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Abstract In sugarcane or other autopolyploids, after

generating the data, the first step in constructing molecular

marker maps is to determine marker dosage. Improved

methods for correctly allocating marker dosage will result

in more accurate maps and increased efficiency of QTL

linkage detection. When employing dominant markers like

AFLPs, single-dose markers represent alleles present as

one copy in one parent and null in the other parent, double-

dose markers are those present as two copies in one parent

and null in the other parent and so on. Observed segrega-

tion ratios in the offspring are employed to infer marker

dosage in the parent from which the marker was inherited.

Commonly, for each marker, a v2 test is used to assign

dosage. Such an approach does not address important

practical considerations such as multiple testing and

departures from theoretical assumptions. In particular,

extra-binomial variation or overdispersion has been

observed in sugarcane studies and standard methods may

result in fewer correct dosage allocations than the data

warrant. To address these shortcomings, a Bayesian mix-

ture model is proposed where all markers are considered

simultaneously. Since analytic solutions are not available,

Markov chain Monte Carlo methods are employed. Marker

dosage allocation for each individual marker employs the

estimated posterior probability of each dosage. For a sug-

arcane study these methods resulted in more markers being

allocated a dosage than by standard approaches. Simulation

studies demonstrated that, in general, not only are more

markers classified but that more markers are also correctly

classified, particularly if overdispersion is present.

Introduction

Commercially important polyploid crops include potato,

alfalfa, sweet potato and sugarcane. Polyploidy or the

presence of more than two genomes per cell is an important

method of species formation in plants (Stebbins 1950).

Indeed, Soltis and Soltis (2000) argued that polyploid plant

species are successful due to their inherent genetic char-

acteristics since compared to their diploid progenitors,

polyploids generally exhibit higher levels of heterozygos-

ity, less inbreeding depression and higher levels of selfing

as well as higher genetic diversity and the potential for

duplicated genes and genomes to evolve new functions.

Autopolyploids may be regarded as being derived from

a single species and are expected to have polysomic

inheritance due to the ability of each homolog to pair with

any other homolog during meiosis. On the other hand,

allopolyploids which can be regarded as being derived
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from several distinct species, exhibit disomic inheritance. It

may be that some polyploids are not purely auto or allo-

polyploid. Instead, some may possess varying levels of

preferential pairing. Methods to assess levels of preferen-

tial pairing are the subject of ongoing research and con-

troversy (Janoo et al. 2004; Sybenga 1994, 1995, 1996;

Ripol et al. 1999; Xie and Xu 2000; Soltis and Soltis 2000;

Qu and Hancock 2001; Hackett 2001; Wu et al. 2001a, b,

2002; Luo et al. 2004). The methods presented here assume

perfect autopolyploidy without preferential pairing. Impli-

cations of departures from these assumptions are discussed.

In diploids, informative dominant markers occur when a

marker is present in one parent but not the other. In

polyploids, a similar situation will occur if one parent

possesses one or multiple doses of a marker. Single-dose

markers are commonly called simplex markers, double

dose are referred to as duplex, and triple-dose markers are

known as triplex markers. Like in diploids, markers may be

linked in coupling if the dominant allele is physically

located on the same chromosome or linked in repulsion if

the dominant alleles are on different chromosomes in the

same homology group. Ripol et al. (1999) provide general

expressions for linkage between single- and multiple-dose

markers in various coupling and repulsion configurations.

For the purposes of marker mapping and QTL linkage

analysis, single-dose markers in coupling may be treated as

diploid and so many methods are readily available. Typi-

cally, in marker map construction, a framework map is

constructed using simplex markers in coupling and then

simplex markers in repulsion and multi-dose markers are

added using methods like maximum likelihood.

Statistical methods for genomic mapping are relatively

well developed for diploids (Lander and Botstein 1989;

Haley and Knott 1992). However, methods for more

complex polyploids are much less developed due to issues

such as the unknown number of gene copies or dosage

(Burner 1997) and unknown allelic configuration (Luo

et al. 2001). Nevertheless, DNA linkage maps have been

constructed for autotetraploids (De Winton and Haldane

1931; Wu et al. 1992), autohexaploids (Ukoskit and

Thompson 1997) and autooctoploids (Ripol et al. 1999;

Aitken et al. 2005, 2007). While a unified approach is

available for autotetraploids via the TetraploidMap soft-

ware (Hackett and Luo 2003), more ad hoc methods are

often employed for species with higher ploidy levels.

Ukoskit and Thompson (1997) noted that although simplex

markers can be mapped by the approach of da Silva et al.

(1993) and Al-Janabi et al. (1993), other polysomic seg-

regations cannot be mapped with diploid methods. Subse-

quently, da Silva et al. (1995) showed that double- and

triple-dose markers may be added to a framework linkage

map consisting of simplex markers in autooctoploids and

Meyer et al. (1998) added duplex and double simplex

markers for QTL analysis in tetraploid potato. More

complicated procedures have also been employed for

marker mapping (Ripol et al. 1999; Wu et al. 2001a) but all

methods rely on identifying the dosage for each marker.

Segregation ratios, or ratios of the number of offspring

exhibiting the marker to those which do not, play an

important part in inferring marker dosage in the parent.

Haldane (1930) first tabulated expected segregation ratios

in the offspring where one parent is nulliplex for a range of

ploidy levels. The proportion of markers observed in the

offspring is called the segregation proportion in this

article.

Segregation distortion occurs when there are departures

from these theoretical distributions.

Like other plants, sugarcane commonly exhibits segre-

gation distortion as seen in Fig. 1. Since modern sugarcane

cultivars originally arose from the hybridization of multiple

genomes, they are highly heterozygous and subject to

meiotic irregularities (Grivet and Arruda 2002). Potential

causes include chromosome loss, translocations, rear-

rangements and double reduction. Commonly maps were

constructed assuming such irregularities are not present (da

Silva et al. 1993; Ming et al. 1998; Aitken et al. 2005) since

methods to incorporate them are not well established.

While Aitken et al. 2007 incorporated distorted markers

into the linkage analysis, most of the distorted markers

were unlinked or unmapped. However, incorporating dis-

torted markers had a considerable effect on map lengths

and several chromosome rearrangements such as chromo-

some breakages, fusions and translocations were detected.

Routinely, for assessing marker dosage, a standard v2

test is employed (Mather 1951), usually at the 5% level or

perhaps at the 1% level, to test all markers for a segregation
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Fig. 1 Histogram of observed segregation ratios for 566 AFLP

markers inherited from KQ99-1410 in a sugarcane trial at Ayr,

Queensland. The solid line is the expected theoretical distribution

obtained as a mixture of single, double and triple dose markers with

proportions of each type of marker estimated by the v2 test. Similar

proportions were estimated by a mixture model fitted on the logit

scale. There is a shift to the left which could be due to aneuploidy or

chromosome loss
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ratio of 1:1 which is expected for simplex markers.

Markers are also tested for alternate dosages based on the

appropriate expected segregation ratio. An alternative

method employing the binomial distribution (Ripol et al.

1999) should produce similar dosage allocations as the

sample size increases since the v2 and binomial distribu-

tions are asymptotically equivalent (Mood et al. 1974).

These methods appear to possess inherent limitations

such as ignoring multiple testing in the case of the v2 test or

not allowing for measurement error in the binomial confi-

dence interval method. However, of more practical

importance is that marker dosage may be wrongly allocated

if the underlying assumptions are not met or if significance

levels are too stringent. For instance, if extra-binomial

variation or overdispersion is induced by measurement

errors or correlations between markers then the resulting

distributions may well be wider than the binomial and so

markers will not be allocated a dosage even when their

segregation ratio is clearly part of a wider dosage distri-

bution. Also, note that for the standard v2 test, the aim of

allocating marker dosage to the null distribution is not

equivalent to the usual aim of rejecting the null hypothesis.

The result is that markers may not be allocated a dosage

even if their segregation ratio clearly belongs to a partic-

ular null distribution. A similar problem arises when the

segregation ratio of a marker may yield non-significant

tests for more than one dosage and so is not assigned either

dosage.

In order to circumvent these limitations and to estimate

Bayesian posterior probabilities of possible marker dosages,

a mixture model approach is proposed. Markers are allo-

cated to empirical distributions estimated from a combi-

nation of the data and theoretical parameter values. Each

component of the mixture distribution corresponds to a

specific marker dosage. While a direct mixture of binomials

is feasible, it is more straight forward to consider a model

where the segregation ratios are considered to be a finite

mixture of normals on the logit scale. This also has the

added advantage of allowing for overdispersion by inducing

a hierarchical model (Gelman et al. 2004) and so each

component can have a wider distribution than the standard

binomial which has a fixed variance p(1 - p)/N, where N is

the sample size and p is the binomial proportion.

Employing a Bayesian mixture model approach not only

allows prior genetic theory be incorporated, but also pro-

vides estimates of the uncertainty of marker dosage clas-

sification. The posterior probability distribution of

belonging to each dosage component is estimated for each

marker.

Results from sugarcane and simulated marker data

indicate that, in general, more markers are allocated a

dosage by an appropriate mixture model than by standard

methods. Simulation studies also reveal that more markers

are correctly allocated, particularly if overdispersion is

present.

This article is organised as follows. The motivating

example of a sugarcane cross, current approaches and

proposed methods are outlined in ‘‘Materials and meth-

ods’’. Both the results of simulation studies which led to a

recommended model and its application to the sugarcane

study are described in ‘‘Results’’. Finally, implications for

marker dosage allocation of both the new and previous

methods are discussed in ‘‘Discussion’’.

Materials and methods

Case study: a sugarcane AFLP data set

While the methods outlined here may be employed for any

autopolyploid, they were motivated by considering ampli-

fied fragment length polymorphism (AFLP) and simple

sequence repeats (SSR) markers in a sugarcane backcross

population. The sugarcane cultivar KQ99.1410 was pro-

duced by crossing a Saccharum officinarum IJ76.514 with

the commercial sugarcane variety Q165. The markers

considered here are from 200 progeny generated by

crossing KQ99.1410 with an elite sugarcane variety MIDA

at Ayr, (147.40E, -19.50S) Queensland. These data were

part of a larger experiment which will be reported

elsewhere.

In all, 1,725 AFLP markers were generated by the

methods of Aitken et al. (2005) for the KQ99.1410 by

MIDA cross. Of these, 469 were present in both parents

and 596 were inherited from KQ99.1410 only. The latter

markers are used to explore standard and mixture model

approaches to estimate marker dosage. In order to remove

the effects of segregation distortion, 30 markers with a

segregation ratio below 0.325 were eliminated from this

study. This threshold was set below the 99th percentile of

the appropriate binomial distribution in order to allow for

the possibility of overdispersion.

The observed segregation proportions and theoretical

distributions for 566 AFLP markers inherited from

KQ99.1410 are shown in Fig. 1. The theoretical distribu-

tions for each dosage are binomial with parameters n and p.

The probability parameters p were set as the appropriate

segregation proportions obtained from Eq. 1 assuming

octoploidy while the n were taken to be the numbers of

markers in each dosage class obtained from the v2 test. Not

all markers could be assigned a dosage and so observed

numbers were scaled up to ensure the correct area under the

estimated theoretical distribution. A similar number of

markers in each class were obtained by application of the

fitted mixture models. It is clear that the observed data do

not conform to the expected theoretical distribution.
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Single-dose markers appear to have lower segregation

ratios than expected. This may be due to aneuploidy which

is commonly seen in sugarcane.

Marker dosage in autopolyploids

Polyploids have multiple copies of the basic chromosome

set, whereas diploids have two copies. The number of

chromosomes in a gamete is typically denoted n, while the

monoploid number or size of the basic chromosome set is

written as x. The ploidy m is the number of homologous

chromosomes in each somatic cell and so 2n = mx. Until

the end of the nineteenth century, sugarcane cultivars were

predominantly clones of S. officinarum which is a high

sugar content octoploid with 2n = 80 (Grivet and Arruda

2002) Early breeders improved yield and disease resistance

by crossing S. officinarum to S. spontaneum. Modern

sugarcane cultivars appear to have between 2n = 80 and

2n = 140 chromosomes, indicating that aneuploidy is

common (Burner 1997).

Expected segregation ratios when one parent is nulliplex

Haldane (1930) derived the expected ratios of offspring for

various parental configurations of autopolyploids with an

even number of sets of chromosomes. Expected gametic

series for polyploids of various sizes were produced, along

with expected ratios of gametic series for crosses and selfing

and the equilibrium distribution under random mating.

Haldane provided expected gametic series for polyploids up

to order 16 (heccaidecaploid). Haldane denoted a gamete

containing x copies of A and y alleles a as Axay. For example,

consider an autooctoploid with A being the dominant marker

allele and a is an alternate allele. Crossing a parent with

simplex marker Aa7 with a nulliplex a8 results in one nulli-

plex in two in the offspring since the gametic series produced

in the parent Aa7 is 1.Aa3:1.a4. Thus, offspring are obtained

from the cross (1.Aa3 ? 1.a4)(1.a4 ? 1.a4) with resultant

ratios 1.Aa7:1.a8.

The general formula of Ripol et al. (1999) is adopted for

Pk or P(k) or the expected segregation proportion for

markers with dosage k which is

PðkjmÞ ¼ 1�

m� k
m=2

� �

m
m=2

� � ; k ¼ 0; . . .;m=2 ð1Þ

where m is the ploidy level or number of homologous

chromosomes. Note that for diploids m = 2, tetraploids

m = 4 and for octoploids m = 8.

From Table 1, it is clear that despite increasing ploidy

levels that expected theoretical segregation proportions are

similar for dosage k when m C 6. Thus, in sugarcane,

which is an irregular autopolyploid possessing from

2n = 80 to 2n = 140 chromosomes with monoploid

number x = 8 or x = 10 (Burner 1997), segregation pro-

portions for a particular marker dosage are relatively con-

stant despite changes in ploidy.

Expected segregation ratios in Eq. 1 are for autopolyp-

loids. If preferential pairing or double reduction are present

then the segregation ratios will be somewhat altered.

Consider the case of preferential pairing. For pure allopo-

lyploids then the segregation proportion will be 0.5 for

simplex markers. However, for duplex and other multi-

dose markers, segregation ratios will be slightly different.

For example, in pure allo-octoploids duplex, triplex and

quadraplex markers will have segregation proportions 0.75,

0.88 and 0.94, respectively. It is expected that segregation

proportions would be intermediate between the corre-

sponding allo and auto values in Table 1. In any case, since

the corresponding segregation proportions are so similar,

very large sample sizes would be required to see any dif-

ference between allo and autopolyploids.

Expected segregation ratios when the marker is inherited

from both parents

In diploids only heterozygous markers are informative. In

polyploids, even if both parents possess the dominant

marker allele some offspring may not inherit a copy. In

such cases, there must be less than m/2 copies in at least

one parent. For instance, crossing two genetically similar

autooctoploid lines Aa7 results in one nulliplex in four

since (1.Aa3 ? 1.a4)2 is simply (1.A2a6 ? 2.Aa7 ? 1.a8).

Such markers are often employed to help construct

homology groups but are not as informative as simplex

markers where one parent is nulliplex.

If both parents contain at least one copy of the dominant

marker allele then we deduce a general equation similar to

Eq. 1 for the expected segregation proportion Pjk or P(j,k)

to be

Table 1 Expected segregation proportions for ploidy levels from 2 to

12

Dosage Ploidy

2 4 6 8 10 12

Simplex 0.50 0.50 0.50 0.50 0.50 0.50

Duplex 0.83 0.80 0.79 0.78 0.77

Triplex 0.95 0.93 0.92 0.91

Quad 0.99 0.98 0.97

5 1.00 0.99

6 1.00
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P k; jjmð Þ ¼ 1�

m� k
m=2

� �
m� j
m=2

� �

m
m=2

� �2 ; j; k ¼ 0; . . .;m=2

ð2Þ

where m is defined in Eq. 1 and one parent possesses j

doses of the marker whereas the other parent has k copies.

For autooctoploids, Eq. 2 yields P11 ¼ 0:75; P12 ¼
0:89; P22 ¼ 0:95; P23 ¼ 0:99: Therefore, it is clear that

while it may be possible to readily identify simplex

markers present in both parents, other parental dosage

combinations are essentially impossible to distinguish.

Current methods of assessing dosage

The two most commonly used approaches for allocating

dosage in autopolyploid marker map construction are the

v2 and binomial methods. For sample sizes typically

employed, similar results are expected due to the large

sample properties of these approaches. However, rather

than rely on asymptotic theory, these methods were com-

pared via simulation studies as described in ‘‘Simulation

study’’.

The v2 test

The most widely used test for assessing marker dosage is

the standard v2 test. Following Mather (1951), this test is

often employed to compare the observed segregation ratio

against its expected value. For instance, to test for simplex

markers a standard v2 test on 1 df is employed since the

expected segregation ratio is 1:1 and so

X2 ¼ a1 � a0ð Þ2

a0 þ a1

� v2
1; ð3Þ

where a1 is the number of lines with an AFLP band a0 is

the number of lines without the band.

Power calculations, such as those of Wu et al. (1992),

have often been employed since non-significant tests are

critical in that these lead to allocating marker dosage.

However, such calculations may not be entirely relevant

since these calculations are designed for testing one marker

at one dosage rather than for the hundreds or thousands of

simultaneous significance tests typically conducted.

The binomial confidence interval method

As an alternative to the v2 test outlined in ‘‘The v2 test’’,

Ripol et al. (1999) proposed comparing the observed seg-

regation ratio to the expected distribution of segregation

ratios assuming a binomial distribution with size N being

the number of offspring and parameter Pk set to the seg-

regation ratio in Eq. 1. To allow for missing values from an

experiment with 90 plants from the species Saccharum

spontaneum, Ripol et al. set the binomial parameter N to 80

and then compared the observed segregation ratio for each

marker to the region containing 99% of the distribution in

the interval between the 0.5 and 99.5 percentiles. Simplex,

duplex, triplex and quadruplex markers were all allocated

using this approach but no quadruplex markers were found.

Measurement error is ignored with this approach and so

the binomial distribution may provide confidence intervals

(CIs) that are too narrow, particularly if overdispersion is

present.

A mixture model for assessing dosage

Instead of employing the approaches outlined in ‘‘Current

methods of assessing dosage’’, we propose to model the

observed segregation ratios of markers in the offspring

with a finite mixture distribution. For instance, in the case

of autooctoploids, the segregation ratios of each marker

are postulated to come from one of four binomial

Bin(N,Pk) distributions, where Pk; k ¼ 1; . . .;K is the

theoretical segregation ratio Pk in Table 1, N is the

number of progeny and K = 3 or 4 is the number of

different marker dosages.

While it is possible to fit mixtures of binomial distri-

butions, the methods are not well developed (Rufo et al.

2007; Mao 2007) and in any case would not address

limitations due to measurement error outlined in ‘‘The

binomial confidence interval method’’. However, by logit

transforming the observed segregation ratios to be

approximately normal, and at the same time employing a

more standard finite normal mixture model, these concerns

are addressed. Unlike the binomial model, where each

component has fixed variance which depends on the seg-

regation ratio and number of progeny, the variance of each

normal component may be estimated from the data. Also,

the mixture model induces a hierarchical model with the

resultant component distributions being more variable.

Figure 2 shows simulated segregation ratios for an auto-

hexaploid with some overdispersion.

A Bayesian approach is adopted since it allows the

strong prior knowledge of segregation ratios under given

ploidy levels to be incorporated explicitly into the model-

ling process. This is particularly useful for higher doses

where there are likely fewer markers. Importantly, in

addition to obtaining the posterior distribution of model

parameters, the posterior probabilities of various marker

dosages may be estimated for each marker.

In other words, this model provides not only estimates

of the proportion of markers belonging to each dosage class

or component, but also for each individual marker we can
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obtain the posterior probability of all possible doses as

shown in Fig. 3.

Bayesian data analysis may be divided into three steps:

(1) setting up the full probability model which depends

jointly on the likelihood of the data and the prior distri-

bution, (2) calculating the posterior distribution conditional

on the data and (3) evaluating the fit of the model and

the implications of the resulting posterior distributions

(Gelman et al. 2004).

The joint probability distribution function (pdf) f(h,y) of

parameters of interest h and data y can be written as the

product of two densities, namely the prior distribution f(h)

and sampling or data distribution f(y|h)

f h; yð Þ ¼ f hð Þf yjhð Þ

We are interested in the posterior distributions of the

parameters given the data

f hjyð Þ ¼ f hð Þf yjhð ÞR
f hð Þf yjhð Þdh

ð4Þ

where
R

f hð Þf yjhð Þdh is integrated over all possible values

of h. For fixed y the integral is therefore constant and so

Eq. 4 is commonly written as

f hjyð Þ / f hð Þf yjhð Þ: ð5Þ

The models for f(y|h) are described in ‘‘Models’’,

choosing priors f(h) and their implications are discussed

in ‘‘Priors’’ and calculating posterior distributions f(h|y) via

Markov chain Monte Carlo (MCMC) is outlined in ‘‘Model

fitting and parameter estimation’’.

Models

For the jth marker j = 1; . . .; n , we assume the observed

number rj of lines with dominant markers out of Nj lines

follows a binomial distribution denoted Bin(Nj,Pk), where

if we knew the dosage k then Pk could be obtained from

Eq. 1. Note that Nj is simply the number of lines if no

marker data are missing.

Since the dosage k is unknown, we rely on the missing

data representation of Dempster et al. (1977) and Tanner

and Wong (1987) which is commonly adopted for MCMC

computation in finite mixture models. An indicator variable

zj corresponding to unknown marker dosage class k is

introduced where zj = k if the marker has dose k. For the K

components with K B m/2, consider the logit transforma-

tion of the true segregation proportions Pk for dose k,

k = 1; . . .; k. The logit transformed segregation ratio xk is

then

xk ¼ log
Pk

1� Pk

� �
: ð6Þ

Let z ¼ z1; . . .; znð ÞT be a vector of unknown dosages

(labelled 1; 2; . . .; k corresponding to simplex, duplex,

triplex markers and so on). rj|zj is binomially distributed

with known size parameter Nj and unknown proportion

parameter xZj
; where xZj

is the segregation ratio for marker

dosage zj. Hence, given marker dosage zj then

rjjzj�Bin Nj;xZj

� �
; ð7Þ

where

logitðxZj
Þ ¼ log

xZj

1� xZj

� �
�N lZj

; s�1
Zj

� �

where lk and sk are the mean and precision tk ¼ 1=s2
k

� �
of

marker dosage class k on the logit scale.
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Fig. 2 Simulated data with a small amount of overdispersion, as

described in ‘‘Simulation study’’, from 500 autohexaploid progeny

with 1,000 markers. The solid curve is the theoretical distribution for

non-overdispersed data, while the dashed curve represents the fitted

mixture distribution. The model employed strong priors with equal

variance. The fitted distribution better fits the data for single and

double-dose markers. However, since there is only a small amount of

data for the triple-dose component, the theoretical (prior) and fitted

distributions are similar. The 99% binomial CI method correctly

allocated 67% of markers as opposed to 98% by mixture method
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Fig. 3 Posterior probabilities of marker dosages for three markers

selected from 566 AFLP markers inherited from the sugarcane KQ99-

1410. MCMC runs had a burn in of 5,000 and a sample of 1,0000.

Markers i and ii are clearly simplex and duplex, respectively, while

there is slightly weaker evidence that iii is a triplex with a posterior

probability of around 0.85
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Since zj is unknown, then logit xzk
ð Þ can be modelled as

a finite mixture of K normals

logit xzj

� �
� p1N l1; s

�1
1

� �
þ p2N l2; s

�1
2

� �
þ � � � þ pkN lk; s

�1
k

� �
ð8Þ

where lk is the mean and sk is the precision of component k

on the logit scale, and pk are the mixing proportions of the

three components with
Pk

k¼1 pk ¼ 1: The probability

density function f(x) of logit(xk) is

f xð Þ ¼
Xk

k¼1

pk/ xjlk; s
�1
k

� �
ð9Þ

where / is the normal cumulative distribution function

with parameters mean lk and variance r2
k ¼ s�1

k :

Priors

It is our observation that, in general, vague or non-infor-

mative priors are often employed in Bayesian data analysis

since little a priori information is available. However, in

light of genetic theory and current practice, informative

prior distributions are warranted here. For the segregation

ratios considered here, genetic theory as outlined in

Haldane (1930) determines these ratios exactly, albeit under

idealised conditions. In contrast, while a Bayesian analysis

can assign uncertainty to segregation ratios via a prior

distribution, the v2 test and binomial distribution outlined in

‘‘Current methods of assessing dosage’’ assume exact ratios.

In any case, for simplex and duplex markers a consid-

erable amount of data are available to estimate the pos-

terior distribution of segregation ratios and so the estimated

distributions should not be unduly influenced by the priors.

If for instance, the variance of the prior were set to be

roughly the same as that observed in the data then the prior

would basically only have the influence of a single obser-

vation (Gelman et al. 2004, Sect. 2.6). However, for triplex

(and quadruplex markers if included) a strong prior may

prove useful to obtain realistic posterior distributions as

well as to aid MCMC convergence. This is clearly seen for

simplex, duplex and triplex marker distributions in Fig. 2.

Results may be compared with those obtained assuming

vague priors in order to assess sensitivity to prior

specification.

Priors on the means lk

Vague priors are typically set for the means lk to include

the range of the data by specifying lk �N 0; 1=
ffiffiffiffiffiffiffi
0:1
p� �

:

An informative prior distribution would set the mean as

the logit of the theoretical segregation ratio and by speci-

fying a narrow range or variance of the distribution. Thus,

lk �N logit Pkð Þ; T�1
k

� �
where Pk is specified in Eq. 1 and

T�1
k may be approximated from the specified range of the

prior distribution. For instance, in the single-dose marker

category P1 = 0.5 and so logit (P1 = 0). To approximate

the variance of the prior distribution we could set the 95%

confidence region to be between 0.45 and 0.55. On the logit

scale the 2.5 and 97.5 percentiles are -0.2 and 0.2. The

size of this interval can be equated to four standard devi-

ations and so the standard deviation is 0.1 and the precision

T1 ¼ 1=0:12 ¼ 100 Smaller intervals, and hence larger

precisions Tk, could be set for higher doses with segrega-

tion ratios near 1 if required, either because fewer data

points are observed or if the range becomes too large due to

the nature of the logit transformation.

Priors of the precisions sk on the logit scale

For convenience we can choose vague prior distributions

on the precision sk or inverse variance by setting parame-

ters of the conjugate Gamma (A, B) distribution as

A = B = 0.1.

Specifying informative priors on sk is more complicated

than for the means lk. The mean and the approximate

variance of the prior on the precision can be obtained by

considering the standard deviation of the theoretical bino-

mial distribution transformed to the logit scale. To this end,

the mean ŝk of the prior was set as the precision of the

theoretical binomial distribution obtained by a process

similar to calculating TK when specifying priors on the

means lk. Limits were set on the prior distribution by

specifying them for sk or sk ¼ 1=
ffiffiffi
s
p

k: This allows the

variance to be ascertained and subsequently hyperparam-

eters A and B to be set. If ŝk 1� xð Þ is a set as a 95%

confidence region for the prior distribution on the logit

scale, then A ¼ 4= x2ð Þ and B ¼ 4= x2ŝkð Þ: Alternatively,

narrower priors may be obtained by setting the 95% con-

fidence region for sk as ~skð1� xÞ which yields Ak ¼ C:ŝ4
k

and Bk ¼ Cŝ3
k where C ¼ x2= 1þ xð Þ4 1� xð Þ4: For details

see Appendix 1.

Mixing proportions pk of each marker dosage

Genetic theory does not provide any prior information on

the proportions of markers expected for each dosage.

While in sugarcane, the observed proportions of dosage

classes often appear to roughly conform to those expected

by da Silva (1993) and Al-Janabi et al. (1993), Qu and

Hancock (2002) showed that these proportions cannot be

predicted in advance. Qu and Hancock argued that the

proportion of each dose category is completely indepen-

dent of both the inheritance patterns and the segregation

ratio of a marker. Hence, we adopt the vague but proper

prior
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p1; p2; . . .; pkð Þ�Dirichlet 1; 1; . . .; 1ð Þ: ð10Þ

Model fitting and parameter estimation

We adopt MCMC as the computational method because

analytic solutions for obtaining posterior distributions are

not available. The principles of MCMC are simple

although implementation may be quite complicated. For

further details see Tanner (1993), Smith and Roberts

(1993), Besag et al. (1995) and Gilks et al. (1996).

A potential problem with fitting mixtures via MCMC

sampling is that chains may inappropriately converge to

one of the components. Robert (1996) showed that this

problem may be circumvented by reparameterising the

means in Eq. 8 as

lkþ1 ¼ lþ kk; k ¼ 1. . . k � 1ð Þ; ð11Þ

where the mean shift kk [ 0. Note that this corresponds to

the natural ordering of segregation ratios which increase

with marker dosage. Note also that the parametrisation

adopted here, should potentially reduce the possibility of

poor posterior sampling due to label-switching which is

more likely to occur if the means are not ordered (see

Stephens 2000).

Robert (1996) also noted that forcing one observation

into each class may be required. In the case where highly

informative priors are adopted, convergence should be

improved and further reparameterisation, such as that of

Mengersen and Robert (1996) on the variances should

prove unnecessary.

Gibbs sampling was carried out using JAGS (Plummer

2005) which is similar to BUGS (Spiegelhalter et al.

1995). Given the form of the priors and the likelihood, as

well as the nature of the MCMC samples, the MCMC

chains are known to converge at least in polynomial time

(Tweedie and Mengersen 1996). Computation of theo-

retical rates of convergence are both extremely complex

to compute and very conservative. Hence, we adopted the

practical alternative of assessing convergence through

diagnostics, such as those available in CODA (Best et al.

1995). These included the diagnostics of Geweke (1992),

Raftery and Lewis (1992) and Heidelberger and Welch

(1983).

Marker dosage allocation

For each marker, the indicator variable zj along with the

other parameters, were recorded at each iteration of the

MCMC sampler to obtain an empirical posterior proba-

bility distribution of belonging to each marker dosage

class.

While the maximum posterior probability could be

used to allocate dosage, this is likely to be too optimistic

if a marker is on the boundary between two marker

dosage components. Instead, a marker was allocated to a

dosage class if its posterior probability was over 0.8 of

belonging to that component. In some sense this analo-

gous to the common statistical practises of choosing a

sample size in order to attain a power of 80% or setting a

20% false discovery rate. Simulation studies outlined in

‘‘Simulation study’’ confirmed this value to be a reason-

able choice.

Model assessment

Spiegelhalter et al. (2002) introduced the deviance infor-

mation criterion (DIC) for model assessment and compar-

ison for linear and generalized linear models. The DIC is a

Bayesian model selection criterion devised to work both as

a measure of fit and a measure of complexity with similar

aims to the commonly used AIC (Akaike 1974).

Celeux et al. (2006) and others have noted that possible

inconsistencies may arise in defining the DIC for missing

data models such as for the mixture models employed here.

While Celeux et al. compared a number of alternative

formulations of the DIC these proved less than satisfactory

here since the methods are aimed at parameter estimation

rather than marker dose classification. Instead, different

models were compared for accuracy of classifying marker

dosage and percentage of markers classified by simulation

studies as outlined in the following section.

Simulation study

Marker data were simulated for a range of ploidy levels,

sample sizes, marker numbers and severity of overdisper-

sion in order to assess the performance of current and

proposed methods of dosage allocation.

Five simulated data sets of 200, 500, 1,000, 1,500

markers for 50, 100, 200 and 500 progeny were constructed

with a ploidy of m = 4, 6, 8 and 10. The proportions of

markers in each marker dosage class were set to be similar

to those often seen in practice, namely (0.8,0.2)T for

m = 4, (0.7, 0.25, 0.05)T for m = 6 and (0.7, 0.15, 0.1,

0.05)T for m = 8 and m = 10.

Simulation was carried out as follows. Given, the

number of progeny, number of markers and proportions

of simplex, duplex, triplex and quadruplex markers, the

corresponding numbers of markers for each dosage were

generated from a multinomial distribution. Individual

marker data were then generated from the binomial dis-

tribution with appropriate expected segregation propor-

tions. Three further marker data sets were generated with

varying amounts of overdispersion which was introduced

by generating markers from a beta-binomial distribution as

outlined in Appendix 2. The first shape parameter a was set
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to 50, 15 and 5 which corresponded to slight, moderate and

severe overdispersion, respectively.

The standard methods of allocating marker dosage,

namely the v2 and binomial methods were employed at the

0.05 and 0.01 a level were compared. Comparisons of

percentage of correctly classified markers and also the

percentage classified in total were made via Tukey mean

difference plots as described in Altman and Bland (1983)

and Bland and Altman (1995).

Four mixture model approaches were similarly com-

pared. These employed either informative or uninformative

priors and either common or separate variances for each

marker dosage component. For the data sets with a ploidy

of 8 or 10, due to concerns about convergence and stability

of estimates, mixture models with both three and four

components were fitted.

Finally, the best overall standard and overall mixture

model methods were compared.

Results

Simulation study

Marker dosage was allocated for 960 data sets by the v2

and binomial CI methods at the 1% and 5% levels and by

the four mixture model methods. Additionally, for those

data sets with ploidy 8 or 10, both a three and four com-

ponent mixture model was fitted which resulted in 1,440

sets of four mixture model results for comparison.

Comparison of current methods

The percentage of correctly classified markers by various

methods was compared via Tukey mean difference plots as

shown in Fig. 4. These plots indicate that tests conducted at

the 1% level correctly classify dosage for more markers

than at the 5% level. Note that a difference above zero
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Fig. 4 Tukey mean difference plots of three standard methods for

marker dosage allocation, namely binomial 95% CI (bin.05), v2 at the

5% level (chi.05) and the binomial 99% CI (bin.01) versus the v2 test

at the 1% significance level. Overdispersion was set to None (empty
square), Slight (inverted triangle), Moderate (plus sign) and Severe

(empty circle). The y axis is the difference in the percentage of

markers allocated correctly via the v2 test at the 1% level minus the

percentage obtained by the other test. The horizontal line is set at a

zero difference. The plots indicate that the v2 test and binomial CI at

the 1% level result in similar percentages of markers correctly

allocated, whereas both methods at the 5% level result in fewer

markers being correctly allocated. It is also clear that all tests result in

fewer markers being correctly allocated as overdispersion increases
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indicates that the v2 test at the 1% level classified more

markers than the alternate test and vice versa for a negative

difference. The results are as expected since 95% CIs are

narrower than 99% CIs and so more markers are classified

by methods at the 1% level. Indeed, Tukey mean difference

plots of the percentage of markers classified look very

similar to the corresponding percent correct in Fig. 4 (not

shown).

One concern is that there may be a trade off between

correctly classifying more markers and misclassification

rate. However, increasing the percentage of correct marker

dose allocation by using a smaller a value did not induce a

higher classification rate. Instead, in general, the methods

applied at the 1% level have a slightly lower misclassifi-

cation rate than at the 5% level. All four methods have a

low misclassification rate when there is no overdispersion

but this rate increases as overdispersion increases.

It is clear from Fig. 4 that for all methods fewer markers

will be classified as overdispersion increases. This is

because the range of segregation ratios widens as the

overdispersion increases while the same CI or test value is

used, irrespective of overdispersion.

Figure 5 shows clearly a marked increased misclassifi-

cation of marker dosage with increasing overdispersion. A

small increase in misclassification rate is seen with

increasing ploidy level although this is always in combi-

nation with overdispersion. Interestingly, the percentage

correct was independent of the ploidy level (2; 4; . . .; 10) or

number of markers (see Fig. 5. Similarly, the percentage of

markers classified was not affected by differing ploidy

levels or numbers of markers.

For the v2 test at the 1% level, from Fig. 6 it is clear that in

the absence of overdispersion, the percentage of markers

correctly allocated is very high and increases with more

markers. However, when overdispersion is present then

more progeny result in less markers being correctly allo-

cated. This is due to the confidence intervals for each marker

dosage being narrower as the number of progeny increases.
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Fig. 5 Box plots of the percentage of markers misclassified with (1)

increasing overdispersion and (2) ploidy level along with the

percentage of markers where dosage was correctly allocated by v2

tests at the 1% level at varying (3) ploidy levels and (4) numbers of

markers. Five simulated data sets were produced for a range of ploidy

levels (m ¼ 4; . . .; 10) and overdispersion (None, Slight, Medium and

Severe), 200–1,500 markers for 100, 200 or 500 progeny. The top
plots clearly show the (1) effect of overdispersion on misclassification

and (2) the smaller effect of increasing ploidy level. The bottom plots
indicate (3) no difference in correctly allocating dosage for varying

ploidy levels 4, 6, 8 or 10 or (4) for a change of 200–1,500 markers
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Choosing the best mixture model approach

In general, as judged by the Geweke (1992) statistic,

convergence was achieved with a burn in of 5,000 and

MCMC sample of 10,000 although some model/data set

combinations with equal variances required longer chains

and in these cases further diagnostics were also employed

(Best et al. 1995).

From the boxplots in Fig. 7, on balance, the mixture

model with equal variances incorporating strong prior

knowledge about the theoretical segregation ratios gave

more correct dosage allocations with lower misclassifi-

cation rates. Boxplots include results for all ploidy levels,

numbers of markers and individuals as well as where

allocation was made by setting the posterior probability

cutoff between 0.5 and 0.99. These factors did not
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Fig. 6 Box plots of the percentage of markers with dosage correctly

allocated by the v2 tests at the 0.01 level. Five simulated data sets

were produced for a range of ploidy levels (m ¼ 4; . . .; 10) and

overdispersion (None, Slight, Medium and Severe), 200–1,500

markers for 100, 200 or 500 progeny. Nearly all markers were

correctly allocated when there was no overdispersion. Fewer markers

were correctly allocated with increasing overdispersion or larger

sample size
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Fig. 7 Box plots of the

percentage of markers with

i dosage correctly allocated and
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models which had vague or

strong priors, equal variances

(eqv) or different variances.

Note that the box plots include

results for all other simulation

factors and for a range of

posterior probability cutoffs
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influence the overall conclusion and hence choice of best

model/prior combination.

For simulated data with a ploidy of 8 and 10, both a 3

or 4 component mixture model was fitted. The former

model was considered in order to avoid potential prob-

lems with fitting a component consisting of very few four

dose markers. However, convergence problems were not

evident. This was probably due to strong prior informa-

tion and also less parameters being required when a

common variance parameter was assumed for each com-

ponent. In general, models with more components per-

formed slightly better as outlined in Appendix 3. Such

models may indicate that fewer components are warranted

if there is only one or two markers in the highest dosage

component. For medium or severe overdispersion at high

ploidy levels results proved to be more variable and so, in

terms of allocating marker dosage, some data sets did

worse.

Finally, to choose the threshold for the posterior prob-

ability in cutting off the percentage of correctly allocated

markers and misclassification rates were examined. There

was no effect of either the number of progeny or number of

markers on classification or misclassification rates. There is

no clear optimal threshold value although 0.8 seemed a

reasonable rate when balancing correct classification and

misclassification rates (see Appendix 3).

In summary, it would appear that incorporating strong

prior knowledge and equal variances on the logit scale for

all components produces better allocations of marker dos-

age. However, if there is medium to severe overdispersion

or if the ploidy level is over 6 then allocation will be less

accurate.

Comparison of current and proposed methods

The best approaches of each type of standard and mixture

model methods were compared via Tukey mean difference

plots. In ‘‘Comparison of current methods’’, the v2 test at

the 1% level, which is very similar to the binomial 99% CI,

proved to be the most effective standard test while in

‘‘Choosing the best mixture model approach’’ the mixture

model incorporating strong prior information and where all

components had equal variance on the logit scale proved to

correctly identify marker dosage than other models.

Overall, from Fig. 8, it can be seen that markers were

correctly classified by the mixture model method more

often than the best standard method, namely a v2 test at the

1% level. The difference between the methods was more

pronounced as overdispersion increased and to a lesser

extent as ploidy increased. Also, more markers were cor-

rectly classified as with increasing numbers of progeny. No

trend was seen with increasing marker numbers (not

shown). Note that each point represents one simulated data

set and a difference greater than 0 indicates the mixture

model correctly allocates more markers.

Figure 9 indicates that both mixture models and the a v2

test at the 1% level have similar misclassification rates,

although for all but the case when there is no overdisper-

sion, more data sets had a lower misclassification rate when

the mixture model was employed. However, misclassifi-

cation rates increased with increasing overdispersion and

ploidy levels.

Analysis of sugarcane AFLP data set

The standard methods and the mixture models for dose

allocation were applied to the 566 markers inherited from

KQ99-1410 from the sugarcane backcross study in ‘‘Case

study: a sugarcane AFLP data set’’.

To assign marker dosage to each marker, v2 tests,

binomial confidence intervals and mixture models were

fitted via MCMC as outlined in sections ‘‘The v2 test’’,

‘‘The binomial confidence interval method’’, ‘‘A mixture

model for assessing dosage’’, respectively. Mixture models

were fitted under four scenarios. Priors were chosen as

either vague or informative priors as outlined in Appen-

dix 1. Variances (and hence precisions) of the normal

mixture components on the logit scale were set to be either

free to vary s1; s2ors3ð Þ or to be all the same s ¼ s1 ¼ð
s2 ¼ s3Þ: The numbers of markers allocated as simplex,

duplex or triplex are shown in Table 2. No quadruplex

markers were allocated by any method.

The observed segregation proportions for 566 AFLP

markers inherited from KQ99-1410, fitted mixture model

and theoretical distributions on the logit scale are shown in

Fig. 10. The mixture model incorporated prior information

and set component variances to be equal since this was

shown to correctly allocate more markers with lower

misclassification rates than other models in the presence of

strong overdispersion which is evident here.

Two features are apparent from Fig. 10. First, the

observed segregation proportion distribution is moved to

the left compared to the theoretical expectations. The

expected values are (0.50, 0.79, 0.93) for simplex, duplex

and triplex markers, respectively but the estimates are

(0.03, 0.09, 0.07) lower (see Table 3). It should be noted

that differences are magnified on the logit scale. Secondly,

as expected the best estimated distribution is the simplex

component. This distribution has variance wider than that

of the theoretical distribution. Thirdly, even though strong

priors were employed, these appeared to not unduly influ-

ence the model fit since the fitted distributions were shifted

to the left since these fit the data rather than reflect the

priors.

MCMC convergence was achieved after a burn in of

5,000 iterations and with a sample of 10,000 as judged by
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the Geweke (1992) statistic and the diagnostics of Raftery

and Lewis (1992) and Heidelberger and Welch (1983).

Parameter estimates of models incorporating prior infor-

mation corresponding to the mean of the posterior distri-

butions are shown in Table 3. The deviance information

criteria are shown in Table 2. The model, which proved to

be best in ‘‘Choosing the best mixture model approach’’

had component means closer to the theoretical ones.

Discussion

Assigning marker dosage is the first analytical step in

constructing molecular marker maps or QTL linkage

analysis in autopolyploids. Incorrectly assigning dosage

can result in marker map distortion. Allocating marker

dosage to fewer markers than the data warrants may also

significantly decrease the efficiency of the statistical anal-

ysis. Improvements to methods for assigning dosage should

have the opposite effect by increasing efficiency.

Standard methods for assigning marker dosage appear to

have limitations in that these approaches do not allow for

multiple testing or overdispersion. Extra-binomial variation

or overdispersion may be induced by correlation or mea-

surement error. Since linked markers are correlated, over-

dispersion might be expected as a matter of course.

Overdispersion may also be expected in sugarcane due to

aneuploidy and irregular ploidy. For instance, since sug-

arcane is not a regular octoploid, different double-dose

markers may come from homology groups with different

ploidies and so have similar but different expected segre-

gation ratios. Chromosome loss may also result in a change

of segregation ratio from the expected value. Of course, if a

marker is linked to a lethal gene say then the resulting

segregation distortion may yield a lower than expected

segregation ratio, whereas the opposite may occur if the

marker is linked to a favourable gene. Another potential

cause of overdispersion could be that of preferential pair-

ing. In terms of allocating marker dosage, it is clear that

preferential pairing will not alter segregation proportions
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Fig. 8 Tukey mean difference plots comparing the percentage of

markers correctly classified for a v2
0:01 test with a mixture model

employing strong prior information and equal variances. Data sets

where both methods are equivalent fall on the horizontal line. The

majority of points are above the reference line. Each such point

represents one simulated data set and indicates the mixture method

correctly allocates more marker dosages. The plots are conditional on

the ploidy level (4, 6, 8, 10) and the level of overdispersion (None to

Severe). The no. of progeny (100, 200, 500) are shown as a inverted
triangle, plus sign and a open circle, respectively
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substantially for octoploids or higher ploidy levels and so

the methods presented here should correctly identify

dosage.

The v2 test at the 5% level is commonly used to allocate

dosage to a panel of markers. Alternatively, employing a

binomial confidence interval should result in most markers

being allocated a similar dosage. If there are no departures

from theoretical assumptions then 5% of markers, which

are clearly in the tails of the specific dose distributions, will

remain unclassified and so a sparser marker map may be

produced than if all markers were used. Employing a

smaller a level should result in more markers being

correctly classified except there may be some ambiguity at

higher doses due to overlapping distributions. Neverthe-

less, simulation studies in ‘‘Comparison of current meth-

ods’’ showed that more markers will be correctly classified

for a = 0.01 under a range of conditions such as increasing

ploidy or overdispersion. Also, in general, misclassification

rates were not increased by reducing the a level.

From the simulation studies in section ‘‘Simulation

study’’, it appears that current methods for assigning

dosage work well when there is no overdispersion. Fewer

markers are classified and misclassification rates increase

with increasing overdispersion or ploidy. The number of

progeny or markers did not affect the rates of correct

allocation or misclassification for the range of conditions

studied here.

The Bayesian approach presented above augments

current methods for assigning marker dosage in auto-

polyploids by estimating marker dosage for all markers

simultaneously. This method directly estimates the posterior

probabilities of each dosage for every marker, incorporat-

ing prior genetic knowledge, allowing for extra-binomial

variation and finally for providing a framework for

assessing departures from genetic theory by comparing

observed and expected parameter values. The drawbacks of

the method centre around the fact that it is more compli-

cated than current tests and so more computing power and

consideration of further issues like assessment of conver-

gence and model choice are required.

From the simulation studies in ‘‘Simulation study’’, it

would appear that incorporating strong prior knowledge
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Fig. 9 Tukey mean difference plots comparing the misclassification

rates for a v2
0:01 test with a mixture model employing strong prior

information and equal variances. Data sets where both methods are

equivalent fall on the horizontal line. Points above the line indicate

the mixture method is worse in that more markers are misclassified.

More points fell below the line for increasing overdispersion although

results were more variable as ploidy increased
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and equal variances on the logit scale for all components

produces better allocations of marker dosage. However, as

with standard methods, if there is medium to severe

overdispersion or if the ploidy level is over 6 then alloca-

tion will be less accurate. This is to be expected since for

higher ploidy levels, markers with dosage over 3 will not

be distinguishable on the basis of segregation ratios since

the theoretical distributions are so similar and so overlap.

In the presence of overdispersion, this situation will be

even worse since potentially the underlying distributions

will be even wider.

Perhaps surprisingly, the number of markers (from 200

to 1,500) yielded very similar results in the simulation

study and so no direct comparisons based on marker numbers

have been presented. This is to be expected for conventional

methods where tests are carried out separately but it is

interesting that the number of markers had no bearing on

the results employing the Bayesian mixture model.

In terms of correctly identifying marker dosage, both the

v2 and mixture model methods produce similar results

where no overdispersion is present. However, misclassifi-

cation rates tend to be slightly higher with the mixture

model as ploidy increases. On the other hand if any over-

dispersion is present, mixture models are to be preferred

since, more markers in general are classified and correctly

assigned dosage. Also, in the presence of overdispersion,

fewer markers are misclassified than with the v2 test.

While there is no omnibus statistical test for overdis-

persion in mixture models, a simple histogram with

superimposed theoretical mixture density should prove

adequate for identifying overdispersion. The theoretical

mixture density may be approximated by a mixture of

binomial distributions with probability set to the appro-

priate theoretical values and proportions set to those

observed by applying the v2 test. Additionally, graphical

methods enable quick identification of outliers. Addition-

ally, the Bayesian mixture method provides a more

objective mechanism to investigate departures from the

expected distributions by comparing the posterior

distributions of the mean segregation proportions for each

dosage component to their expected values in Eq. 1.

Table 2 Number of markers assigned a dosage by various methods

for 566 AFLP markers inherited from KQ99.1410 in a sugarcane trial

at Ayr, Queensland

Standard methods Marker dosage

Method a 1 2 3 Not % Allocated

v2 0.05 301 45 12 208 63

v2 0.01 363 56 16 131 77a

Binomial 0.05 308 44 13 201 64

Binomial 0.01 363 56 17 130 77

Mixture model Marker dosage

Prior sk 1 2 3 Not % Allocated

Vague = 425 67 42 32 94

Vague = 389 53 17 107 81

Strong = 425 56 42 43 92

Strong = 430 71 32 33 94a

v2 tests, binomial CIs with type I error a and mixture models with a

posterior probability threshold of 0.8 were used to allocate dosage.

The mixture models employed priors that were either vague or

informative based on sk 1� 20%ð Þ with precision sk ¼ 1=s2
k :

a Best methods in simulation study

logit(Segregation Ratio)

D
en
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0.0

0.5

1.0

−1 0 1 2 3

Fig. 10 Histogram of observed segregation ratios for 566 AFLP

markers inherited from KQ99-1410 in a sugarcane trial at Ayr,

Queensland. The solid line is the expected theoretical distribution

while the dashed line is a mixture model fitted on the logit scale. The

mixture model employed strong priors on the means lk and precisions

sk . The largest component, consisting of simplex markers theoreti-

cally centred around 0, exhibits a larger variance than the theory

would suggest. All components exhibit a shift to the left which may

be due to aneuploidy

Table 3 Parameter estimates and standard errors in brackets on the

logit scale for mixture models employed to assign marker dosage for

566 AFLP markers inherited from KQ99.1410 in a sugarcane trial at

Ayr, Queensland

Parameter r ¼ rk r 6¼ rk Expected

p̂1 0.78 (0.02) 0.76 (0.02)

p̂2 0.16 (0.02) 0.14 (0.02)

p̂3 0.07 (0.01) 0.10 (0.02)

l̂1 -0.10 (0.01) -0.11 (0.01) 0.0

l̂2 0.91 (0.04) 0.78 (0.06) 1.3

l̂3 1.97 (0.07) 1.74 (0.10) 2.6

r̂1 0.20 (0.01) 0.17 (0.01)

r̂2 0.19 (0.02)

r̂3 0.36 (0.05)

Priors were informative based on s (1 ± 20%) with unequal or equal

variances. Component means lk were less than theory suggests

Theor Appl Genet (2010) 120:1653–1672 1667

123



Extra-binomial variation or overdispersion is evident in

the case study outlined in ‘‘Case study: a sugarcane AFLP

data set’’. It also appears that, on average, the sugarcane

markers appear to have smaller segregation ratios than

expected. Given that the parent KQ99-1410 resulted from a

cross of a S. officinarum IJ76-514 and a commercial sug-

arcane Q165, it is perhaps not surprising since there may be

a number of unknown processes occurring like 2n ? n

transmission, chromosome loss or aneuploidy. Cytological

studies rather than segregation ratio studies may be

required to investigate this hypothesis further.

Finally, it should be noted that fitting finite mixtures is

not as straight forward as more common statistical tech-

niques like linear models and so care must be taken. Since

analytic solutions are not available, MCMC is employed

for computation. The EM algorithm Dempster et al. (1977)

could also be used directly but this would prove less

straightforward if prior information were incorporated

which is the case here. Care must also be taken to ensure

convergence is achieved.

The mixture model approach developed in this paper,

along with standard tests have been implemented as an R

(R Development Core Team 2007) package with MCMC

carried out by calling JAGS (Plummer 2005). The R

packages polySegratio and polySegratioMM for standard

and mixture model approaches, respectively are available

from the corresponding author on request and also at

http://www.r-project.org/

In summary, Bayesian mixture models add a new

method to assign marker dosage in autopolyploids. These

methods possess the advantages that they produce esti-

mates of the posterior probability of dosage for each

marker, can objectively allocate more markers than current

methods under departures from genetic theory and also

provide a tool to highlight, and to a limited extent, quantify

departures from the theory.
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Appendix 1: Informative prior specification for sk

Conjugate prior distributions are employed for the means

lk and precisions sk; k ¼ 1; . . .;K: A method to determine

the hyperparameters as logit Pkð Þ and Tk for the prior dis-

tribution of the mean lk are outlined in ‘‘Priors’’. Prior

distributions for the means lk in autooctoploids are pro-

vided in Table 4.

Employing a similar approach for the mean of

sk �Gamma Ak;Bkð Þ; we can calculate the logit transformed

2.5 and 97.5 percentiles of the theoretical binomial distribu-

tion with parameters in Eq. 1 to obtain the expected value ŝk

of sk. Denoting the percentiles as q0.025 and q0.975 on the

untransformed scale then for a 95% confidence region on the

logit scale

~sk � logit q0:0975ð Þ � logit q0:0925ð Þ½ �=4 ð12Þ

and so expected value ~sk ¼ 1
	

~s2
k ;, where ~sk is defined in

Eq. 12 and so may be obtained directly from the percen-

tiles q0.025 and q0.075 of the binomial distribution with size

equal to the number of individuals Nk and probability Pk.

The conjugate prior distribution for the precision sk is a

Gamma(Ak,Bk) which has mean Ak=Bk and variance Ak

	
B2

k .

Ideally, the mean of the prior distribution would be spec-

ified as ŝk but the variance may be specified by several

methods. Those considered here involve setting an interval

around either ~sk or ~sk.

First, if the prior distribution is specified to have a 95%

confidence region around sk as sk 1� xð Þ, then the interval

has length 2xsk which is 4 SD(sk). Ak and Bk are obtained

by equating the mean Ak=Bk and variance Ak

	
B2

k to their

observed values ŝk and 2xŝ, respectively.

In a similar fashion, if the 95% confidence region

around sk is set to sk 1� xð Þ then the SD(sk) is a quarter of

the interval on the on the sk scale. This is simply

SD skð Þ ¼
1

4

1

s2
kð1� xÞ2

� 1

s2
kð1þ xÞ2

 !

� x

s2
k 1þ xð Þ2 1� xð Þ2

and once the observed and expected means and variances

are equated then Ak ¼ C:ŝ4
kand Bk ¼ Cŝ3

k where C ¼
x2= 1þ xð Þ 1� xð Þ: This produces a narrower prior distri-

bution than specifying limits around sk.

Table 4 Expected segregation ratios for autooctoploids on the logit

scale and hyperparameters set for strong priors assuming theoretical

segregation ratios

K Segregation ratio

p logit (p) s = SD

(logit (p))

s ¼ 1=s2

1 1/2 0.000 0.17 33.36

2 11/14 1.299 0.41 5.85

3 13/14 2.565 1.00 1.00

4 69/70 4.234 1.15 0.76

The priors on the means are lk N logit Pk;T
�1
k

� �
; k ¼ 1; . . .; 4

� �
and on

the precisions are s�Gamma Ak;Bkð Þ where sk ¼ 1
	
r2

k . Hyperpa-

rameters are set by by constructing a 95% CI and logit transforming

this interval to obtain approximate precisions on the logit scale.

Means lk � 0:05 on the untransformed scale while standard devia-

tions were set to be ±20% on the logit scale
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Fig. 11 Box plots of the i percentage of markers with dosage

correctly allocated and ii misclassified by models with three or four

components where equal variances on the logit scale were assumed

and strong prior information was incorporated. Three component

models may avoid computational problems but could result in more

markers being misclassified
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Fig. 12 Box plots of the percentage of misclassified markers for non

to severely overdispersed data for models with three or four

components. The model employed was that of equal variances on

the logit scale with strong prior information incorporated. The range

of results increases with increasing overdispersion which could result

in worse classification for some data sets
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Appendix 2: Generating markers with overdispersion

For simulation studies, markers with specified dosage may

be generated from a Binomial (n,p) distribution where p is

the appropriate segregation proportion in Eq. 1. When

overdispersion is present, a beta-binomial distribution may

be used with p * beta (a,b), where a and b are the first and

second shape parameter, respectively (Skellams 1948). If

the theoretical segregation ratio Pjk in Eq. 1 is equated to the

expected value E(p) = a/(a ? b) then simply setting the

first shape parameter a fixes the value of b ¼ a 1�ð PjkÞ=Pjk.

Note that larger values of a correspond to smaller values

of Var pð Þ ¼ ab aþ bð Þ2 aþ bþ 1ð Þ which results in less

overdispersion.

Appendix 3: Comparison of mixture model options

From Fig. 11 the model with more components performs

slightly better in that, on average, the median percentage of

correctly allocated markers was higher with more compo-

nents and the misclassification rate was lower. In general,

while results are better when more components are

employed at higher ploidy levels, the range may appear to

indicate that worse results may actually be obtained for

particular data sets. Further investigation reveals that this

only occurs for medium to severe overdispersion (see

Fig. 12).

While the percentage of correctly allocated markers

decreases with increasing threshold (see Fig. 13), the

trend becomes more pronounced with increasing over-

dispersion and ploidy levels. On the other hand, mis-

classification rates increase with smaller thresholds and

increasing ploidy or overdispersion levels. While there is

no clear optimal threshold value, it would seem that that a

value of around 0.8 is a reasonable compromise and

corresponds in some ways to the value of 0.2 which is

commonly used in false discovery rate studies and com-

monly used as a reasonable power when designing

experimental studies (Fig. 14).
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Fig. 13 Box plots of the percentage of markers with dosage correctly

allocated by mixture models for a range of thresholds by four levels of

overdispersion (None, Slight, Medium, Severe) and ploidy (4, 6, 8,

10). Dosage is allocated when the posterior probability exceeds the

threshold. The models fitted were chosen to be those with the

maximum number of components, equal variances on the logit scale

were assumed and strong prior information incorporated. The

percentage of correctly allocated markers tails off for thresholds

larger than 0.8
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