number of parental allele k at

marker q (cofactor c) given the marker data for each

progeny i, B�q B�c
� �

was a K 9 1 vector of the allele effects

of marker q (cofactor c), and e was the vector of the

residual errors.

Cofactor selection was performed using the Schwarz

(1978) Bayesian Criterion (SBC) implemented in PROC

GLMSELECT implemented in the statistical software SAS

(SAS Institute Inc 2008). Testing for the presence of a

putative QTL in an interval was performed using a likeli-

hood ratio test using statistical software R. The experiment-

wise type I error was determined to be Pe \ 0.10, using

2,000 permutation runs (Churchill and Doerge 1994).

Support intervals for the detected QTL were calculated

based on a 1.5 LOD drop. The proportion of genotypic

variance (pG) explained by the detected QTL was calculated

by fitting all QTL simultaneously in a linear model to obtain

Radj
2 . The ratio pG = Radj

2 /h2 yielded the proportion of

genotypic variance (Utz et al. 2000).

Joint linkage association mapping

Joint linkage association mapping was done with a bio-

metrical model which previously performed well in a

comparison of different statistical approaches for JLAM

(Würschum et al. 2011a). In brief, an additive genetic

model was chosen for the progenies as described by Utz

et al. (2000). We applied a two-step procedure for QTL

detection. In a first step, stepwise multiple linear regres-

sion was used to select a set of cofactors based on the

Schwarz (1978) Bayesian Criterion (SBC). Cofactor

selection was performed using Proc GLMSELECT

implemented in the statistical software SAS (SAS Institute

Inc 2008). In the second step, we calculated a P value for

the association of each marker with the phenotypic value

for the F test with a full model (with marker effect) against

a reduced model (without marker effect) (for details, see

Reif et al. 2010 and Liu et al. 2011). The applied model

includes a population effect, cofactors, and SNP effect

across populations. The Bonferroni–Holm procedure

(Holm 1979) was used to detect markers with significant

(P \ 0.05) main effects.

The proportion of the genotypic variance explained by

the detected QTL was calculated as described above. The

a effect was calculated in the linear model and could only

be calculated for the JLAM approach due to the colin-

earity of the parental alleles modeled in MC-QTL

mapping.

Results

The genotypic variances and the genotype-by-environment

interaction variances estimated in the population of 391

elite rapeseed lines were significantly larger than zero

(P \ 0.01) for all six traits (Table 1). Heritability ranged

from 0.78 for grain yield to 0.93 for glucosinolate content.

Trait distributions approximately followed the expected

normal distribution (Fig. 1). Absolute values of phenotypic

correlations among the six traits were minimum between

oil content and flowering time (0.02) and maximum

between flowering time and plant height (0.68) (Supple-

mentary Figure S3).

The first two principal coordinates together explained

26.8% of the total variation. Principal coordinate analysis

(PCoA) revealed that the progenies within segregating

populations cluster together and that the nine populations

show different degrees of relatedness with progenies

having a common parent being more closely clustered
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(Supplementary Figure S1). To obtain an estimate for the

mapping resolution of JLAM for the population underlying

our study, we analyzed the extent of LD. The estimated r2

values decreased with increasing map distance between

marker pairs (Fig. 2).

The full genome scan for main effect QTL with MC-

QTL mapping identified two QTL for flowering time, two

for plant height, one for protein content, two for gluco-

sinolate content, and one for grain yield (Table 2; Fig. 3).

The estimated support intervals for the detected QTL ran-

ged from 1 to 61.1 cM. The explained proportion of

genotypic variance of single QTL was lowest for a plant

height QTL with 3.7% and highest for a flowering time

QTL with 14.1%. The total proportion of explained geno-

typic variance by all detected QTL for one trait was 20.6%

for flowering time, 9.6% for plant height, 9.5% for protein

content, 15.3% for glucosinolate content, and 7.6% for

grain yield.

The JLAM approach identified more QTL as compared

to the MC-QTL mapping approach with most QTL being

detected for grain yield (Table 3; Fig. 3). The proportion of

genotypic variance explained by a single QTL was highest

for a plant height QTL with 13.2%. The total proportion of

explained genotypic variance by all detected QTL for one

trait was 17.4% for flowering time, 16.2% for plant height,

zero for protein content, 2.1% for oil content, 18.3% for

glucosinolate content, and 14.7% for grain yield. The full

two-dimensional epistasis scan detected two epistatic QTL

for flowering time. One between a locus on chromosome

C1 at 157 cM and a locus on chromosome C6 at 55 cM and

the second between a locus on chromosome C1 at 158 cM

and the same locus on chromosome C6 at 55 cM.

Table 1 Summary statistics of six traits

Parameter FT PH PROT OIL GLU GY

Mean 5.2 154.9 19.8 48.3 11.1 4.7

Min 2.5 127.6 17.6 44.4 4.0 3.6

Max 8.9 188.9 23.1 50.9 19.6 5.6

r2
G 1.59** 100.49** 0.59** 0.72** 7.15** 0.10**

r2
G 9 E 0.29** 16.70** 0.18** 0.28** 1.02** 0.04**

r2
e 0.43 26.94 0.41 0.52 1.20 0.08

h2 0.91 0.91 0.82 0.80 0.93 0.78

Means, ranges, genotypic variances (r2
G), genotype 9 location interaction variances (r2

G 9 E), error variances (r2
e), and broad sense herita-

bilities (h2) of 391 rapeseed lines evaluated in field trials for flowering time (FT; visual rating from 1 to 9), plant height (PH; cm), protein content

(PROT; %), oil content (OIL; %), glucosinolate content (GLU; lmol g-1), and grain yield (GY; Mg ha-1)

**Significantly different from zero at the 0.01 level of probability
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Fig. 1 Trait distribution and

parental performance.

Histograms of the best linear

unbiased estimates (BLUEs) of

the six traits analyzed in this

study. The performance of the

parents from the populations is

indicated by arrows
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Discussion

Properties of the rapeseed population

The present study is based on the experimental data of 391

elite rapeseed genotypes which compared with the previous

studies represents a comparably large rapeseed population

(e.g. Mahmood et al. 2006; Hasan et al. 2008; Chen et al.

2010). The good quality of the phenotypic data is reflected

by the high to very high heritabilities for all traits

(Table 1). The nine populations were of varying size,

which is typical for applied plant breeding. The principal

coordinate analysis revealed that the progenies cluster

between their parents and that none of the nine populations

is clearly separate from the others (Supplementary Figure

S1). In summary, the studied population shows a structure

typical for breeding populations and the high heritabilities

form an excellent basis for QTL detection in this data set.

Major breeding goals in rapeseed are high yield, high oil

content, high protein content, but low glucosinolate con-

tent. Both positive and negative correlations have been

reported between these traits (e.g. Grami and Stefansson

1977). Thus, an increase in one compound may be

achieved only at the expense of another which must be

carefully balanced in breeding programs. A possible

instrument to break some of the correlations is the identi-

fication of QTL and their subsequent implementation in

marker-assisted selection programs. As expected, we

observed a negative correlation between oil content and

glucosinolate content and a similar negative correlation

was observed between grain yield and glucosinolate con-

tent (Supplementary Figure S3). Potentially, this could be

caused by genes having pleiotropic effects on both traits, or

by linked genes. In the latter case, the detection of QTL for

these traits and their use in breeding programs may

accelerate the breeding progress to obtain plants with the

desired properties for both traits. It could be speculated that

high oil content is correlated with early flowering, as these

genotypes have more time to accumulate oil in the seeds.

We observed, however, no such correlation between

flowering time and oil content. Thus, the time available for

oil accumulation does not appear to be a limiting factor in

rapeseed and differences between genotypes are rather

caused by differences in the efficiency of the underlying

metabolic pathways.

Pattern and extent of LD

Linkage disequilibrium between markers and loci associ-

ated with the trait is the basis for successful association

mapping approaches. In JLAM, the LD structure present in

the parental population determines to a large extent the

mapping resolution that can be realized in the data set. We

found that LD in the population of the ten parents decayed

with genetic map distance (Fig. 2). For linked markers with

genetic map distances below 5 cM, LD was comparably

high with an average r2 value of around 0.4, whereas for

distances greater than 10 cM LD was low and almost

indistinguishable from that of unlinked loci. Würschum

et al. (2011b) previously suggested as an alternative

approach to assess the extent of LD, to examine the highest

r2 value of each marker with any other marker in the

genome. In our population, this averaged an r2 value of
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Fig. 2 Extent of linkage disequilibrium. Distribution of linkage

disequilibrium assessed between the parental lines. The LD between

linked marker pairs is shown for different genetic map distances

between these pairs of markers (genetic map distance\1, 1–5, 5–10,

and [10 cM). In addition, the LD between unlinked markers is

shown. The boxplots show the variation of r2 values for each of these

genetic map distances. Circles indicate outlier which are outside the

extreme of the upper whisker

Table 2 QTL detected by MC-QTL mapping. QTL position, support

interval and proportion of explained genotypic variance (pG in %)

Chr. Position (cM) Support interval pG

FT

A2 77.4 76.3–78.6 14.1

C6 161.8 101.8–162.9 8.1

PH

A2 78.6 77.4–81.2 6.3

A7 185.0 153.9–192.1 3.7

PROT

A7 160.9 152.9–177.0 10.2

GLU

A3 10.9 10.7–11.7 8.9

A7 34.7 17.4–40.8 8.1

GY

A7 81.2 70.9–96.8 9.6
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Fig. 3 Comparison of JLAM and MC-QTL results. LOD score

profiles from MC-QTL mapping and P values from JLAM as vertical
bars for the chromosomes on which QTL were detected. The dotted
line indicates the threshold for MC-QTL mapping which was

determined by permutation tests and the dashed line indicates the

significance threshold for JLAM (P \ 0.05 Bonferroni corrected).

The positions on the chromosomes are given in centimorgan
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0.94. This represents the highest r2 value that can be

expected on average for a QTL anywhere in the genome.

Our results are in good accordance with those from

Ecke et al. (2010) who also observed a decay of LD within

a few centimorgan. They concluded that in rapeseed this

corresponds to a physical distance of approximately

500–1.000 kb and that for a full genome coverage

1.000–2.500 equally spaced markers would be required.

This estimation is based on the LD between closely linked

markers. Given the average of the highest r2 value of each

marker observed in this study, this number of required markers

may be slightly overestimated. Nevertheless, higher marker

densities certainly warrant a better mapping resolution and

a higher QTL detection power. With the current advances

in sequencing technologies, it can be anticipated that in the

near future it will be possible to genotype rapeseed with

several thousand markers as is standard already in other

crops like maize. As the proportion of variance explained

by the marker compared with that explained by the QTL is

directly proportional to the r2 value between the marker

and the QTL (van Inghelandt et al. 2011), lower marker

densities will only facilitate the detection of QTL with

large or medium effects. Taken together, the LD structure

present in elite rapeseed germplasm enables association

mapping approaches with a good mapping resolution. The

marker density applied in this study is sufficient for JLAM

with the restriction, that mainly QTL with large or medium

effects can be detected.

Comparison of mapping approaches

Two conceptually different biometrical approaches for

QTL detection were applied to this data set, MC-QTL

mapping and JLAM. MC-QTL mapping is a CIM approach

(Jansen and Stam 1994; Zeng 1994) and due to the fact that

some of our populations were rather small we used the

connected model suggested by Blanc et al. (2006). This

approach is an identity-by-descent (IBD) approach based

on the parental origin of alleles. QTL effects may vary

substantially across populations (Liu et al. 2011; Steinhoff

et al. 2011), indicating the interaction of QTL with the

genetic background. The connected model is modeled

across populations and QTL identified by this approach are

thus assumed to be stable across populations, making them

very valuable for plant breeders as they can potentially be

used in many crosses. The drawback of this approach is the

low mapping resolution as indicated by the sometimes

rather large support intervals (Table 2).

JLAM on the other hand is an identity-by-state (IBS)

approach in which identical marker alleles are treated alike,

irrespective from which parent they are derived. The

advantage of this approach is the higher mapping resolu-

tion, allowing to more precisely pinpoint the detected QTL.

It is, however, based on LD and requires much higher

marker densities than MC-QTL mapping and disregards the

parental origin of alleles.

The data set presented in this study consisted of nine

segregating populations of varying size and the plants were

genotyped with 253 SNP markers with an average marker

distance of 11.6 cM. This situation is typical for applied

plant breeding and leaves the question of how to best

analyze the data with regard to QTL detection.

In terms of QTL detection, we observed that the JLAM

approach detected more QTL which, however, did in

general not explain a much higher proportion of the

genotypic variance. Of the eight QTL that were detected by

MC-QTL mapping, seven were also detected by the JLAM

approach. In addition, nine of the JLAM QTL explained

\1% of the genotypic variance which likely explains the

similar proportion of explained genotypic variance by the

detected QTL between the two approaches. This low per-

centage of explained genotypic variance may be due to

colinearity between detected QTL. This holds true even

Table 3 QTL detected by JLAM. QTL position, proportion of

explained genotypic variance (pG in %), and a effect

Chr. Position (cM) pG a effect

FT

A2 77.4 5.1 -0.46

A7 279.7 8.9 -0.48

A10 92.1 3.6 0.25

C6 161.9 0.8 -0.16

PH

A2 77.4 0.0 -2.04

A6 68.1 13.2 -3.93

A7 83.3 4.0 -2.71

C9 23.2 0.0 0.14

PROT

A7 152.5 0.2 -0.04

C3 183.4 0.0 -0.02

OIL

A5 0.0 0.0 0.02

A7 72.6 2.4 -0.16

C4 62.9 0.6 -0.10

GLU

A3 10.3 3.3 -0.09

A7 41.8 11.0 -0.93

A8 10.3 4.4 -0.71

GY

A3 0.0 0.5 0.03

A3 59.6 7.9 -0.09

A5 0.0 5.4 -0.08

A7 55.8 0.0 0.01

C7 202.7 2.3 0.06
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though in all cases these QTL are not genetically linked, as

in JLAM the colinearity is caused by LD which we found

to be present also between unlinked markers. The plot

including both the LOD profile from MC-QTL mapping

and the P values from JLAM (Fig. 3), revealed a high

consistency between the chromosomal regions where peaks

were detected. Differences in the number of detected QTL

are thus likely the result of the different threshold levels

that are routinely applied in the two approaches. In con-

clusion, for the presented data set with its rather limited

number of markers, both methods MC-QTL mapping and

JLAM performed equally well.

Detection of main effects

We performed a literature review for QTL reported in

rapeseed in linkage mapping studies or by association

approaches (Delourme et al. 2006; Mahmood et al. 2006;

Qiu et al. 2006; Hasan et al. 2008, Mei et al. 2009; Chen

et al. 2010) and compared the published QTL with those

detected in this study by the two mapping approaches

(Supplementary Table 2). The drawback that hampers

comparisons of QTL between studies is that no common

integrated map exists for rapeseed, implying that compar-

isons must be interpreted cautiously. Nevertheless, the

chromosomal positioning of the QTL should be largely

comparable across studies and some of the QTL detected in

this study collocated with previously described QTL. In

addition to probably known QTL, we also detected novel

QTL which have not been described so far. The largest

effect was of a flowering time QTL on chromosome A2

which amounted an explained genotypic variance of

14.1%.

Interestingly, we also observed the colocalization of

QTL from different traits. For MC-QTL mapping and for

JLAM the flowering time QTL and the plant height QTL

on chromosome A2 and for MC-QTL mapping the plant

height and the protein content QTL on chromosome A7

overlap (Table 2; Fig. 3). Both trait combinations showed

strong phenotypic correlations (Supplementary Figure S3)

and such correlations can be beneficial for a plant breeder

as selection for one QTL may improve two traits simulta-

neously, but can also be disadvantageous when improving

one trait will impair the other. In the latter case, future

attempts should focus on these regions and saturate them

with molecular markers. The higher marker density may

enable separation of two linked QTL, allowing to indi-

vidually select the advantageous allele. A good example is

the oil content and glucosinolate content QTL on chro-

mosome A7 detected by JLAM (Table 3). Selection for

these QTL alleles may accelerate the breeding process to

obtain the desired plants with high oil content, but low

glucosinolate content.

Epistatic interactions

Epistatic interactions have recently been shown to affect

many important agronomic traits in diverse species (e.g.

Reif et al. 2011a, b; Würschum et al. 2011c). We used

JLAM and performed a full two-dimensional scan for

epistatic interactions. We detected two epistatic QTL for

flowering time, which due to the colinearity of the loci on

chromosome C1 most likely identify one and the same

underlying biological QTL. This epistatic QTL explained

3.2% of the genotypic variance. Neither of the interacting

loci was detected as main effect which is in accordance

with the results previously reported in sugar beet (Würschum

et al. 2011c). We observed no significant LD between the

interacting loci suggesting that there is no co-selection on

the two loci. Epistasis scans heavily rely on large popula-

tion sizes to have a sufficient power for QTL detection. Our

finding of only one epistatic QTL is most likely due to an

insufficient number of lines as several recent results point

to the presence of epistasis for many traits, also in elite

germplasm (Reif et al. 2011a; Würschum et al. 2011c).

Future attempts to detect epistasis in rapeseed should thus

build on larger populations to warrant a high QTL detec-

tion power.

Conclusions

We have compared two biometrical approaches for QTL

detection in multiple segregating populations, JLAM and

MC-QTL mapping. Both methods were suited for QTL

detection in this population of elite rapeseed breeding lines.

Our data underline the power of genomics approaches for

applied plant breeding as the detected QTL are of direct

relevance for breeding programs. Pyramiding of the

detected QTL will now enable the establishment of the next

generation of elite rapeseed lines by knowledge-based

breeding.
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